Echo protocols of an optical quantum memory

S. A. Moiseev, K. I. Gerasimov, M. M. Minnegaliev, E. S. Moiseev, A. D. Deev, Yu. Yu. Balega

PDF(4648 KB)
PDF(4648 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (2) : 023301. DOI: 10.15302/frontphys.2025.023301
TOPICAL REVIEW

Echo protocols of an optical quantum memory

Author information +
History +

Abstract

Based on new obtained analytical results, the main properties of photon echo quantum memory protocols are analysed and discussed together with recently achieved experimental results. The main attention is paid to studying the influence of spectral dispersion and nonlinear interaction of light pulses with resonant atoms. The distinctive features of the effect of spectral dispersion on the quantum storage of broadband signal pulses in the studied echo protocols are identified and discussed. Using photon echo area theorem, closed analytical solutions for echo protocols of quantum memory are obtained, describing the storage of weak and intense signal pulses, allowing us to find the conditions for the implementation of high efficiency in the echo protocols under strong nonlinear interaction of signal and control pulses with atoms. The key existing practical problems and the ways to solve them in realistic experimental conditions are outlined. We also briefly discuss the potential of using the considered photon echo quantum memory protocols in a quantum repeater.

Graphical abstract

Keywords

optical quantum memory / photon echo / crystals with rare earth ions / quantum repeater

Cite this article

Download citation ▾
S. A. Moiseev, K. I. Gerasimov, M. M. Minnegaliev, E. S. Moiseev, A. D. Deev, Yu. Yu. Balega. Echo protocols of an optical quantum memory. Front. Phys., 2025, 20(2): 023301 https://doi.org/10.15302/frontphys.2025.023301

