Improve variational quantum eigensolver by many-body localization
Xin Li, Zhang-qi Yin
Improve variational quantum eigensolver by many-body localization
Variational quantum algorithms have been widely demonstrated in both experimental and theoretical contexts to have extensive applications in quantum simulation, optimization, and machine learning. However, the exponential growth in the dimension of the Hilbert space results in the phenomenon of vanishing parameter gradients in the circuit as the number of qubits and circuit depth increase, known as the barren plateau phenomena. In recent years, research in non-equilibrium statistical physics has led to the discovery of the realization of many-body localization. As a type of floquet system, many-body localized floquet system has phase avoiding thermalization with an extensive parameter space coverage and has been experimentally demonstrated can produce time crystals. We applied this circuit to the variational quantum algorithms for the calculation of many-body ground states and studied the variance of gradient for parameter updates under this circuit. We found that this circuit structure can effectively avoid barren plateaus. We also analyzed the entropy growth, information scrambling, and optimizer dynamics of this circuit. Leveraging this characteristic, we designed a new type of variational ansatz, called the “many-body localization ansatz”. We applied it to solve quantum many-body ground states and examined its circuit properties. Our numerical results show that our ansatz significantly improved the variational quantum algorithm.
quantum algorithm / quantum computation / quantum information / many-body physics
[1] |
J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2, 79 (2018)
CrossRef
ADS
Google scholar
|
[2] |
K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, W. K. Mok, S. Sim, L. C. Kwek, and A. Aspuru-Guzik, Noisy intermediate-scale quantum algorithms, Rev. Mod. Phys. 94(1), 015004 (2022)
CrossRef
ADS
Google scholar
|
[3] |
A.PeruzzoJ. McCleanP.ShadboltM.H. YungX.Q. Zhou P.J. LoveA. Aspuru-GuzikJ.L. O’Brien, A variational eigenvalue solver on a photonic quantum processor, Nat. Commun. 5, 4213 (2014)
|
[4] |
J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, The theory of variational hybrid quantumclassical algorithms, New J. Phys. 18(2), 023023 (2016)
CrossRef
ADS
Google scholar
|
[5] |
J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig, I. Rungger, G. H. Booth, and J. Tennyson, The variational quantum eigensolver: A review of methods and best practices, Phys. Rep. 986, 1 (2022)
CrossRef
ADS
Google scholar
|
[6] |
M.A. Continentino, Key Methods and Concepts in Condensed Matter Physics, IOP Publishing, 2021
|
[7] |
A. Van der Ven, Z. Deng, S. Banerjee, and S. P. Ong, Rechargeable alkali-ion battery materials: Theory and computation, Chem. Rev. 120(14), 6977 (2020)
CrossRef
ADS
Google scholar
|
[8] |
T. Hensgens, T. Fujita, L. Janssen, X. Li, C. J. Van Diepen, C. Reichl, W. Wegscheider, S. Das Sarma, and L. M. K. Vandersypen, Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array, Nature 548(7665), 70 (2017)
CrossRef
ADS
Google scholar
|
[9] |
L. Tarruell and L. Sanchez-Palencia, Quantum simulation of the Hubbard model with ultracold fermions in optical lattices, C. R. Phys. 19(6), 365 (2018)
CrossRef
ADS
Google scholar
|
[10] |
P. Deglmann, A. Schäfer, and C. Lennartz, Application of quantum calculations in the chemical industry — An overview, Int. J. Quantum Chem. 115(3), 107 (2015)
CrossRef
ADS
Google scholar
|
[11] |
