Entropy evolution law of general quadratic state in a laser channel

Xiang-Guo Meng, Bao-Long Liang, Jian-Ming Liu, Xu-Cong Zhou

PDF(1104 KB)
PDF(1104 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (2) : 022205. DOI: 10.15302/frontphys.2025.022205
RESEARCH ARTICLE

Entropy evolution law of general quadratic state in a laser channel

Author information +
History +

Abstract

Using the integration within ordered products, we obtain the analytical density-operator evolution of the general quadratic state ρ0 in a laser channel, which always maintains the same form as the initial density operator ρ0. Introducing the differential representation of the von-Neumann entropy and two important resemble formulas, we analytically and numerically investigate the entropy evolution of the state ρ0 in a laser channel, which is determined by not only the competition of the gain and loss of the laser channel, but also the coefficients α, β of the initial quadratic state ρ0.

Graphical abstract

Keywords

general quadratic state / laser channel / quantum entropy / operator ordering / integration within ordered product

Cite this article

Download citation ▾
Xiang-Guo Meng, Bao-Long Liang, Jian-Ming Liu, Xu-Cong Zhou. Entropy evolution law of general quadratic state in a laser channel. Front. Phys., 2025, 20(2): 022205 https://doi.org/10.15302/frontphys.2025.022205

References

[1]
X. L. Ruan, S. C. Rand, and M. Kaviany, Entropy and efficiency in laser cooling of solids, Phys. Rev. B 75(21), 214304 (2007)
CrossRef ADS Google scholar
[2]
H. Metcalf, Entropy exchange in laser cooling, Phys. Rev. A 77(6), 061401(R) (2008)
CrossRef ADS Google scholar
[3]
G. Gour and M. M. Wilde, Entropy of a quantum channel, Phys. Rev. Res. 3(2), 023096 (2021)
CrossRef ADS arXiv Google scholar
[4]
Y. J. Chu, F. Huang, M. X. Li, and Z. J. Zheng, An entropy function of a quantum channel, Quantum Inform. Process. 22(1), 27 (2022)
CrossRef ADS Google scholar
[5]
M.O. ScullyM. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1997
[6]
H. Y. Fan and Y. Fan, New representation of thermal states in thermal field dynamics, Phys. Lett. A 246(3−4), 242 (1998)
CrossRef ADS Google scholar
[7]
H. Y. Fan and Y. Fan, New representation for thermo excitation and de-excitation in thermofield dynamics, Phys. Lett. A 282(4−5), 269 (2001)
CrossRef ADS Google scholar
[8]
J. H. Chen and H. Y. Fan, Entropy evolution law in a laser process, Ann. Phys. 334, 272 (2013)
CrossRef ADS arXiv Google scholar
[9]
H. Y. Fan, Entangled states, squeezed states gained via the route of developing Dirac’s symbolic method and their applications, Int. J. Mod. Phys. B 18(10−11), 1387 (2004)
CrossRef ADS Google scholar
[10]
A. Vesperini, G. Bel-Hadj-Aissa, L. Capra, and R. Franzosi, Unveiling the geometric meaning of quantum entanglement: Discrete and continuous variable systems, Front. Phys. 19(5), 51204 (2024)
CrossRef ADS arXiv Google scholar
[11]
P. S. Yan, L. Zhou, W. Zhong, and Y. B. Sheng, Measurement-based entanglement purification for entangled coherent states, Front. Phys. 17(2), 21501 (2022)
CrossRef ADS Google scholar
[12]
X. G. Meng, K. C. Li, J. S. Wang, Z. S. Yang, X. Y. Zhang, Z. T. Zhang, and B. L. Liang, Multi-variable special polynomials using an operator ordering method, Front. Phys. 15(5), 52501 (2020)
CrossRef ADS Google scholar
[13]
X. G. Meng, J. S. Wang, B. L. Liang, and C. X. Han, Evolution of a two-mode squeezed vacuum for amplitude decay via continuous-variable entangled state approach, Front. Phys. 13(5), 130322 (2018)
CrossRef ADS Google scholar
[14]
T. Liu, B. Q. Guo, Y. H. Zhou, J. L. Zhao, Y. L. Fang, Q. C. Wu, and C. P. Yang, Transfer of quantum entangled states between superconducting qubits and microwave field qubits, Front. Phys. 17(6), 61502 (2022)
CrossRef ADS Google scholar
[15]
L. Y. Cheng, F. Ming, F. Zhao, L. Ye, and D. Wang, The uncertainty and quantum correlation of measurement in double quantum-dot systems, Front. Phys. 17(6), 61504 (2022)
CrossRef ADS Google scholar
[16]
X. G. Meng, J. S. Wang, X. Y. Zhang, Z. S. Yang, B. L. Liang, and Z. T. Zhang, Nonclassicality via the superpositions of photon addition and subtraction and quantum decoherence for thermal noise, Ann. Phys. 532(12), 2000219 (2020)
CrossRef ADS Google scholar
[17]
X. G. Meng, K. C. Li, J. S. Wang, X. Y. Zhang, X. T. Zhang, X. S. Yang, and B. L. Liang, Continuous variable entanglement and Wigner-function negativity via adding or subtracting photons, Ann. Phys. 532(5), 1900585 (2020)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11347026), the Natural Science Foundation of Shandong Province (Grant Nos. ZR2020MA085 and ZR2020MF113), and the Science and Technology Plan Project of Weifang (Grant No. 2023GX031).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(1104 KB)

Accesses

Citations

Detail

Sections
Recommended

/