References

[1]
N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, Quantum repeaters based on atomic ensembles and linear optics, Rev. Mod. Phys. 83(1), 33 (2011)
CrossRef ADS Google scholar
[2]
P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, Linear optical quantum computing with photonic qubits, Rev. Mod. Phys. 79(1), 135 (2007)
CrossRef ADS Google scholar
[3]
R. N. Stevenson, M. R. Hush, A. R. R. Carvalho, S. E. Beavan, M. J. Sellars, and J. J. Hope, Single photon production by rephased amplified spontaneous emission, New J. Phys. 16(3), 033042 (2014)
CrossRef ADS arXiv Google scholar
[4]
A. D. Manukhova, K. S. Tikhonov, T. Y. Golubeva, and Y. M. Golubev, Noiseless signal shaping and cluster-state generation with a quantum memory cell, Phys. Rev. A 96(2), 023851 (2017)
CrossRef ADS arXiv Google scholar
[5]
D. L. Chen, Z. Q. Zhou, C. F. Li, and G. C. Guo, Nonclassical photon-pair source based on noiseless photon echo, Phys. Rev. A 107(4), 042619 (2023)
CrossRef ADS arXiv Google scholar
[6]
J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett. 23(15), 880 (1969)
CrossRef ADS Google scholar
[7]
N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86(2), 419 (2014)
CrossRef ADS arXiv Google scholar
[8]
J. M. Mol, L. Esguerra, M. Meister, D. E. Bruschi, A. W. Schell, J. Wolters, and L. Worner, Quantum memories for fundamental science in space, Quantum Sci. Technol. 8(2), 024006 (2023)
CrossRef ADS arXiv Google scholar
[9]
M. Hosseini, B. M. Sparkes, G. T. Campbell, P. K. Lam, and B. C. Buchler, Storage and manipulation of light using a Raman gradient-echo process, J. Phys. At. Mol. Opt. Phys. 45(12), 124004 (2012)
CrossRef ADS arXiv Google scholar
[10]
E. S. Moiseev and S. A. Moiseev, Time-bin quantum RAM, J. Mod. Opt. 63(20), 2081 (2016)
CrossRef ADS arXiv Google scholar
[11]
K. C. Chen, W. Dai, C. Errando-Herranz, S. Lloyd, and D. Englund, Scalable and high-fidelity quantum random access memory in spin-photon networks, PRX Quantum 2, 030319 (2021)
CrossRef ADS arXiv Google scholar
[12]
A. I. Lvovsky, B. C. Sanders, and W. Tittel, Optical quantum memory, Nat. Photonics 3(12), 706 (2009)
CrossRef ADS Google scholar
[13]
W. Tittel, M. Afzelius, T. Chaneliére, R. Cone, S. Kröll, S. Moiseev, and M. Sellars, Photon‐echo quantum memory in solid state systems, Laser Photonics Rev. 4(2), 244 (2010)
CrossRef ADS Google scholar
[14]
F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, Prospective applications of optical quantum memories, J. Mod. Opt. 60(18), 1519 (2013)
CrossRef ADS arXiv Google scholar
[15]
K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, Quantum memories: Emerging applications and recent advances, J. Mod. Opt. 63(20), 2005 (2016)
CrossRef ADS arXiv Google scholar
[16]
T.ChanelièreG.HétetN.Sangouard, Chapter two-quantum optical memory protocols in atomic ensembles Advances in Atomic, Molecular, and Optical Physics, Vol. 67, Eds.: E. Arimondo, L. F. DiMauro, and S. F. Yelin, Academic Press, 2018, pp 77–150
[17]
Y. L. Hua, Z. Q. Zhou, C. F. Li, and G. C. Guo, Quantum light storage in rare-earth-ion-doped solids, Chin. Phys. B 27(2), 020303 (2018)
CrossRef ADS Google scholar
[18]
M. Guo, S. Liu, W. Sun, M. Ren, F. Wang, and M. Zhong, Rare-earth quantum memories: The experimental status quo, Front. Phys. 18(2), 21303 (2023)
CrossRef ADS Google scholar
[19]
Z. Q. Zhou, C. Liu, C. F. Li, G. C. Guo, D. Oblak, M. Lei, A. Faraon, M. Mazzera, and H. de Riedmatten, Photonic integrated quantum memory in rare-earth doped solids, Laser Photonics Rev. 17, 1 (2023)
CrossRef ADS Google scholar
[20]
Y. Lei, F. Kimiaee Asadi, T. Zhong, A. Kuzmich, C. Simon, and M. Hosseini, Quantum optical memory for entanglement distribution, Optica 10(11), 1511 (2023)
CrossRef ADS Google scholar
[21]
E. L. Hahn, Spin echoes, Phys. Rev. 80(4), 580 (1950)
CrossRef ADS Google scholar
[22]
U. Kopvillem and V. Nagibarov, Luminous echo of paramagnetic crystals, Fiz. Metal. i Metalloved. 15, 313 (1963)
[23]
N. A. Kurnit, I. D. Abella, and S. R. Hartmann, Observation of a photon echo, Phys. Rev. Lett. 13(19), 567 (1964)
CrossRef ADS Google scholar
[24]
T. Gorin, T. Prosen, T. H. Seligman, and M. Znidaric, Dynamics of Loschmidt echoes and fidelity decay, Phys. Rep. 435(2−5), 33 (2006)
CrossRef ADS Google scholar
[25]
A. Wisniacki, Loschmidt echo, Scholarpedia J. 7(8), 11687 (2012)
CrossRef ADS arXiv Google scholar
[26]
S. A. Moiseev and S. Kröll, Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition, Phys. Rev. Lett. 87(17), 173601 (2001)
CrossRef ADS Google scholar
[27]
S. A. Moiseev and M. I. Noskov, The possibilities of the quantum memory realization for short pulses of light in the photon echo technique, Laser Phys. Lett. 1(6), 303 (2004)
CrossRef ADS Google scholar
[28]
S. A. Moiseev, V. F. Tarasov, and B. S. Ham, Quantum memory photon echo-like techniques in solids, J. Opt. B 5(4), S497 (2003)
CrossRef ADS Google scholar
[29]
S. A. Moiseev and B. S. Ham, Photon-echo quantum memory with efficient multipulse readings, Phys. Rev. A 70, 063809 (2004)
CrossRef ADS Google scholar
[30]
B. Kraus, W. Tittel, N. Gisin, M. Nilsson, S. Kröll, and J. I. Cirac, Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening, Phys. Rev. A 73(2), 020302 (2006)
