
Klein tunneling in phononic crystals: A step case
Heming Shen, Xiaodong Sun, Yichen Li, Xinhua Hu
Front. Phys. ›› 2025, Vol. 20 ›› Issue (2) : 022204.
Klein tunneling in phononic crystals: A step case
In a recent paper [Jiang, et al., Science 370, 1447 (2020)], it was reported that zero reflection or Klein tunneling can be observed for normally incident quasiparticles upon a potential barrier constructed by two phononic crystals (PCs) with Dirac cone band structures. Here, we develop a first-principles approach for accurate computation of the reflection of quasiparticles by a potential step with two PCs at normal incidence. Strikingly, it is found that minimal reflection of quasiparticles (
Klein tunneling / phononic crystals
Fig.1 A potential step constructed by a triangular lattice of rigid cylinders in air. The cylinders have a height of h and are placed between two parallel rigid boards with a distance of |
Fig.2 Normal incidence of quasiparticles upon a potential step with two PCs. The system has the same parameters as those in Fig.1(b). (a) Top (top panel) and side (bottom panel) views of the system, which has a period length of |
Fig.3 Mechanism for reflection of quasiparticles by a potential step with two PCs. (a) The zigzag interface between PC1 and PC2 constitutes a graded layer that can reduce reflection (top panel). Reflection increases dramatically near the phononic bandgap of PC1 (bottom panel). Hence, the reflection first decreases and then increases with increasing frequencies. The data in the bottom panel are the same as those in Fig.2(c). (b) When a straight interface exists between PC1 and PC2, the reflection increases with increasing frequencies. Parameters ( |
Fig.4 Achieving low reflection |
[1] |
O. Klein, The reflection of electrons at a potential jump to the relative dynamics of Dirac, Z. Phys. 53(3−4), 157 (1929)
CrossRef
ADS
Google scholar
|
[2] |
A. Calogeracos and N. Dombey, History and physics of the Klein paradox, Contemp. Phys. 40(5), 313 (1999)
CrossRef
ADS
Google scholar
|
[3] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef
ADS
Google scholar
|
[4] |
M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys. 2(9), 620 (2006)
CrossRef
ADS
Google scholar
|
[5] |
C. H. Park, L. Yang, Y. W. Son, M. L. Cohen, and S. G. Louie, Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials, Nat. Phys. 4(3), 213 (2008)
CrossRef
ADS
arXiv
Google scholar
|
[6] |
C. H. Park and S. G. Louie, Energy gaps and Stark effect in boron nitride nanoribbons, Nano Lett. 8(8), 2200 (2008)
CrossRef
ADS
arXiv
Google scholar
|
[7] |
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
CrossRef
ADS
arXiv
Google scholar
|
[8] |
B. Huard, J. A. Sulpizio, N. Stander, K. Todd, B. Yang, and D. Goldhaber-Gordon, Transport measurements across a tunable potential barrier in graphene, Phys. Rev. Lett. 98(23), 236803 (2007)
CrossRef
ADS
arXiv
Google scholar
|
[9] |
R. V. Gorbachev, A. S. Mayorov, A. K. Savchenko, D. W. Horsell, and F. Guinea, Conductance of p-n-p structures with “Air-Bridge” top gates, Nano Lett. 8(7), 1995 (2008)
CrossRef
ADS
arXiv
Google scholar
|
[10] |
A. F. Young and P. Kim, Quantum interference and Klein tunnelling in graphene heterojunctions, Nat. Phys. 5(3), 222 (2009)
CrossRef
ADS
arXiv
Google scholar
|
[11] |
P. E. Allain and J. N. Fuchs, Klein tunneling in graphene: Optics with massless electrons, Eur. Phys. J. B 83(3), 301 (2011)
CrossRef
ADS
arXiv
Google scholar
|
[12] |
X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials, Nat. Mater. 10(8), 582 (2011)
CrossRef
ADS
Google scholar
|
[13] |
J. Mei, Y. Wu, C. T. Chan, and Z. Q. Zhang, First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals, Phys. Rev. B 86(3), 035141 (2012)
CrossRef
ADS
arXiv
Google scholar
|
[14] |
Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B. Zhang, Topological acoustics, Phys. Rev. Lett. 114(11), 114301 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[15] |
A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alú, Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice, Nat. Commun. 6(1), 8260 (2015)
CrossRef
ADS
Google scholar
|
[16] |
M. Xiao, W. J. Chen, W. Y. He, and C. T. Chan, Synthetic gauge flux and Weyl points in acoustic systems, Nat. Phys. 11(11), 920 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[17] |
C. He, X. Ni, H. Ge, X. C. Sun, Y. B. Chen, M. H. Lu, X. P. Liu, and Y. F. Chen, Acoustic topological insulator and robust one-way sound transport, Nat. Phys. 12(12), 1124 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[18] |
J. Lu, C. Qiu, M. Ke, and Z. Liu, Valley vortex states in sonic crystals, Phys. Rev. Lett. 116(9), 093901 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[19] |
Y. Liu, C. S. Lian, Y. Li, Y. Xu, and W. Duan, Pseudospins and topological effects of phonons in a Kekule lattice, Phys. Rev. Lett. 119(25), 255901 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[20] |
Z. Zhang, Q. Wei, Y. Cheng, T. Zhang, D. Wu, and X. Liu, Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice, Phys. Rev. Lett. 118(8), 084303 (2017)
CrossRef
ADS
Google scholar
|
[21] |
M. Dubois, C. Shi, X. Zhu, Y. Wang, and X. Zhang, Observation of acoustic Dirac-like cone and double zero refractive index, Nat. Commun. 8(1), 14871 (2017)
CrossRef
ADS
Google scholar
|
[22] |
F. Li, X. Huang, J. Lu, J. Ma, and Z. Liu, Weyl points and Fermi arcs in a chiral phononic crystal, Nat. Phys. 14(1), 30 (2018)
CrossRef
ADS
Google scholar
|
[23] |
X. J. Zhang, M. Xiao, Y. Cheng, M. H. Lu, and J. Christensen, Topological sound, Commun. Phys. 1(1), 97 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[24] |
C. Xu, J. Mei, G. Ma, and Y. Wu, Type-II Dirac phonons in a two-dimensional phononic crystal, APL Mater. 12(4), 041128 (2024)
CrossRef
ADS
Google scholar
|
[25] |
X. Jiang, C. Shi, Z. Li, S. Wang, Y. Wang, S. Yang, S. G. Louie, and X. Zhang, Direct observation of Klein tunneling in phononic crystals, Science 370(6523), 1447 (2020)
CrossRef
ADS
Google scholar
|
[26] |
J. Li and C. T. Chan, Double-negative acoustic metamaterial, Phys. Rev. E 70(5), 055602(R) (2004)
CrossRef
ADS
Google scholar
|
[27] |
L. Liu, H. Chang, C. Zhang, and X. Hu, Single-channel labyrinthine metasurfaces as perfect sound absorbers with tunable bandwidth, Appl. Phys. Lett. 111(8), 083503 (2017)
CrossRef
ADS
Google scholar
|
[28] |
Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures, Nat. Nanotechnol. 2(12), 770 (2007)
CrossRef
ADS
Google scholar
|
[29] |
See supplemental material for more results on the topic.
|
Supplementary files
fop-25029-of-huxinhua_suppl_1 (1501 KB)
/
〈 |
|
〉 |