B. J. Williams-Noonan, E. Yuriev, and D. K. Chalmers, Free energy methods in drug design: Prospects of “alchemical perturbation” in medicinal chemistry, J. Med. Chem. 61(3), 638 (2018)
CrossRef
ADS
Google scholar
|
[12] |
A.Heifetz, Quantum Mechanics in Drug Discovery, Springer US, 2020
|
[13] |
A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets, Nature 549(7671), 242 (2017)
CrossRef
ADS
Google scholar
|
[14] |
S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X. Yuan, Quantum computational chemistry, Rev. Mod. Phys. 92(1), 015003 (2020)
CrossRef
ADS
Google scholar
|
[15] |
M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles, Variational quantum algorithms, Nat. Rev. Phys. 3(9), 625 (2021)
CrossRef
ADS
Google scholar
|
[16] |
S. Jeswal and S. Chakraverty, Recent developments and applications in quantum neural network: A review, Arch. Comput. Methods Eng. 26(4), 793 (2019)
CrossRef
ADS
Google scholar
|
[17] |
N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross, D. J. Egger, S. Filipp, A. Fuhrer, J. M. Gambetta, M. Ganzhorn, A. Kandala, A. Mezzacapo, P. Müller, W. Riess, G. Salis, J. Smolin, I. Tavernelli, and K. Temme, Quantum optimization using variational algorithms on near-term quantum devices, Quantum Sci. Technol. 3(3), 030503 (2018)
CrossRef
ADS
Google scholar
|
[18] |
J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven, Barren plateaus in quantum neural network training landscapes, Nat. Commun. 9(1), 4812 (2018)
CrossRef
ADS
Google scholar
|
[19] |
S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio, and P. J. Coles, Noise-induced barren plateaus in variational quantum algorithms, Nat. Commun. 12(1), 6961 (2021)
CrossRef
ADS
Google scholar
|
[20] |
E. Grant, L. Wossnig, M. Ostaszewski, and M. Benedetti, An initialization strategy for addressing barren plateaus in parametrized quantum circuits, Quantum 3, 214 (2019)
CrossRef
ADS
Google scholar
|
[21] |
Z. Holmes, K. Sharma, M. Cerezo, and P. J. Coles, Connecting ansatz expressibility to gradient magnitudes and barren plateaus, PRX Quantum 3(1), 010313 (2022)
CrossRef
ADS
Google scholar
|
[22] |
S. H. Sack, R. A. Medina, A. A. Michailidis, R. Kueng, and M. Serbyn, Avoiding barren plateaus using classical shadows, PRX Quantum 3(2), 020365 (2022)
CrossRef
ADS
Google scholar
|
[23] |
R. Wiersema, C. Zhou, Y. de Sereville, J. F. Carrasquilla, Y. B. Kim, and H. Yuen, Exploring entanglement and optimization within the Hamiltonian variational ansatz, PRX Quantum 1(2), 020319 (2020)
CrossRef
ADS
Google scholar
|
[24] |
D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Colloquium: Many-body localization, thermalization, and entanglement, Rev. Mod. Phys. 91(2), 021001 (2019)
CrossRef
ADS
Google scholar
|
[25] |
V.KhemaniR. MoessnerS.L. Sondhi, A brief history of time crystals, arXiv: 2019)
arXiv
|
[26] |
J. Rovny, R. L. Blum, and S. E. Barrett, Observation of discrete-time-crystal signatures in an ordered dipolar many-body system, Phys. Rev. Lett. 120(18), 180603 (2018)
CrossRef
ADS
Google scholar
|
[27] |
C. Ying, Q. Guo, S. Li, M. Gong, X. H. Deng, F. Chen, C. Zha, Y. Ye, C. Wang, Q. Zhu, S. Wang, Y. Zhao, H. Qian, S. Guo, Y. Wu, H. Rong, H. Deng, F. Liang, J. Lin, Y. Xu, C. Z. Peng, C. Y. Lu, Z. Q. Yin, X. Zhu, and J. W. Pan, Floquet prethermal phase protected by U(1) symmetry on a superconducting quantum processor, Phys. Rev. A 105(1), 012418 (2022)
CrossRef
ADS
Google scholar
|
[28] |
S. Pal, N. Nishad, T. S. Mahesh, and G. J. Sreejith, Temporal order in periodically driven spins in starshaped clusters, Phys. Rev. Lett. 120(18), 180602 (2018)
CrossRef
ADS
Google scholar
|
[29] |
M. Ippoliti, K. Kechedzhi, R. Moessner, S. Sondhi, and V. Khemani, Many-body physics in the NISQ era: Quantum programming a discrete time crystal, PRX Quantum 2(3), 030346 (2021)