CrossRef ADS Google scholar
[31]
A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, Photon echoes produced by switching electric fields, Phys. Rev. Lett. 96(4), 043602 (2006)
CrossRef ADS Google scholar
[32]
B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, Telecommunication-wavelength solid-state memory at the single photon level, Phys. Rev. Lett. 104(8), 080502 (2010)
CrossRef ADS arXiv Google scholar
[33]
N. Sangouard, C. Simon, M. Afzelius, and N. Gisin, Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening, Phys. Rev. A 75(3), 032327 (2007)
CrossRef ADS Google scholar
[34]
A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, Photon storage in Λ-type optically dense atomic media. I. Cavity model, Phys. Rev. A 76(3), 033804 (2007)
CrossRef ADS Google scholar
[35]
S. A. Moiseev and W. Tittel, Optical quantum memory with generalized time-reversible atom–light interaction, New J. Phys. 13(6), 063035 (2011)
CrossRef ADS Google scholar
[36]
E. S. Moiseev and S. A. Moiseev, Scalable time reversal of Raman echo quantum memory and quantum waveform conversion of light pulse, New J. Phys. 15(10), 105005 (2013)
CrossRef ADS arXiv Google scholar
[37]
M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5, Phys. Rev. B 70(21), 214116 (2004)
CrossRef ADS Google scholar
[38]
M. Hosseini, B. Sparkes, G. Campbell, P. Lam, and B. Buchler, High efficiency coherent optical memory with warm rubidium vapour, Nat. Commun. 2(1), 174 (2011)
CrossRef ADS arXiv Google scholar
[39]
S. A. Moiseev, M. M. Minnegaliev, E. S. Moiseev, K. I. Gerasimov, A. V. Pavlov, T. A. Rupasov, N. N. Skryabin, A. A. Kalinkin, and S. P. Kulik, Pulse-area theorem in a single-mode waveguide and its application to photon echo and optical memory in Tm3+: Y3Al5O12, Phys. Rev. A 107(4), 043708 (2023)
CrossRef ADS arXiv Google scholar
[40]
B. Merkel, P. Cova Fariña, and A. Reiserer, Dynamical decoupling of spin ensembles with strong anisotropic interactions, Phys. Rev. Lett. 127(3), 030501 (2021)
CrossRef ADS arXiv Google scholar
[41]
S. A. Moiseev and V. A. Skrebnev, Symmetric-cycle pulse sequence for dynamical decoupling of local fields and dipole–dipole interactions, J. Phys. At. Mol. Opt. Phys. 48(13), 135503 (2015)
CrossRef ADS Google scholar
[42]
S. A. Moiseev and V. A. Skrebnev, Short-cycle pulse sequence for dynamical decoupling of local fields and dipole–dipole interactions, Phys. Rev. A 91(2), 022329 (2015)
CrossRef ADS arXiv Google scholar
[43]
A. M. Waeber, G. Gillard, G. Ragunathan, M. Hopkinson, P. Spencer, D. A. Ritchie, M. S. Skolnick, and E. A. Chekhovich, Pulse control protocols for preserving coherence in dipolar-coupled nuclear spin baths, Nat. Commun. 10(1), 3157 (2019)
CrossRef ADS arXiv Google scholar
[44]
M. M. Minnegaliev, R. V. Urmancheev, V. A. Skrebnev, and S. A. Moiseev, Investigation of a sequence of dynamical decoupling pulses for dipole-coupled spin systems with inhomogeneous broadening, Opt. Spectrosc. 126(1), 1 (2019)
CrossRef ADS Google scholar
[45]
G. Heinze, C. Hubrich, and T. Halfmann, Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute, Phys. Rev. Lett. 111(3), 033601 (2013)
CrossRef ADS Google scholar
[46]
M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, Optically addressable nuclear spins in a solid with a six-hour coherence time, Nature 517(7533), 177 (2015)
CrossRef ADS Google scholar
[47]
M. Rančić, M. P. Hedges, R. L. Ahlefeldt, and M. J. Sellars, Coherence time of over a second in a telecom-compatible quantum memory storage material, Nat. Phys. 14, 50 (2017)
CrossRef ADS arXiv Google scholar
[48]
M. Hain, M. Stabel, and T. Halfmann, Few-photon storage on a second timescale by electromagnetically induced transparency in a doped solid, New J. Phys. 24(2), 023012 (2022)
CrossRef ADS Google scholar
[49]
Y. Ma, Y. Z. Ma, Z. Q. Zhou, C. F. Li, and G. C. Guo, One-hour coherent optical storage in an atomic frequency comb memory, Nat. Commun. 12(1), 2381 (2021)
CrossRef ADS arXiv Google scholar
[50]
N. Sangouard, C. Simon, M. Afzelius, and N. Gisin, Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening, Phys. Rev. A 75(3), 032327 (2007)
CrossRef ADS Google scholar
[51]
S. A. Moiseev, Photon-echo-based quantum memory of arbitrary light field states, J. Phys. At. Mol. Opt. Phys. 40(19), 3877 (2007)
CrossRef ADS Google scholar
[52]
B.S. Ham, A wavelength-convertible quantum memory: Controlled echo, Sci. Rep. 8(1), 10675 (2018)
[53]
A. V. Gorshkov, A. André, M. Fleischhauer, A. S. Sørensen, and M. D. Lukin, Universal approach to optimal photon storage in atomic media, Phys. Rev. Lett. 98(12), 123601 (2007)
CrossRef ADS Google scholar
[54]
S. H. Autler and C. H. Townes, Stark effect in rapidly varying fields, Phys. Rev. 100(2), 703 (1955)
CrossRef ADS Google scholar
[55]
E. Saglamyurek, T. Hrushevskyi, A. Rastogi, K. Heshami, and L. J. LeBlanc, Coherent storage and manipulation of broadband photons via dynamically controlled Autler–Townes splitting, Nat. Photonics 12(12), 774 (2018)
CrossRef ADS arXiv Google scholar
[56]
P. Vernaz-Gris, A. D. Tranter, J. L. Everett, A. C. Leung, K. V. Paul, G. T. Campbell, P. K. Lam, and B. C. Buchler, High-performance Raman memory with spatio-temporal reversal, Opt. Express 26(10), 12424 (2018)
