Zoom optics in fourth-generation synchrotron radiation: Design and simulation
Xiaowen Cui, Weishan Hu, Ming Li, Weifan Sheng, Xiaowei Zhang, Lei Zheng, Fugui Yang
Zoom optics in fourth-generation synchrotron radiation: Design and simulation
Brilliance of the fourth-generation synchrotron radiation sources are increased in the order of magnitude, which further emphasizes the coherent applications. The zoom system of traditional optics can realize coherence regulation while achieving the target size of focus spots at designated position. This paper develops the design method of zoom system to fully exploit partially coherent fields. According to the first-order optics and imaging theory, the design method is reasonably simplified. The flux-optimization acceptance-angle ratio approximately linearly varies with the coherent fraction, which contributes to the slit-aperture determination. In order to validate the design method, wave-optics simulations are conducted in this paper.
Fourth-generation synchrotron radiation sources / zoom optics / design optimization
[1] |
D. Einfeld, Multi-bend Achromat lattices for storage ring light sources, Synchrotron Radiat. News 27(6), 4 (2014)
CrossRef
ADS
Google scholar
|
[2] |
P. Raimondi, C. Benabderrahmane, P. Berkvens, J. C. Biasci, P. Borowiec,
CrossRef
ADS
Google scholar
|
[3] |
Y. Nishino, Y. Takahashi, N. Imamoto, T. Ishikawa, and K. Maeshima, Three-dimensional visualization of a human chromosome using coherent X-ray diffraction, Phys. Rev. Lett. 102(1), 018101 (2009)
CrossRef
ADS
Google scholar
|
[4] |
H.XuZ.Zhu P.Liu,
|
[5] |
F. Lehmkuhler, P. Kwasniewski, W. Roseker, B. Fischer, M. A. Schroer, K. Tono, T. Katayama, M. Sprung, M. Sikorski, S. Song, J. Glownia, M. Chollet, S. Nelson, A. Robert, C. Gutt, M. Yabashi, T. Ishikawa, and G. Grübel, Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser, Sci. Rep. 5(1), 17193 (2015)
CrossRef
ADS
Google scholar
|
[6] |
Q. Zeng, In situ high-pressure wide-angle hard X-ray photon correlation spectroscopy: A versatile tool probing atomic dynamics of extreme condition matter, Matter Radiat. Extremes 8(2), 028101 (2023)
CrossRef
ADS
Google scholar
|
[7] |
H. Mimura, H. Yumoto, S. Matsuyama, T. Koyama, K. Tono, Y. Inubushi, T. Togashi, T. Sato, J. Kim, R. Fukui, Y. Sano, M. Yabashi, H. Ohashi, T. Ishikawa, and K. Yamauchi, Generation of 1020 W·cm-2 hard X-ray laser pulses with two-stage reflective focusing system, Nat. Commun. 5(1), 3539 (2014)
CrossRef
ADS
Google scholar
|
[8] |
S. Matsuyama, H. Nakamori, T. Goto, T. Kimura, K. P. Khakurel, Y. Kohmura, Y. Sano, M. Yabashi, T. Ishikawa, Y. Nishino, and K. Yamauchi, Nearly diffraction-limited X-ray focusing with variable-numerical aperture focusing optical system based on four deformable mirrors, Sci. Rep. 6(1), 24801 (2016)
CrossRef
ADS
Google scholar
|
[9] |
M. Sanchez del Rio, R. Celestre, J. Reyes-Herrera, P. Brumund, and M. Cammarata, Beam focus modifications by cropping partially coherent X-ray beams, Europhys. Lett. 140(5), 55001 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[10] |
T. Ursby, K. Ahnberg, R. Appio, O. Aurelius, A. Barczyk,
CrossRef
ADS
Google scholar
|
[11] |
O. Chubar, G. Williams, Y. Gao, R. Li, and L. Berman, Physical optics simulations for synchrotron radiation sources, J. Opt. Soc. Am. A 39(12), C240 (2022)
CrossRef
ADS
Google scholar
|
[12] |
W.J. Smith, Modern Optical Engineering: The Design of Optical Systems, 4th Ed., McGraw Hill, 2007, pp 328–333
|
[13] |
K. Klementiev and R. Chernikov, Powerful scriptable ray tracing package XRT, Adv. Comput. Methods for X-ray Opt. III 9209, 60 (2014)
CrossRef
ADS
Google scholar
|
[14] |
A. He, O. Chubar, M. Rakitin, L. Samoylova, C. Fortmann-Grote, S. Yakubov, and A. Buzmakov, Parallel performance of “Synchrotron Radiation Workshop” code: Partially coherent calculations for storage rings and time-dependent calculations for XFELs, Adv. Comput. Methods for X-ray Opt. 11493, 15 (2020)
CrossRef
ADS
Google scholar
|
[15] |
L. R. Rabiner, R. W. Schafer, and C. M. Rader, The chirp z-transform algorithm and its application, Bell Syst. Tech. J. 48(5), 1249 (1969)
CrossRef
ADS
Google scholar
|
[16] |
K. J. Kim, Characteristics of synchrotron radiation, AIP Conf. Proc. 184, 565 (1989)
CrossRef
ADS
Google scholar
|
[17] |
R. Li and O. Chubar, Memory and CPU efficient coherent mode decomposition of partially coherent synchrotron radiation with subtraction of common quadratic phase terms, Opt. Express 30(4), 5896 (2022)
CrossRef
ADS
Google scholar
|
[18] |
S. Andrej and I. A. Vartanyants, Modelling of partially coherent radiation based on the coherent mode decomposition, Adv. Comput. Methods for X-ray Opt. II 8141, 35 (2011)
CrossRef
ADS
Google scholar
|
[19] |
R. R. Lindberg and K. J. Kim, Compact representations of partially coherent undulator radiation suitable for wave propagation, Phys. Rev. Spec. Top. Accel. Beams 18(9), 090702 (2015)
CrossRef
ADS
Google scholar
|
[20] |
J. Susini, Design parameters for hard X-ray mirrors: The European Synchroton Radiation Facility case, Opt. Eng. 34(2), 361 (1995)
CrossRef
ADS
Google scholar
|
[21] |
R.HarderD. HaeffnerX.ShiR.Reininger, X-ray optics simulation and beamline design for the APS upgrade, Adv. Comput. Methods for X-ray Opt. IV 10388, 12 (2017)
|
[22] |
T. Tanaka and H. Kitamura, Universal function for the brilliance of undulator radiation considering the energy spread effect, J. Synchrotron Radiat. 16(3), 380 (2009)
CrossRef
ADS
Google scholar
|
[23] |
R. P. Walker, Undulator radiation brightness and coherence near the diffraction limit, Phys. Rev. Accel. Beams 22(5), 050704 (2019)
CrossRef
ADS
Google scholar
|
[24] |
K. J. Kim, Brightness and coherence of synchrotron radiation and high-gain free electron lasers, Nucl. Instrum. Methods Phys. Res. A 261(1−2), 44 (1987)
CrossRef
ADS
Google scholar
|
[25] |
I. A. Vartanyants and A. Singer, Coherence properties of hard X-ray synchrotron sources and X-ray free-electron lasers, New J. Phys. 12(3), 035004 (2010)
CrossRef
ADS
arXiv
Google scholar
|
[26] |
J.W. Goodman, Statistical Optics, 2nd Ed., Translated by J. Chen, K. Qin, and Q. Cao, Beijing: Science Press, 2015, pp 167–175
|
/
〈 | 〉 |