Klein tunneling in phononic crystals: A step case
Heming Shen, Xiaodong Sun, Yichen Li, Xinhua Hu
Klein tunneling in phononic crystals: A step case
In a recent paper [Jiang, et al., Science 370, 1447 (2020)], it was reported that zero reflection or Klein tunneling can be observed for normally incident quasiparticles upon a potential barrier constructed by two phononic crystals (PCs) with Dirac cone band structures. Here, we develop a first-principles approach for accurate computation of the reflection of quasiparticles by a potential step with two PCs at normal incidence. Strikingly, it is found that minimal reflection of quasiparticles ( = 0.8%) occurs at an energy below the potential step, while moderate reflection ( = 17%) remains at the center energy of the potential step, even with the PCs adopted by Jiang et al. A physical model is presented to understand such phenomena, where the zigzag interface in the step serves as a graded antireflection layer and reflection increases dramatically near the band gap of PCs. Two solutions are also shown for realizing lower or even ideal Klein tunneling in PCs, with reducing the difference between the two PCs or enhancing the antireflection effect of the interface. Our work reveals the effects of the zigzag interface and band gap on Klein tunneling in PCs, which will be inspiring for exploring more fascinating phenomena of quasiparticles in classical wave systems.
Klein tunneling / phononic crystals
[1] |
O. Klein, The reflection of electrons at a potential jump to the relative dynamics of Dirac, Z. Phys. 53(3−4), 157 (1929)
CrossRef
ADS
Google scholar
|
[2] |
A. Calogeracos and N. Dombey, History and physics of the Klein paradox, Contemp. Phys. 40(5), 313 (1999)
CrossRef
ADS
Google scholar
|
[3] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef
ADS
Google scholar
|
[4] |
M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys. 2(9), 620 (2006)
CrossRef
ADS
Google scholar
|
[5] |
C. H. Park, L. Yang, Y. W. Son, M. L. Cohen, and S. G. Louie, Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials, Nat. Phys. 4(3), 213 (2008)
CrossRef
ADS
arXiv
Google scholar
|
[6] |
C. H. Park and S. G. Louie, Energy gaps and Stark effect in boron nitride nanoribbons, Nano Lett. 8(8), 2200 (2008)
CrossRef
ADS
arXiv
Google scholar
|
[7] |
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
CrossRef
ADS
arXiv
Google scholar
|
[8] |
B. Huard, J. A. Sulpizio, N. Stander, K. Todd, B. Yang, and D. Goldhaber-Gordon, Transport measurements across a tunable potential barrier in graphene, Phys. Rev. Lett. 98(23), 236803 (2007)
CrossRef
ADS
arXiv
Google scholar
|
[9] |
R. V. Gorbachev, A. S. Mayorov, A. K. Savchenko, D. W. Horsell, and F. Guinea, Conductance of p-n-p structures with “Air-Bridge” top gates, Nano Lett. 8(7), 1995 (2008)
CrossRef
ADS
arXiv
Google scholar
|
[10] |
A. F. Young and P. Kim, Quantum interference and Klein tunnelling in graphene heterojunctions, Nat. Phys. 5(3), 222 (2009)
CrossRef
ADS
arXiv
Google scholar
|
[11] |
P. E. Allain and J. N. Fuchs, Klein tunneling in graphene: Optics with massless electrons, Eur. Phys. J. B 83(3), 301 (2011)
CrossRef
ADS
arXiv
Google scholar
|
[12] |
X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials, Nat. Mater. 10(8), 582 (2011)
CrossRef
ADS
Google scholar
|
[13] |
J. Mei, Y. Wu, C. T. Chan, and Z. Q. Zhang, First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals, Phys. Rev. B 86(3), 035141 (2012)
CrossRef
ADS
arXiv
Google scholar
|
[14] |
Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B. Zhang, Topological acoustics, Phys. Rev. Lett. 114(11), 114301 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[15] |
A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alú, Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice, Nat. Commun. 6(1), 8260 (2015)
CrossRef
ADS
Google scholar
|
[16] |
M. Xiao, W. J. Chen, W. Y. He, and C. T. Chan, Synthetic gauge flux and Weyl points in acoustic systems, Nat. Phys. 11(11), 920 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[17] |
C. He, X. Ni, H. Ge, X. C. Sun, Y. B. Chen, M. H. Lu, X. P. Liu, and Y. F. Chen, Acoustic topological insulator and robust one-way sound transport, Nat. Phys. 12(12), 1124 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[18] |
J. Lu, C. Qiu, M. Ke, and Z. Liu, Valley vortex states in sonic crystals, Phys. Rev. Lett. 116(9), 093901 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[19] |
Y. Liu, C. S. Lian, Y. Li, Y. Xu, and W. Duan, Pseudospins and topological effects of phonons in a Kekule lattice, Phys. Rev. Lett. 119(25), 255901 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[20] |
Z. Zhang, Q. Wei, Y. Cheng, T. Zhang, D. Wu, and X. Liu, Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice, Phys. Rev. Lett. 118(8), 084303 (2017)
CrossRef
ADS
Google scholar
|
[21] |
M. Dubois, C. Shi, X. Zhu, Y. Wang, and X. Zhang, Observation of acoustic Dirac-like cone and double zero refractive index, Nat. Commun. 8(1), 14871 (2017)
CrossRef
ADS
Google scholar
|
[22] |
F. Li, X. Huang, J. Lu, J. Ma, and Z. Liu, Weyl points and Fermi arcs in a chiral phononic crystal, Nat. Phys. 14(1), 30 (2018)
CrossRef
ADS
Google scholar
|
[23] |
X. J. Zhang, M. Xiao, Y. Cheng, M. H. Lu, and J. Christensen, Topological sound, Commun. Phys. 1(1), 97 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[24] |
C. Xu, J. Mei, G. Ma, and Y. Wu, Type-II Dirac phonons in a two-dimensional phononic crystal, APL Mater. 12(4), 041128 (2024)
CrossRef
ADS
Google scholar
|
[25] |
X. Jiang, C. Shi, Z. Li, S. Wang, Y. Wang, S. Yang, S. G. Louie, and X. Zhang, Direct observation of Klein tunneling in phononic crystals, Science 370(6523), 1447 (2020)
CrossRef
ADS
Google scholar
|
[26] |
J. Li and C. T. Chan, Double-negative acoustic metamaterial, Phys. Rev. E 70(5), 055602(R) (2004)
CrossRef
ADS
Google scholar
|
[27] |
L. Liu, H. Chang, C. Zhang, and X. Hu, Single-channel labyrinthine metasurfaces as perfect sound absorbers with tunable bandwidth, Appl. Phys. Lett. 111(8), 083503 (2017)
CrossRef
ADS
Google scholar
|
[28] |
Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures, Nat. Nanotechnol. 2(12), 770 (2007)
CrossRef
ADS
Google scholar
|
[29] |
See supplemental material for more results on the topic.
|
/
〈 | 〉 |