CrossRef ADS arXiv Google scholar
[57]
J. Dajczgewand, J. L. Le Gouët, A. Louchet-Chauvet, and T. Chanelière, Large efficiency at telecom wavelength for optical quantum memories, Opt. Lett. 39(9), 2711 (2014)
CrossRef ADS arXiv Google scholar
[58]
M. M. Minnegaliev, K. I. Gerasimov, T. N. Sabirov, R. V. Urmancheev, and S. A. Moiseev, Implementation of an optical quantum memory protocol in the 167Er3+: Y2SiO5 crystal, JETP Lett. 115(12), 720 (2022)
CrossRef ADS Google scholar
[59]
S.A. Moiseev, Some general nonlinear properties of photon-echo radiation in optically dense media, Opt. Spectrosc. 62, 180 (1987) (English translation of Optika i Spektroskopiya)
[60]
S. A. Moiseev, Quantum memory for intense light fields based on the photon echo, Bull. Russ. Acad. Sci. Phys. 68, 1260 (2004)
[61]
R. Urmancheev, K. Gerasimov, M. Minnegaliev, T. Chanelière, A. Louchet-Chauvet, and S. Moiseev, Two-pulse photon echo area theorem in an optically dense medium, Opt. Express 27(20), 28983 (2019)
CrossRef ADS Google scholar
[62]
S. A. Moiseev, M. Sabooni, and R. V. Urmancheev, Photon echoes in optically dense media, Phys. Rev. Res. 2(1), 012026 (2020)
CrossRef ADS arXiv Google scholar
[63]
S. L. McCall and E. L. Hahn, Self-induced transparency, Phys. Rev. 183(2), 457 (1969)
CrossRef ADS Google scholar
[64]
M. J. Ablowitz, D. J. Kaup, and A. C. Newell, Coherent pulse propagation, a dispersive, irreversible phenomenon, J. Math. Phys. 15(11), 1852 (1974)
CrossRef ADS Google scholar
[65]
A. Maimistov, A. Basharov, S. Elyutin, and Y. Sklyarov, Present state of self-induced transparency theory, Phys. Rep. 191(1), 1 (1990)
CrossRef ADS Google scholar
[66]
S. A. Moiseev and R. V. Urmancheev, Photon/spin echo in a Fabry–Perot cavity, Opt. Lett. 47(15), 3812 (2022)
CrossRef ADS Google scholar
[67]
M. M. Minnegaliev, K. I. Gerasimov, R. V. Urmancheev, A. M. Zheltikov, and S. A. Moiseev, Linear Stark effect in Y3Al5O12: Tm3+ crystal and its application in the addressable quantum memory protocol, Phys. Rev. B 103(17), 174110 (2021)
CrossRef ADS Google scholar
[68]
N. T. Vinh, D. V. Tsarev, and A. P. Alodjants, Coupled solitons for quantum communication and metrology in the presence of particle dissipation, J. Russ. Laser Res. 42(5), 523 (2021)
CrossRef ADS Google scholar
[69]
V.I. Rupasov, Contribution to the Dicke superradiance theory. Exact solution of the quasione-dimensional quantum model, Sov. Phys. JETP 56, 989 (1982) [Zh. Eksp. Teor. Fiz. 83, 1711 (1982)]
[70]
M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, Efficient quantum memory for light, Nature 465(7301), 1052 (2010)
CrossRef ADS Google scholar
[71]
M. Hosseini, B. M. Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, Coherent optical pulse sequencer for quantum applications, Nature 461(7261), 241 (2009)
CrossRef ADS Google scholar
[72]
Y. W. Cho, G. T. Campbell, J. L. Everett, J. Bernu, D. B. Higginbottom, M. T. Cao, J. Geng, N. P. Robins, P. K. Lam, and B. C. Buchler, Highly efficient optical quantum memory with long coherence time in cold atoms, Optica 3(1), 100 (2016)
CrossRef ADS arXiv Google scholar
[73]
I.SaidashevaN.ArslanovS.Moiseev, Modeling of photon echo with controlled external field gradient: possibility of high efficient quantum memory, in: Proceedings of the VI-th International Congress Basic Problems of Optics, Ed.: Prof. S. A. Kozlov, St. Petersburg State Univ. of Information Technologies, 16−20 October, 2006, St.-Petersburg, Russia, 2006, p. 127
[74]
S. A. Moiseev and N. M. Arslanov, Efficiency and fidelity of photon-echo quantum memory in an atomic system with longitudinal inhomogeneous broadening, Phys. Rev. A 78(2), 023803 (2008)
CrossRef ADS Google scholar
[75]
M. D. Lukin, Trapping and manipulating photon states in atomic ensembles, Rev. Mod. Phys. 75(2), 457 (2003)
CrossRef ADS Google scholar
[76]
M. D. Lukin and A. Imamŏglu, Nonlinear optics and quantum entanglement of ultraslow single photons, Phys. Rev. Lett. 84(7), 1419 (2000)
CrossRef ADS Google scholar
[77]
Z. B. Wang, K. P. Marzlin, and B. C. Sanders, Large cross-phase modulation between slow copropagating weak pulses in 87Rb, Phys. Rev. Lett. 97(6), 063901 (2006)
CrossRef ADS Google scholar
[78]
K. P. Marzlin, Z. B. Wang, S. A. Moiseev, and B. C. Sanders, Uniform cross-phase modulation for nonclassical radiation pulses, J. Opt. Soc. Am. B 27(6), A36 (2010)
CrossRef ADS arXiv Google scholar
[79]
B. He and A. Scherer, Continuous-mode effects and photon‒photon phase gate performance, Phys. Rev. A 85(3), 033814 (2012)
CrossRef ADS arXiv Google scholar
[80]
P. Bienias and H. P. Büchler, Two photon conditional phase gate based on Rydberg slow light polaritons, J. Phys. At. Mol. Opt. Phys. 53(5), 054003 (2020)
CrossRef ADS arXiv Google scholar
[81]
A. C. Leung, K. S. I. Melody, A. D. Tranter, K. V. Paul, G. T. Campbell, P. K. Lam, and B. C. Buchler, Observation of cross phase modulation in cold atom gradient echo memory, New J. Phys. 24(9), 093011 (2022)
CrossRef ADS arXiv Google scholar
[82]
A. Feizpour, M. Hallaji, G. Dmochowski, and A. M. Steinberg, Observation of the nonlinear phase shift due to single post-selected photons, Nat. Phys. 11, 905 (2015)