CrossRef
ADS
Google scholar
|
[30] |
L.ZhangV. KhemaniD.A. Huse, A floquet model for the many-body localization transition, Phys. Rev. B 94(22), 224202 (2016)
|
[31] |
X. Mi, M. Ippoliti, C. Quintana, A. Greene, Z. Chen,
CrossRef
ADS
Google scholar
|
[32] |
S. Liu, S. X. Zhang, C. Y. Hsieh, S. Zhang, and H. Yao, Discrete time crystal enabled by stark many-body localization, Phys. Rev. Lett. 130(12), 120403 (2023)
CrossRef
ADS
Google scholar
|
[33] |
R. Fan, P. Zhang, H. Shen, and H. Zhai, Out-of-time order correlation for many-body localization, Sci. Bull. (Beijing) 62(10), 707 (2017)
CrossRef
ADS
Google scholar
|
[34] |
D. L. Deng, X. Li, J. Pixley, Y. L. Wu, and S. Das Sarma, Logarithmic entanglement light cone in many-body localized systems, Phys. Rev. B 95(2), 024202 (2017)
CrossRef
ADS
Google scholar
|
[35] |
B. Bauer and C. Nayak, Area laws in a many-body localized state and its implications for topological order, J. Stat. Mech. 2013(9), P09005 (2013)
CrossRef
ADS
Google scholar
|
[36] |
D. L. Deng, J. Pixley, X. Li, and S. Das Sarma, Exponential orthogonality catastrophe in single-particle and many-body localized systems, Phys. Rev. B 92(22), 220201 (2015)
CrossRef
ADS
Google scholar
|
[37] |
D. A. Huse, R. Nandkishore, V. Oganesyan, A. Pal, and S. L. Sondhi, Localization-protected quantum order, Phys. Rev. B 88(1), 014206 (2013)
CrossRef
ADS
Google scholar
|
[38] |
P.PonteZ. PapićF.HuveneersD.A. Abanin, Many-body localization in periodically driven systems, Phys. Rev. Lett. 114(14), 140401 (2015)
|
[39] |
A. Morningstar, L. Colmenarez, V. Khemani, D. J. Luitz, and D. A. Huse, Avalanches and many-body resonances in many-body localized systems, Phys. Rev. B 105(17), 174205 (2022)
CrossRef
ADS
Google scholar
|
[40] |
J. Kim and Y. Oz, Entanglement diagnostics for efficient VQA optimization, J. Stat. Mech. 2022(7), 073101 (2022)
CrossRef
ADS
Google scholar
|
[41] |
J. Kim and Y. Oz, Quantum energy landscape and circuit optimization, Phys. Rev. A 106(5), 052424 (2022)
CrossRef
ADS
Google scholar
|
[42] |
T. L. Patti, K. Najafi, X. Gao, and S. F. Yelin, Entanglement devised barren plateau mitigation, Phys. Rev. Res. 3(3), 033090 (2021)
CrossRef
ADS
Google scholar
|
[43] |
X. Z. Luo, J. G. Liu, P. Zhang, and L. Wang, Yao.jl: Extensible, efficient framework for quantum algorithm design, Quantum 4, 341 (2020)
CrossRef
ADS
Google scholar
|
[44] |
L. Xiang, W. Jiang, Z. Bao, Z. Song, S. Xu,
CrossRef
ADS
Google scholar
|
[45] |
X.LiuG. LiuJ.HuangH.K. ZhangX.Wang, Mitigating barren plateaus of variational quantum eigensolvers, IEEE Tran. Quantum Eng., doi: 10.1109/TQE.2024.3383050 (2024)
|
[46] |
M. Larocca, P. Czarnik, K. Sharma, G. Muraleedharan, P. J. Coles, and M. Cerezo, Diagnosing barren plateaus with tools from quantum optimal control, Quantum 6, 824 (2022)
CrossRef
ADS
Google scholar
|
[47] |
E. Fontana, D. Herman, S. Chakrabarti, N. Kumar, R. Yalovetzky, J. Heredge, S. H. Sureshbabu, and M. Pistoia, The adjoint is all you need: Characterizing barren plateaus in quantum ansatze, Nat. Commun. 15, 7171 (2024)
CrossRef
ADS
Google scholar
|
[48] |
W. Buijsman, V. Cheianov, and V. Gritsev, Random matrix ensemble for the level statistics of many-body localization, Phys. Rev. Lett. 122(18), 180601 (2019)
CrossRef
ADS
Google scholar
|
[49] |
C.Y. ParkM. KangJ.Huh, Hardware-efficient ansatz without barren plateaus in any depth, arXiv: 2024)
arXiv
|
[50] |
C.CaoY. ZhouS.TannuN.ShannonR.Joynt, Exploiting many-body localization for scalable variational quantum simulation, arXiv: 2024)
arXiv
|
/
〈 | 〉 |