Dipolar Bose gas with SU(3) spin−orbit coupling held under a toroidal trap
Fang Wang, Jia Liu, Si-Lin Chen, Lin Wen, Xue-Ying Yang, Xiao-Fei Zhang
Dipolar Bose gas with SU(3) spin−orbit coupling held under a toroidal trap
We consider a dipolar spin-1 Bose gas with SU(3) spin−orbit coupling trapped in a two-dimensional toroidal trap. Due to the combined effects of SU(3) spin−orbit coupling, dipole−dipole interaction, and spin−exchange interaction, the system exhibits a rich variety of ground-state phases and topological defects, including modified stripe, azimuthal distributed petal and triangular lattice, double-quantum spin vortices, and so on. In particular, by studying the spin texture of such a system, it is found that the formation and transformation between meron and skyrmion topological spin textures can be realized by a choice of dipole−dipole interaction, SU(3) spin−orbit coupling, and spin−exchange interaction. We also give an experimental protocol to observe such novel states within current experimental capacity.
Bose−Einstein condensate / spin−orbit coupling / dipolar condensate / quantum vortex
[1] |
I. Žutić , J. Fabian , and S. Das Sarma , Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76(2), 323 (2004)
CrossRef
ADS
Google scholar
|
[2] |
J. Wunderlich , B. Kaestner , J. Sinova , and T. Jungwirth , Experimental observation of the spin-Hall effect in a two-dimensional spin–orbit coupled semiconductor system, Phys. Rev. Lett. 94(4), 047204 (2005)
CrossRef
ADS
Google scholar
|
[3] |
S. Murakami , Quantum spin Hall effect and enhanced magnetic response by spin–orbit coupling, Phys. Rev. Lett. 97(23), 236805 (2006)
CrossRef
ADS
Google scholar
|
[4] |
M. Z. Hasan and C. L. Kane , Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef
ADS
Google scholar
|
[5] |
X. L. Qi and S. C. Zhang , Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef
ADS
Google scholar
|
[6] |
Y. J. Lin , K. Jiménez-García , and I. B. Spielman , Spin–orbit-coupled Bose–Einstein condensates, Nature 471(7336), 83 (2011)
CrossRef
ADS
Google scholar
|
[7] |
P. Wang , Z. Q. Yu , Z. Fu , J. Miao , L. Huang , S. Chai , H. Zhai , and J. Zhang , Spin–orbit coupled degenerate Fermi gases, Phys. Rev. Lett. 109(9), 095301 (2012)
CrossRef
ADS
Google scholar
|
[8] |
L. Huang , Z. Meng , P. Wang , P. Peng , S. L. Zhang , L. Chen , D. Li , Q. Zhou , and J. Zhang , Experimental realization of two-dimensional synthetic spin–orbit coupling in ultracold Fermi gases, Nat. Phys. 12(6), 540 (2016)
CrossRef
ADS
Google scholar
|
[9] |
J.R. LiJ.LeeW.HuangS.BurcheskyB.ShteynasF.Ç. TopA.O. JamisonW.Ketterle, A stripe phase with supersolid properties in spin−orbit-coupled Bose−Einstein condensates, Nature 543(7643), 91 (2017)
|
[10] |
J. Zhong , B. Tang , X. Chen , and L. Zhou , Quantum gravimetry going toward real applications, Innovation 3(3), 100230 (2022)
CrossRef
ADS
Google scholar
|
[11] |
S. C. Guo , Y. M. Xu , R. Cheng , J. S. Zhou , and X. Chen , Thermal Hall effect in insulating quantum materials, Innovation 3(5), 100290 (2022)
CrossRef
ADS
Google scholar
|
[12] |
R.BarnettG.R. BoydV.Galitski, SU(3) spin–orbit coupling in systems of ultracold atoms, Phys. Rev. Lett. 109(23), 235308 (2012)
|
[13] |
W. Han , X. F. Zhang , S. W. Song , H. Saito , W. Zhang , W. M. Liu , and S. G. Zhang , Double-quantum spin vortices in SU(3) spin−orbit-coupled Bose gases, Phys. Rev. A 94(3), 033629 (2016)
CrossRef
ADS
Google scholar
|
[14] |
K. Sun , C. Qu , Y. Xu , Y. Zhang , and C. Zhang , Interacting spin–orbit-coupled spin-1 Bose–Einstein condensates, Phys. Rev. A 93(2), 023615 (2016)
CrossRef
ADS
Google scholar
|
[15] |
C. Wu , I. Mondragon-Shem , and X. F. Zhou , Unconventional Bose–Einstein condensations from spin–orbit coupling, Chin. Phys. Lett. 28(9), 097102 (2011)
CrossRef
ADS
Google scholar
|
[16] |