CrossRef ADS arXiv Google scholar
[83]
J. H. Shapiro, Single-photon Kerr nonlinearities do not help quantum computation, Phys. Rev. A 73(6), 062305 (2006)
CrossRef ADS Google scholar
[84]
J. Gea-Banacloche, Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets, Phys. Rev. A 81(4), 043823 (2010)
CrossRef ADS arXiv Google scholar
[85]
S. A. Moiseev and W. Tittel, Temporal compression of quantum-information-carrying photons using a photon-echo quantum memory approach, Phys. Rev. A 82(1), 012309 (2010)
CrossRef ADS arXiv Google scholar
[86]
E. S. Moiseev, A. Tashchilina, S. A. Moiseev, and A. I. Lvovsky, Darkness of two-mode squeezed light in Λ-type atomic system, New J. Phys. 22(1), 013014 (2020)
CrossRef ADS arXiv Google scholar
[87]
S. A. Moiseev, Off-resonant Raman-echo quantum memory for inhomogeneously broadened atoms in a cavity, Phys. Rev. A 88(1), 012304 (2013)
CrossRef ADS arXiv Google scholar
[88]
A. Kalachev and O. Kocharovskaya, Multimode cavity-assisted quantum storage via continuous phase-matching control, Phys. Rev. A 88(3), 033846 (2013)
CrossRef ADS arXiv Google scholar
[89]
P.GoldnerA. FerrierO.Guillot-Nӧel, Rare Earth-Doped Crystals for Quantum Information Processing Handbook on the Physics and Chemistry of Rare Earths, Vol. 46, Elsevier B. V., 2015, pp 1–78
[90]
M. N. Popova, S. A. Klimin, S. A. Moiseev, K. I. Gerasimov, M. M. Minnegaliev, E. I. Baibekov, G. S. Shakurov, M. Bettinelli, and M. C. Chou, Crystal field and hyperfine structure of 167Er3+ in YPO4:Er single crystals: High-resolution optical and EPR spectroscopy, Phys. Rev. B 99(23), 235151 (2019)
CrossRef ADS Google scholar
[91]
K. I. Gerasimov, T. N. Sabirov, S.A. Moiseev, E. I. Baibekov, M. Bettinelli, M. Chou, Y. C. Yen, and M. N. Popova, Spectroscopy and photon echo at the Er3+ transition with a small inhomogeneous broadening and telecommunication wavelength in a YPO4 crystal, Opt. Spectrosc. 131(5), 607 (2023)
CrossRef ADS Google scholar
[92]
K. Gerasimov, E. Baibekov, M. Minnegaliev, G. Shakurov, R. Zaripov, S. Moiseev, A. Lebedev, and B. Malkin, Magneto-optical and high-frequency electron paramagnetic resonance spectroscopy of Er3+ ions in CaMoO4 single crystal, J. Lumin. 270, 120564 (2024)
CrossRef ADS Google scholar
[93]
E. S. Moiseev, A. Tashchilina, S. A. Moiseev, and B. C. Sanders, Broadband quantum memory in a cavity via zero spectral dispersion, New J. Phys. 23(6), 063071 (2021)
CrossRef ADS arXiv Google scholar
[94]
M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. M. Maier, and S. Kim, Quantum plasmonics, Nat. Phys. 9(6), 329 (2013)
CrossRef ADS arXiv Google scholar
[95]
S.A. MoiseevE.S. Moiseev, 2010 Multimode nano scale Raman echo quantum memory, Vol. 26 of NATO Science for Peace and Security Series - D: Information and Communication Security, Eds.: J. Kowalik, R. Horodecki, and S. Y. Kilin, Quantum Cryptography and Computing: Theory and Implementation, IOS Press BV, 2010
[96]
L.NovotnyB. Hecht, Nano-Optics, Cambridge University Press, 2012
[97]
B. Y. Dubetskii and V. P. Chebotaev, Echoes in classical and quantum ensembles with determinate frequencies, JETP Lett. 41, 328 (1985)
[98]
B. Y. Dubetskii and V. P. Chebotaev, Imaginary echo in a gas in a Doppler expanded transition, Bull. Acad. Sci. USSR Phys. Ser. 50, 70 (1986)
[99]
H.de RiedmattenM.AfzeliusM.U. StaudtC.SimonN.Gisin, A solid-state light−matter interface at the single-photon level, Nature 456(7223), 773 (2008)
[100]
M. Afzelius, C. Simon, H. De Riedmatten, and N. Gisin, Multimode quantum memory based on atomic frequency combs, Phys. Rev. A 79(5), 052329 (2009)
CrossRef ADS arXiv Google scholar
[101]
S. A. Moiseev and J. L. Le Gouët, Rephasing processes and quantum memory for light: Reversibility issues and how to fix them, J. Phys. At. Mol. Opt. Phys. 45(12), 124003 (2012)
CrossRef ADS arXiv Google scholar
[102]
N. Arslanov and S. Moiseev, Optimal periodic frequency combs for high-efficiency optical quantum memory based on rare-earth ion crystals, Quantum Electron. 47(9), 783 (2017)
CrossRef ADS Google scholar
[103]
N. M. Arslanov and S. A. Moiseev, Maps of broadband quantum memory based on an atomic frequency comb, Optics and Spectroscopy 126(1), 29 (2019)
CrossRef ADS Google scholar
[104]
N.ArslanovS. Moiseev, Quantum storage of spectrally multimode fields in the AFC protocol, 2024 (in progress)
[105]
A. Holzäpfel, J. Etesse, K. T. Kaczmarek, A. Tiranov, N. Gisin, and M. Afzelius, Optical storage for 0.53 seconds in a solid-state atomic frequency comb memory using dynamical decoupling, New J. Phys. 22, 063009 (2020)
CrossRef ADS arXiv Google scholar
[106]
J. S. Stuart, M. Hedges, R. Ahlefeldt, and M. Sellars, Initialization protocol for efficient quantum memories using resolved hyperfine structure, Phys. Rev. Res. 3(3), L032054 (2021)
CrossRef ADS arXiv Google scholar
[107]
E. Z. Cruzeiro, A. Tiranov, J. Lavoie, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, Efficient optical pumping using hyperfine levels in 145Nd3+:Y2SiO5 and its application to optical storage, New J. Phys. 20(5), 053013 (2018)
CrossRef ADS arXiv Google scholar
[108]
R. A. Akhmedzhanov, L. A. Gushchin, A. A. Kalachev, S. L. Korableva, D. A. Sobgayda, and I. V. Zelensky, Atomic frequency comb memory in an isotopically pure 143Nd3+:Y7LiF4 crystal, Laser Phys. Lett. 13, 015202 (2016)
