Zoom optics in fourth-generation synchrotron radiation: Design and simulation

Xiaowen Cui, Weishan Hu, Ming Li, Weifan Sheng, Xiaowei Zhang, Lei Zheng, Fugui Yang

PDF(2870 KB)
PDF(2870 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (2) : 022203. DOI: 10.15302/frontphys.2025.022203
RESEARCH ARTICLE

Zoom optics in fourth-generation synchrotron radiation: Design and simulation

Author information +
History +

Abstract

Brilliance of the fourth-generation synchrotron radiation sources are increased in the order of magnitude, which further emphasizes the coherent applications. The zoom system of traditional optics can realize coherence regulation while achieving the target size of focus spots at designated position. This paper develops the design method of zoom system to fully exploit partially coherent fields. According to the first-order optics and imaging theory, the design method is reasonably simplified. The flux-optimization acceptance-angle ratio approximately linearly varies with the coherent fraction, which contributes to the slit-aperture determination. In order to validate the design method, wave-optics simulations are conducted in this paper.

Graphical abstract

Keywords

Fourth-generation synchrotron radiation sources / zoom optics / design optimization

Cite this article

Download citation ▾
Xiaowen Cui, Weishan Hu, Ming Li, Weifan Sheng, Xiaowei Zhang, Lei Zheng, Fugui Yang. Zoom optics in fourth-generation synchrotron radiation: Design and simulation. Front. Phys., 2025, 20(2): 022203 https://doi.org/10.15302/frontphys.2025.022203