H. Hu , B. Ramachandhran , H. Pu , and X. J. Liu , Spin–orbit coupled weakly interacting Bose–Einstein condensates in harmonic traps, Phys. Rev. Lett. 108(1), 010402 (2012)
CrossRef
ADS
Google scholar
|
[17] |
H. Sakaguchi , B. Li , and B. A. Malomed , Creation of two-dimensional composite solitons in spin–orbit-coupled self-attractive Bose–Einstein condensates in free space, Phys. Rev. E 89(3), 032920 (2014)
CrossRef
ADS
Google scholar
|
[18] |
W. Han , G. Juzeliūnas , W. Zhang , and W. M. Liu , Supersolid with nontrivial topological spin textures in spin–orbit-coupled Bose gases, Phys. Rev. A 91(1), 013607 (2015)
CrossRef
ADS
Google scholar
|
[19] |
H. Wang , L. H. Wen , H. Yang , C. X. Shi , and J. H. Li , Vortex states and spin textures of rotating spin–orbit-coupled Bose–Einstein condensates in a toroidal trap, J. Phys. At. Mol. Opt. Phys. 50(15), 155301 (2017)
CrossRef
ADS
Google scholar
|
[20] |
G. I. Martone , Y. Li , L. P. Pitaevskii , and S. Stringari , Anisotropic dynamics of a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. A 86(6), 063621 (2012)
CrossRef
ADS
Google scholar
|
[21] |
Z. Wu , L. Zhang , W. Sun , X. T. Xu , B. Z. Wang , S. C. Ji , Y. Deng , S. Chen , X. J. Liu , and J. W. Pan , Realization of two-dimensional spin–orbit coupling for Bose–Einstein condensates, Science 354(6308), 83 (2016)
CrossRef
ADS
Google scholar
|
[22] |
Y. Xu , Y. Zhang , and B. Wu , Bright solitons in spin–orbit-coupled Bose–Einstein condensates, Phys. Rev. A 87(1), 013614 (2013)
CrossRef
ADS
Google scholar
|
[23] |
T. Graß , R. W. Chhajlany , C. A. Muschik , and M. Lewenstein , Spiral spin textures of a bosonic Mott insu-9 lator with SU(3) spin–orbit coupling, Phys. Rev. B 90(19), 195127 (2014)
CrossRef
ADS
Google scholar
|
[24] |
C. Ryu , M. Andersen , P. Cladé , V. Natarajan , K. Helmerson , and W. Phillips , Observation of persistent flow of a Bose–Einstein condensate in a toroidal trap, Phys. Rev. Lett. 99(26), 260401 (2007)
CrossRef
ADS
Google scholar
|
[25] |
X. F. Zhang , M. Kato , W. Han , S. G. Zhang , and H. Saito , Spin–orbit-coupled Bose–Einstein condensates held under a toroidal trap, Phys. Rev. A 95(3), 033620 (2017)
CrossRef
ADS
Google scholar
|
[26] |
A. C. White , Y. P. Zhang , and T. Busch , Odd-petal-number states and persistent flows in spin–orbit coupled Bose–Einstein condensates, Phys. Rev. A 95(4), 041604(R) (2017)
CrossRef
ADS
Google scholar
|
[27] |
J. G. Wang , L. L. Xu , and S. J. Yang , Ground-state phases of the spin–orbit-coupled spin-1 Bose gas in a toroidal trap, Phys. Rev. A 96(3), 033629 (2017)
CrossRef
ADS
Google scholar
|
[28] |
K. Liu , H. He , C. Wang , Y. Chen , and Y. Zhang , Spin–orbit-coupled spin-1 Bose–Einstein condensates in a toroidal trap: Even-petal-number necklace-like state and persistent flow, Phys. Rev. A 105(1), 013323 (2022)
CrossRef
ADS
Google scholar
|
[29] |
A. Griesmaier , J. Werner , S. Hensler , J. Stuhler , and T. Pfau , Bose–Einstein condensation of chromium, Phys. Rev. Lett. 94(16), 160401 (2005)
CrossRef
ADS
Google scholar
|
[30] |
M. W. Ray , E. Ruokokoski , K. Tiurev , M. Möttönen , and D. S. Hall , Observation of isolated monopoles in a quantum field, Science 348(6234), 544 (2015)
CrossRef
ADS
Google scholar
|
[31] |
L. Tanzi , E. Lucioni , F. Famà , J. Catani , A. Fioretti , C. Gabbanini , R. N. Bisset , L. Santos , and G. Modugno , Observation of a dipolar quantum gas with metastable supersolid properties, Phys. Rev. Lett. 122(13), 130405 (2019)
CrossRef
ADS
Google scholar
|
[32] |
T. Lahaye , C. Menotti , L. Santos , M. Lewenstein , and T. Pfau , The physics of dipolar bosonic quantum gases, Rep. Prog. Phys. 72(12), 126401 (2009)
CrossRef
ADS
Google scholar
|
[33] |
K. Góral , K. Rzążewski , and T. Pfau , Bose–Einstein condensation with magnetic dipole–dipole forces, Phys. Rev. A 61(5), 051601 (2000)
CrossRef
ADS
Google scholar
|
[34] |