CrossRef ADS Google scholar
[109]
D. Rieländer, K. Kutluer, P. M. Ledingham, M. Gündogan, J. Fekete, M. Mazzera, and H. de Riedmatten, Quantum storage of Heralded single photons in a praseodymium-doped crystal, Phys. Rev. Lett. 112(4), 040504 (2014)
CrossRef ADS arXiv Google scholar
[110]
R. A. Akhmedzhanov, L. A. Gushchin, A. A. Kalachev, N. A. Nizov, V. A. Nizov, D. A. Sobgayda, and I. V. Zelensky, Memory for polarization state of light based on atomic frequency comb in a 153Eu: Y2SiO5 crystal, Laser Phys. Lett. 20(1), 015204 (2023)
CrossRef ADS Google scholar
[111]
S.DurantiS. WengerowskyL.FeldmannA.SeriB.Casabone H.de Riedmatten, Efficient cavity-assisted storage of photonic qubits in a solid-state quantum memory, Opt. Express 32(15), 26884 (2024)
[112]
T. X. Zhu, C. Liu, M. Jin, M. X. Su, Y. P. Liu, W. J. Li, Y. Ye, Z. Q. Zhou, C. F. Li, and G. C. Guo, On-demand integrated quantum memory for polarization qubits, Phys. Rev. Lett. 128(18), 180501 (2022)
CrossRef ADS arXiv Google scholar
[113]
Z. Q. Zhou, W. B. Lin, M. Yang, C. F. Li, and G. C. Guo, Realization of reliable solid-state quantum memory for photonic polarization qubit, Phys. Rev. Lett. 108(19), 190505 (2012)
CrossRef ADS arXiv Google scholar
[114]
M. Businger, L. Nicolas, T. S. Mejia, A. Ferrier, P. Goldner, and M. Afzelius, Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5, Nat. Commun. 13(1), 6438 (2022)
CrossRef ADS arXiv Google scholar
[115]
S. H. Wei, B. Jing, X. Y. Zhang, J. Y. Liao, H. Li, L. X. You, Zhen Wang, Y. Wang, G. W. Deng, H. Z. Song, D. Oblak, G. C. Guo, and Q. Zhou, Quantum storage of 1650 modes of single photons at telecom wavelength, npj Quantum Inf. 10, 19 (2024)
CrossRef ADS Google scholar
[116]
M. Bonarota, J. L. Le Gouët, and T. Chanelière, Highly multimode storage in a crystal, New J. Phys. 13(1), 013013 (2011)
CrossRef ADS arXiv Google scholar
[117]
E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, Broadband waveguide quantum memory for entangled photons, Nature 469(7331), 512 (2011)
CrossRef ADS arXiv Google scholar
[118]
M.li G. PuigibertM.F. AskaraniJ.H. DavidsonV.B. VermaM.D. ShawS.W. Nam T.LutzG. C. AmaralD.OblakW.Tittel, Entanglement and nonlocality between disparate solid-state quantum memories mediated by photons, Phys. Rev. Res. 2(1), 013039
[119]
S. P. Horvath, M. K. Alqedra, A. Kinos, A. Walther, J. M. Dahlström, S. Kröll, and L. Rippe, Noise-free on-demand atomic frequency comb quantum memory, Phys. Rev. Res. 3(2), 023099 (2021)
CrossRef ADS arXiv Google scholar
[120]
I. Craiciu, M. Lei, J. Rochman, J. G. Bartholomew, and A. Faraon, Multifunctional on-chip storage at telecommunication wavelength for quantum networks, Optica 8(1), 114 (2021)
CrossRef ADS Google scholar
[121]
G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, Integrated optical memory based on laser-written waveguides, Phys. Rev. Appl. 5(5), 054013 (2016)
CrossRef ADS arXiv Google scholar
[122]
J. V. Rakonjac, D. Lago-Rivera, A. Seri, M. Mazzera, S. Grandi, and H. de Riedmatten, Entanglement between a telecom photon and an on-demand multimode solid-state quantum memory, Phys. Rev. Lett. 127(21), 210502 (2021)
CrossRef ADS arXiv Google scholar
[123]
A. Ortu, A. Holzäpfel, J. Etesse, and M. Afzelius, Storage of photonic time-bin qubits for up to 20 ms in a rare-earth doped crystal, npj Quantum Inf. 8, 29 (2022)
CrossRef ADS arXiv Google scholar
[124]
M. K. Alqedra S. P. Horvath, A. Kinos, A. Walther, S. Kröll , L. Rippe., Stark control of solid-state quantum memory with spin-wave storage, Phys. Rev. A (Coll. Park) 109(1), 012607 (2024)
CrossRef ADS Google scholar
[125]
M. Businger, A. Tiranov, K. T. Kaczmarek, S. Welinski, Z. Zhang, A. Ferrier, P. Goldner, and M. Afzelius, Optical spin-wave storage in a solid-state hybridized electron-nuclear spin ensemble, Phys. Rev. Lett. 124(5), 053606 (2020)
CrossRef ADS arXiv Google scholar
[126]
M. Sabooni, Q. Li, S. Kröll, and L. Rippe, Efficient quantum memory using a weakly absorbing sample, Phys. Rev. Lett. 110(13), 133604 (2013)
CrossRef ADS arXiv Google scholar
[127]
P.JobezI. UsmaniN.TimoneyC.LaplaneN.Gisin M.Afzelius, Cavity-enhanced storage in an optical spin-wave memory, New J. Phys. 16, 083005 (2014)
[128]
D. C. Liu, P. Y. Li, T. X. Zhu, L. Zheng, J. Y. Huang, Z. Q. Zhou, C. F. Li, and G. C. Guo, On-demand storage of photonic qubits at telecom wavelengths, Phys. Rev. Lett. 129(21), 210501 (2022)
CrossRef ADS arXiv Google scholar
[129]
J. V. Rakonjac, G. Corrielli, D. Lago-Rivera, A. Seri, M. Mazzera, S. Grandi, R. Osellame, and H. de Riedmatten, Storage and analysis of light−matter entanglement in a fiber-integrated system, Sci. Adv. 8(27), eabn3919 (2022)
CrossRef ADS arXiv Google scholar
[130]
E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre, Nat. Photonics 9(2), 83 (2015)
CrossRef ADS arXiv Google scholar
[131]
I. Craiciu, M. Lei, J. Rochman, J. M. Kindem, J. G. Bartholomew, E. Miyazono, T. Zhong, N. Sinclair, and A. Faraon, Nanophotonic quantum storage at telecommunication wavelength, Phys. Rev. Appl. 12(2), 024062 (2019)
CrossRef ADS arXiv Google scholar
[132]
