Klein tunneling in phononic crystals: A step case

Heming Shen, Xiaodong Sun, Yichen Li, Xinhua Hu

PDF(1865 KB)
PDF(1865 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (2) : 022204. DOI: 10.15302/frontphys.2025.022204
RESEARCH ARTICLE

Klein tunneling in phononic crystals: A step case

Author information +
History +

Abstract

In a recent paper [Jiang, et al., Science 370, 1447 (2020)], it was reported that zero reflection or Klein tunneling can be observed for normally incident quasiparticles upon a potential barrier constructed by two phononic crystals (PCs) with Dirac cone band structures. Here, we develop a first-principles approach for accurate computation of the reflection of quasiparticles by a potential step with two PCs at normal incidence. Strikingly, it is found that minimal reflection of quasiparticles ( Rm = 0.8%) occurs at an energy below the potential step, while moderate reflection ( Rd = 17%) remains at the center energy of the potential step, even with the PCs adopted by Jiang et al. A physical model is presented to understand such phenomena, where the zigzag interface in the step serves as a graded antireflection layer and reflection increases dramatically near the band gap of PCs. Two solutions are also shown for realizing lower Rd or even ideal Klein tunneling in PCs, with reducing the difference between the two PCs or enhancing the antireflection effect of the interface. Our work reveals the effects of the zigzag interface and band gap on Klein tunneling in PCs, which will be inspiring for exploring more fascinating phenomena of quasiparticles in classical wave systems.

Graphical abstract

Keywords

Klein tunneling / phononic crystals

Cite this article

Download citation ▾
Heming Shen, Xiaodong Sun, Yichen Li, Xinhua Hu. Klein tunneling in phononic crystals: A step case. Front. Phys., 2025, 20(2): 022204 https://doi.org/10.15302/frontphys.2025.022204

References

[1]
O. Klein, The reflection of electrons at a potential jump to the relative dynamics of Dirac, Z. Phys. 53(3−4), 157 (1929)
CrossRef ADS Google scholar
[2]
A. Calogeracos and N. Dombey, History and physics of the Klein paradox, Contemp. Phys. 40(5), 313 (1999)
CrossRef ADS Google scholar
[3]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef ADS Google scholar
[4]
M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys. 2(9), 620 (2006)
CrossRef ADS Google scholar
[5]
C. H. Park, L. Yang, Y. W. Son, M. L. Cohen, and S. G. Louie, Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials, Nat. Phys. 4(3), 213 (2008)
CrossRef ADS arXiv Google scholar
[6]
C. H. Park and S. G. Louie, Energy gaps and Stark effect in boron nitride nanoribbons, Nano Lett. 8(8), 2200 (2008)
CrossRef ADS arXiv Google scholar
[7]
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
CrossRef ADS arXiv Google scholar
[8]
B. Huard, J. A. Sulpizio, N. Stander, K. Todd, B. Yang, and D. Goldhaber-Gordon, Transport measurements across a tunable potential barrier in graphene, Phys. Rev. Lett. 98(23), 236803 (2007)
CrossRef ADS arXiv Google scholar
[9]
R. V. Gorbachev, A. S. Mayorov, A. K. Savchenko, D. W. Horsell, and F. Guinea, Conductance of p-n-p structures with “Air-Bridge” top gates, Nano Lett. 8(7), 1995 (2008)
CrossRef ADS arXiv Google scholar
[10]
A. F. Young and P. Kim, Quantum interference and Klein tunnelling in graphene heterojunctions, Nat. Phys. 5(3), 222 (2009)
CrossRef ADS arXiv Google scholar
[11]
P. E. Allain and J. N. Fuchs, Klein tunneling in graphene: Optics with massless electrons, Eur. Phys. J. B 83(3), 301 (2011)
CrossRef ADS arXiv Google scholar
[12]
X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials, Nat. Mater. 10(8), 582 (2011)
CrossRef ADS Google scholar
[13]
J. Mei, Y. Wu, C. T. Chan, and Z. Q. Zhang, First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals, Phys. Rev. B 86(3), 035141 (2012)
CrossRef ADS arXiv Google scholar
[14]
Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B. Zhang, Topological acoustics, Phys. Rev. Lett. 114(11), 114301 (2015)
CrossRef ADS arXiv Google scholar
[15]
A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alú, Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice, Nat. Commun. 6(1), 8260 (2015)
CrossRef ADS Google scholar
[16]
M. Xiao, W. J. Chen, W. Y. He, and C. T. Chan, Synthetic gauge flux and Weyl points in acoustic systems, Nat. Phys. 11(11), 920 (2015)
CrossRef ADS arXiv Google scholar
[17]
C. He, X. Ni, H. Ge, X. C. Sun, Y. B. Chen, M. H. Lu, X. P. Liu, and Y. F. Chen, Acoustic topological insulator and robust one-way sound transport, Nat. Phys. 12(12), 1124 (2016)
CrossRef ADS arXiv Google scholar
[18]
J. Lu, C. Qiu, M. Ke, and Z. Liu, Valley vortex states in sonic crystals, Phys. Rev. Lett. 116(9), 093901 (2016)
CrossRef ADS arXiv Google scholar
[19]
Y. Liu, C. S. Lian, Y. Li, Y. Xu, and W. Duan, Pseudospins and topological effects of phonons in a Kekule lattice, Phys. Rev. Lett. 119(25), 255901 (2017)
CrossRef ADS arXiv Google scholar
[20]
Z. Zhang, Q. Wei, Y. Cheng, T. Zhang, D. Wu, and X. Liu, Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice, Phys. Rev. Lett. 118(8), 084303 (2017)
CrossRef ADS Google scholar
[21]
M. Dubois, C. Shi, X. Zhu, Y. Wang, and X. Zhang, Observation of acoustic Dirac-like cone and double zero refractive index, Nat. Commun. 8(1), 14871 (2017)
CrossRef ADS Google scholar
[22]
F. Li, X. Huang, J. Lu, J. Ma, and Z. Liu, Weyl points and Fermi arcs in a chiral phononic crystal, Nat. Phys. 14(1), 30 (2018)
CrossRef ADS Google scholar
[23]
X. J. Zhang, M. Xiao, Y. Cheng, M. H. Lu, and J. Christensen, Topological sound, Commun. Phys. 1(1), 97 (2018)
CrossRef ADS arXiv Google scholar
[24]
C. Xu, J. Mei, G. Ma, and Y. Wu, Type-II Dirac phonons in a two-dimensional phononic crystal, APL Mater. 12(4), 041128 (2024)
CrossRef ADS Google scholar
[25]
X. Jiang, C. Shi, Z. Li, S. Wang, Y. Wang, S. Yang, S. G. Louie, and X. Zhang, Direct observation of Klein tunneling in phononic crystals, Science 370(6523), 1447 (2020)
CrossRef ADS Google scholar
[26]
J. Li and C. T. Chan, Double-negative acoustic metamaterial, Phys. Rev. E 70(5), 055602(R) (2004)
CrossRef ADS Google scholar
[27]
L. Liu, H. Chang, C. Zhang, and X. Hu, Single-channel labyrinthine metasurfaces as perfect sound absorbers with tunable bandwidth, Appl. Phys. Lett. 111(8), 083503 (2017)
CrossRef ADS Google scholar
[28]
Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures, Nat. Nanotechnol. 2(12), 770 (2007)
CrossRef ADS Google scholar
[29]
See supplemental material for more results on the topic.

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.15302/frontphys.2025.022204.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2023YFA1406901 and 2018YFA0306201).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(1865 KB)

Accesses

Citations

Detail

Sections
Recommended

/