References

[1]
D. Einfeld, Multi-bend Achromat lattices for storage ring light sources, Synchrotron Radiat. News 27(6), 4 (2014)
CrossRef ADS Google scholar
[2]
P. Raimondi, C. Benabderrahmane, P. Berkvens, J. C. Biasci, P. Borowiec, . The extremely brilliant source storage ring of the European synchrotron radiation facility, Commun. Phys. 6(1), 82 (2023)
CrossRef ADS Google scholar
[3]
Y. Nishino, Y. Takahashi, N. Imamoto, T. Ishikawa, and K. Maeshima, Three-dimensional visualization of a human chromosome using coherent X-ray diffraction, Phys. Rev. Lett. 102(1), 018101 (2009)
CrossRef ADS Google scholar
[4]
H.XuZ.Zhu P.Liu, ., Coherence analysis of beamline and simulation of coherent X-ray diffraction imaging based on a coherent modes model, Synchrotron Radiat. News (2021)
[5]
F. Lehmkuhler, P. Kwasniewski, W. Roseker, B. Fischer, M. A. Schroer, K. Tono, T. Katayama, M. Sprung, M. Sikorski, S. Song, J. Glownia, M. Chollet, S. Nelson, A. Robert, C. Gutt, M. Yabashi, T. Ishikawa, and G. Grübel, Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser, Sci. Rep. 5(1), 17193 (2015)
CrossRef ADS Google scholar
[6]
Q. Zeng, In situ high-pressure wide-angle hard X-ray photon correlation spectroscopy: A versatile tool probing atomic dynamics of extreme condition matter, Matter Radiat. Extremes 8(2), 028101 (2023)
CrossRef ADS Google scholar
[7]
H. Mimura, H. Yumoto, S. Matsuyama, T. Koyama, K. Tono, Y. Inubushi, T. Togashi, T. Sato, J. Kim, R. Fukui, Y. Sano, M. Yabashi, H. Ohashi, T. Ishikawa, and K. Yamauchi, Generation of 1020 W·cm-2 hard X-ray laser pulses with two-stage reflective focusing system, Nat. Commun. 5(1), 3539 (2014)
CrossRef ADS Google scholar
[8]
S. Matsuyama, H. Nakamori, T. Goto, T. Kimura, K. P. Khakurel, Y. Kohmura, Y. Sano, M. Yabashi, T. Ishikawa, Y. Nishino, and K. Yamauchi, Nearly diffraction-limited X-ray focusing with variable-numerical aperture focusing optical system based on four deformable mirrors, Sci. Rep. 6(1), 24801 (2016)
CrossRef ADS Google scholar
[9]
M. Sanchez del Rio, R. Celestre, J. Reyes-Herrera, P. Brumund, and M. Cammarata, Beam focus modifications by cropping partially coherent X-ray beams, Europhys. Lett. 140(5), 55001 (2022)
CrossRef ADS arXiv Google scholar
[10]
T. Ursby, K. Ahnberg, R. Appio, O. Aurelius, A. Barczyk, . BioMAX – the first macromolecular crystallography beamline at MAX IV Laboratory, J. Synchrotron Radiat. 27(5), 1415 (2020)
CrossRef ADS Google scholar
[11]
O. Chubar, G. Williams, Y. Gao, R. Li, and L. Berman, Physical optics simulations for synchrotron radiation sources, J. Opt. Soc. Am. A 39(12), C240 (2022)
CrossRef ADS Google scholar
[12]
W.J. Smith, Modern Optical Engineering: The Design of Optical Systems, 4th Ed., McGraw Hill, 2007, pp 328–333
[13]
K. Klementiev and R. Chernikov, Powerful scriptable ray tracing package XRT, Adv. Comput. Methods for X-ray Opt. III 9209, 60 (2014)
CrossRef ADS Google scholar
[14]
A. He, O. Chubar, M. Rakitin, L. Samoylova, C. Fortmann-Grote, S. Yakubov, and A. Buzmakov, Parallel performance of “Synchrotron Radiation Workshop” code: Partially coherent calculations for storage rings and time-dependent calculations for XFELs, Adv. Comput. Methods for X-ray Opt. 11493, 15 (2020)
CrossRef ADS Google scholar
[15]
L. R. Rabiner, R. W. Schafer, and C. M. Rader, The chirp z-transform algorithm and its application, Bell Syst. Tech. J. 48(5), 1249 (1969)
CrossRef ADS Google scholar
[16]
K. J. Kim, Characteristics of synchrotron radiation, AIP Conf. Proc. 184, 565 (1989)
CrossRef ADS Google scholar
[17]
R. Li and O. Chubar, Memory and CPU efficient coherent mode decomposition of partially coherent synchrotron radiation with subtraction of common quadratic phase terms, Opt. Express 30(4), 5896 (2022)
CrossRef ADS Google scholar
[18]
S. Andrej and I. A. Vartanyants, Modelling of partially coherent radiation based on the coherent mode decomposition, Adv. Comput. Methods for X-ray Opt. II 8141, 35 (2011)
CrossRef ADS Google scholar
[19]
R. R. Lindberg and K. J. Kim, Compact representations of partially coherent undulator radiation suitable for wave propagation, Phys. Rev. Spec. Top. Accel. Beams 18(9), 090702 (2015)
CrossRef ADS Google scholar
[20]
J. Susini, Design parameters for hard X-ray mirrors: The European Synchroton Radiation Facility case, Opt. Eng. 34(2), 361 (1995)
CrossRef ADS Google scholar
[21]
R.HarderD. HaeffnerX.ShiR.Reininger, X-ray optics simulation and beamline design for the APS upgrade, Adv. Comput. Methods for X-ray Opt. IV 10388, 12 (2017)
[22]
T. Tanaka and H. Kitamura, Universal function for the brilliance of undulator radiation considering the energy spread effect, J. Synchrotron Radiat. 16(3), 380 (2009)
CrossRef ADS Google scholar
[23]
R. P. Walker, Undulator radiation brightness and coherence near the diffraction limit, Phys. Rev. Accel. Beams 22(5), 050704 (2019)
CrossRef ADS Google scholar
[24]
K. J. Kim, Brightness and coherence of synchrotron radiation and high-gain free electron lasers, Nucl. Instrum. Methods Phys. Res. A 261(1−2), 44 (1987)
CrossRef ADS Google scholar
[25]
I. A. Vartanyants and A. Singer, Coherence properties of hard X-ray synchrotron sources and X-ray free-electron lasers, New J. Phys. 12(3), 035004 (2010)
CrossRef ADS arXiv Google scholar
[26]
J.W. Goodman, Statistical Optics, 2nd Ed., Translated by J. Chen, K. Qin, and Q. Cao, Beijing: Science Press, 2015, pp 167–175

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11505212 and 11875059).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(2870 KB)

Accesses

Citations

Detail

Sections
Recommended

/