D. L. McAuslan, P. M. Ledingham, W. R. Naylor, S. E. Beavan, M. P. Hedges, M. J. Sellars, and J. J. Longdell, Photon-echo quantum memories in inhomogeneously broadened two-level atoms, Phys. Rev. A 84(2), 022309 (2011)
CrossRef ADS arXiv Google scholar
[133]
V.DamonM. BonarotaA.Louchet-ChauvetT.ChanelièreJ. L. Le Gouët, Revival of silenced echo and quantum memory for light, New J. Phys. 13, 093031 (2011)
[134]
S. A. Moiseev, Photon-echo quantum memory with complete use of natural inhomogeneous broadening, Phys. Rev. A 83(1), 012307 (2011)
CrossRef ADS arXiv Google scholar
[135]
S. E. Beavan, P. M. Ledingham, J. J. Longdell, and M. J. Sellars, Photon echo without a free induction decay in a double-Λ system, Opt. Lett. 36(7), 1272 (2011)
CrossRef ADS arXiv Google scholar
[136]
A. Arcangeli, A. Ferrier, and P. Goldner, Stark echo modulation for quantum memories, Phys. Rev. A 93(6), 062303 (2016)
CrossRef ADS arXiv Google scholar
[137]
B.S. Ham, A controlled ac Stark echo for quantum memories, Sci. Rep. 7(1), 7655 (2017)
[138]
K. I. Gerasimov, M. M. Minnegaliev, S. A. Moiseev, R. V. Urmancheev, T. Chanelière, and A. Louchet-Chauvet, Quantum memory in an orthogonal geometry of silenced echo retrieval, Opt. Spectrosc. 123(2), 211 (2017)
CrossRef ADS Google scholar
[139]
J. Liu, J. Liu, J. Cui, L. Wang, and G. Zhang, Light pulse storage in Pr: YSO crystal based on the revival of silenced echo protocol, Opt. Express 32(5), 6986 (2024)
CrossRef ADS Google scholar
[140]
C. Liu, Z. Q. Zhou, T. X. Zhu, L. Zheng, M. Jin, Xiao Liu, P. Y. Li, J. Y. Huang, Yu Ma, T. Tu, T. S. Yang, C. F. Li, and G. C. Guo, Reliable coherent optical memory based on a laser-written waveguide, Optica 7, 192 (2020)
CrossRef ADS arXiv Google scholar
[141]
M. M. Minnegaliev, K. I. Gerasimov, R. V. Urmancheev, S. A. Moiseev, T. Chanelière, and A. Louchet-Chauvet, Realization of the revival of silenced echo (ROSE) quantum memory scheme in orthogonal geometry, AIP Conf. Proc. 1936, 020012 (2018)
CrossRef ADS Google scholar
[142]
M. M. Minnegaliev, K. I. Gerasimov, and S. A. Moiseev, Implementation of a quantum memory protocol based on the revival of silenced echo in orthogonal geometry at the telecommunication wavelength, JETP Lett. 117(11), 865 (2023)
CrossRef ADS Google scholar
[143]
M. Bonarota, J. Dajczgewand, A. Louchet-Chauvet, J. L. Le Gouët, and T. Chanelière, Photon echo with a few photons in two-level atoms, Laser Phys. 24(9), 094003 (2014)
CrossRef ADS arXiv Google scholar
[144]
Y. Z. Ma, M. Jin, D. L. Chen, Z. Q. Zhou, C. F. Li, and G. C. Guo, Elimination of noise in optically rephased photon echoes, Nat. Commun. 12(1), 4378 (2021)
CrossRef ADS arXiv Google scholar
[145]
E. Hahn, N. Shiren, and S. McCall, Application of the area theorem to phonon echoes, Phys. Lett. A 37(3), 265 (1971)
CrossRef ADS Google scholar
[146]
D. J. Kaup, Coherent pulse propagation: A comparison of the complete solution with the McCall−Hahn theory and others, Phys. Rev. A 16(2), 704 (1977)
CrossRef ADS Google scholar
[147]
M. S. Silver, R. I. Joseph, and D. I. Hoult, Selective spin inversion in nuclear magnetic resonance and coherent optics through an exact solution of the Bloch−Riccati equation, Phys. Rev. A 31(4), 2753 (1985)
CrossRef ADS Google scholar
[148]
I. Roos and K. Mølmer, Quantum computing with an inhomogeneously broadened ensemble of ions: Suppression of errors from detuning variations by specially adapted pulses and coherent population trapping, Phys. Rev. A 69(2), 022321 (2004)
CrossRef ADS Google scholar
[149]
M. Tian, T. Chang, K. D. Merkel, and W. Randall, Reconfiguration of spectral absorption features using a frequency-chirped laser pulse, Appl. Opt. 50(36), 6548 (2011)
CrossRef ADS Google scholar
[150]
H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Quantum repeaters: The role of imperfect local operations in quantum communication, Phys. Rev. Lett. 81(26), 5932 (1998)
CrossRef ADS Google scholar
[151]
C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, Quantum repeaters with photon pair sources and multimode memories, Phys. Rev. Lett. 98(19), 190503 (2007)
CrossRef ADS Google scholar
[152]
N. Sangouard, C. Simon, B. Zhao, Y. A. Chen, H. de Riedmatten, J. W. Pan, and N. Gisin, Robust and efficient quantum repeaters with atomic ensembles and linear optics, Phys. Rev. A 77(6), 062301 (2008)
CrossRef ADS arXiv Google scholar
[153]
J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, Multiphoton entanglement and interferometry, Rev. Mod. Phys. 84(2), 777 (2012)
CrossRef ADS arXiv Google scholar
[154]
L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Long-distance quantum communication with atomic ensembles and linear optics, Nature 414(6862), 413 (2001)
CrossRef ADS Google scholar
[155]
A. Anwar, C. Perumangatt, F. Steinlechner, T. Jennewein, and A. Ling, Entangled photon-pair sources based on three-wave mixing in bulk crystals, Rev. Sci. Instrum. 92(4), 041101 (2021)
CrossRef ADS arXiv Google scholar
[156]
F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory, Nat. Photonics 8(10), 775 (2014)
CrossRef ADS arXiv Google scholar
[157]
D.Lago-RiveraJ.V. RakonjacS.Grandi H.de Riedmatten, Long distance multiplexed quantum teleportation from a telecom photon to a solid-state qubit, Nat. Commun., 14, 1889 (2023)
[158]
D. Lago-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Riedmatten, Telecom-heralded entanglement between multimode solid-state quantum memories, Nature 594(7861), 37 (2021)
CrossRef ADS arXiv Google scholar
[159]
S. Duranti, S. Wengerowsky, L. Feldmann, A. Seri, B. Casabone, and H. de Riedmatten, Efficient cavity-assisted storage of photonic qubits in a solid-state quantum memory, Opt. Express 32(15), 26884 (2024)
CrossRef ADS arXiv Google scholar
[160]
X. Liu, J. Hu, Z. F. Li, X. Li, P. Y. Li, P. J. Liang, Z. Q. Zhou, C. F. Li, and G. C. Guo, Heralded entanglement distribution between two absorptive quantum memories, Nature 594(7861), 41 (2021)
CrossRef ADS arXiv Google scholar
[161]
C. X. Huang, X. M. Hu, Y. Guo, C. Zhang, B. H. Liu, Y. F. Huang, C. F. Li, G. C. Guo, N. Gisin, C. Branciard, and A. Tavakoli, Entanglement swapping and quantum correlations via symmetric joint measurements, Phys. Rev. Lett. 129(3), 030502 (2022)
CrossRef ADS arXiv Google scholar
[162]
H. Zeng, M. M. Du, W. Zhong, L. Zhou, and Y. B. Sheng, High-capacity device-independent quantum secure direct communication based on hyper-encoding, Fundamental Research 4(4), 851 (2024)
CrossRef ADS Google scholar
[163]
A. Tiranov, J. Lavoie, A. Ferrier, P. Goldner, V. B. Verma, S. W. Nam, R. P. Mirin, A. E. Lita, F. Marsili, H. Herrmann, C. Silberhorn, N. Gisin, M. Afzelius, and F. Bussières, Storage of hyperentanglement in a solid-state quantum memory, Optica 2(4), 279 (2015)
CrossRef ADS arXiv Google scholar
[164]
M.H. JiangW. XueQ.HeY.Y. AnX.Zheng W.J. XuY. B. XieY.LuS.ZhuX.S. Ma, Quantum storage of entangled photons at telecom wavelengths in a crystal, Nat. Commun. 14, 6995 (2023)
[165]
E.SaglamyurekM.Grimau PuigibertQ. ZhouL.GinerF.MarsiliV.B. Verma S.Woo NamL. OesterlingD.NippaD.OblakW.Tittel, A multiplexed light−matter interface for fibre-based quantum networks, Nat. Commun. 7(1), 11202 (2016)
[166]
X.ZhangB. ZhangS.WeiH.LiJ.Liao C.LiG.Deng Y.WangH. SongL.YouB.JingF.Chen G.GuoQ. Zhou, Telecom-band integrated multimode photonic quantum memory, Sci. Adv. 9(28), adf4587 (2023)
[167]
B. M. Sparkes, M. Hosseini, C. Cairns, D. Higginbottom, G. T. Campbell, P. K. Lam, and B. C. Buchler, Precision spectral manipulation: A demonstration using a coherent optical memory, Phys. Rev. X 2, 021011 (2012)
CrossRef ADS Google scholar
[168]
S.H. WeiB. JingX.Y. ZhangJ.Y. LiaoC.Z. Yuan B.Y. FanC. LyuD.L. ZhouY.WangG.W. Deng H.Z. SongD. OblakG.C. GuoQ.Zhou, Towards real-world quantum networks: A review, Laser Photonics Rev. 16, 2100219 (2022)
[169]
V. Semenenko, X. Hu, E. Figueroa, and V. Perebeinos, Entanglement generation in a quantum network with finite quantum memory lifetime, AVS Quantum Science 4(1), 012002 (2022)
CrossRef ADS arXiv Google scholar
[170]
S.A. MoiseevK.I. GerasimovM.M. MinnegalievE.S. Moiseev, Optical quantum memory on macroscopic coherence, arXiv: 2024)
arXiv
[171]
S. A. Moiseev, S. N. Andrianov, and F. F. Gubaidullin, Efficient multimode quantum memory based on photon echo in an optimal QED cavity, Phys. Rev. A 82(2), 022311 (2010)
CrossRef ADS arXiv Google scholar
[172]
M. Afzelius and C. Simon, Impedance-matched cavity quantum memory, Phys. Rev. A 82(2), 022310 (2010)
CrossRef ADS arXiv Google scholar
[173]
R. R. Meng, X. Liu, M. Jin, Z. Q. Zhou, C. F. Li, and G. C. Guo, Solid-state quantum nodes based on color centers and rare-earth ions coupled with fiber Fabry–Pérot microcavities, Chip (Wurzbg.) 3(1), 100081 (2024)
CrossRef ADS Google scholar
[174]
L. Labonté, O. Alibart, V. D’Auria, F. Doutre, J. Etesse, G. Sauder, A. Martin, E. Picholle, and S. Tanzilli, Integrated photonics for quantum communications and metrology, PRX Quantum 5(1), 010101 (2024)
CrossRef ADS Google scholar
[175]
N. S. Perminov, D. Y. Tarankova, and S. A. Moiseev, Superefficient cascade multiresonator quantum memory, Laser Phys. Lett. 15(12), 125203 (2018)
CrossRef ADS arXiv Google scholar
[176]
E. S. Moiseev and S. A. Moiseev, All-optical photon echo on a chip, Laser Phys. Lett. 14(1), 015202 (2017)
CrossRef ADS arXiv Google scholar
[177]
A. R. Matanin, K. I. Gerasimov, E. S. Moiseev, N. S. Smirnov, A. I. Ivanov, E. I. Malevannaya, V. I. Polozov, E. V. Zikiy, A. A. Samoilov, I. A. Rodionov, and S. A. Moiseev, Toward highly efficient multimode superconducting quantum memory, Phys. Rev. Appl. 19(3), 034011 (2023)
CrossRef ADS arXiv Google scholar
[178]
N. S. Perminov and S. A. Moiseev, Integrated multiresonator quantum memory, Entropy (Basel) 25(4), 623 (2023)
CrossRef ADS arXiv Google scholar
[179]
R.M. PettitF. H. FarshiS.E. SullivanA.Veliz-OsorioM.K. Singh, A perspective on the pathway to a scalable quantum internet using rare-earth ions, Appl. Phys. Rev. 10(3), 031307 (2023)

Declarations

The authors declare no competing interests and no conflicts.

Acknowledgements

The authors greatly thank Dr. N. M. Arslanov for useful discussions. This work was carried out with the support of the Ministry of Science and Higher Education of the Russian Federation (Register No. 121020400113-1).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(4648 KB)

Accesses

Citations

Detail

Sections
Recommended

/