L. Santos , G. V. Shlyapnikov , and M. Lewenstein , Roton–maxon spectrum and stability of trapped dipolar Bose–Einstein condensates, Phys. Rev. Lett. 90(25), 250403 (2003)
CrossRef
ADS
Google scholar
|
[35] |
F. Malet , T. Kristensen , S. M. Reimann , and G. M. Kavoulakis , Rotational properties of dipolar Bose–Einstein condensates confined in anisotropic harmonic potentials, Phys. Rev. A 83(3), 033628 (2011)
CrossRef
ADS
Google scholar
|
[36] |
B. Liu , X. Li , L. Yin , and W. V. Liu , Weyl superfluidity in a three-dimensional dipolar fermi gas, Phys. Rev. Lett. 114(4), 045302 (2015)
CrossRef
ADS
Google scholar
|
[37] |
S. Y. Chä and U. R. Fischer , Probing the scale invariance of the inflationary power spectrum in expanding quasitwo-dimensional dipolar condensates, Phys. Rev. Lett. 118(13), 130404 (2017)
CrossRef
ADS
Google scholar
|
[38] |
M. O. Borgh , J. Lovegrove , and J. Ruostekoski , Internal structure and stability of vortices in a dipolar spinor Bose–Einstein condensate, Phys. Rev. A 95(5), 053601 (2017)
CrossRef
ADS
Google scholar
|
[39] |
R. N. Bisset , P. B. Blakie , and S. Stringari , Staticresponse theory and the roton–maxon spectrum of a flattened dipolar Bose–Einstein condensate, Phys. Rev. A 100(1), 013620 (2019)
CrossRef
ADS
Google scholar
|
[40] |
Y. Deng , J. Cheng , H. Jing , C. P. Sun , and S. Yi , Spin–orbit-coupled dipolar Bose–Einstein condensates, Phys. Rev. Lett. 108(12), 125301 (2012)
CrossRef
ADS
Google scholar
|
[41] |
S. Gopalakrishnan , I. Martin , and E. A. Demler , Quantum quasicrystals of spin–orbit-coupled dipolar bosons, Phys. Rev. Lett. 111(18), 185304 (2013)
CrossRef
ADS
Google scholar
|
[42] |
Y. Xu , Y. P. Zhang , and C. Zhang , Bright solitons in a two-dimensional spin–orbit-coupled dipolar Bose–Einstein condensate, Phys. Rev. Lett. 92(1), 013633 (2015)
|
[43] |
R. M. Wilson , B. M. Anderson , and C. W. Clark , Meron ground state of Rashba spin–orbit-coupled dipolar bosons, Phys. Rev. Lett. 111(18), 185303 (2013)
CrossRef
ADS
Google scholar
|
[44] |
G. Chen , J. Ma , and S. T. Jia , Long-range superfluid order in trapped Bose–Einstein condensates with spin–orbit coupling, Phys. Rev. A 86(4), 045601 (2012)
CrossRef
ADS
Google scholar
|
[45] |
N. Q. Burdick , Y. Tang , and B. L. Lev , Long-lived spin–orbit-coupled degenerate dipolar Fermi gas, Phys. Rev. X 6(3), 031022 (2016)
CrossRef
ADS
Google scholar
|
[46] |
X. J. Feng , J. X. Li , L. Qin , Y. Y. Zhang , S. Q. Xia , L. Zhou , C. J. Yang , Z. L. Zhu , W. M. Liu , and X. D. Zhao , Itinerant ferromagnetism entrenched by the anisotropy of spin–orbit coupling in a dipolar Fermi gas, Front. Phys. 18(5), 52303 (2023)
CrossRef
ADS
Google scholar
|
[47] |
N. Su , Q. B. Wang , J. G. Hu , X. H. Su , and L. H. Wen , Topological defects in rotating spin–orbit-coupled dipolar spin-1 Bose−Einstein condensates, J. Phys. At. Mol. Opt. Phys. 53(21), 215301 (2020)
CrossRef
ADS
Google scholar
|
[48] |
Y. Y. Li , Y. Liu , Z. W. Fan , W. Pang , S. H. Fu , and B. A. Malomed , Two-dimensional dipolar gap solitons in free space with spin–orbit coupling, Phys. Rev. A 95(6), 063613 (2017)
CrossRef
ADS
Google scholar
|
[49] |
T. Oshima and Y. Kawaguchi , Spin Hall effect in a spinor dipolar Bose–Einstein condensate, Phys. Rev. A 93(5), 053605 (2016)
CrossRef
ADS
Google scholar
|
[50] |
M. Kato , X. F. Zhang , D. Sasaki , and H. Saito , Twisted spin vortices in a spin-1 Bose–Einstein condensate with Rashba spin–orbit coupling and dipole–dipole interaction, Phys. Rev. A 94(4), 043633 (2016)
CrossRef
ADS
Google scholar
|
[51] |
Y. Kawaguchi and M. Ueda , Spinor Bose–Einstein condensates, Phys. Rep. 520(5), 253 (2012)
CrossRef
ADS
Google scholar
|
[52] |
Y. Kawaguchi , H. Saito , K. Kudo , and M. Ueda , Spontaneous magnetic ordering in a ferromagnetic spinor dipolar Bose–Einstein condensate, Phys. Rev. A 82(4), 043627 (2010)
CrossRef
ADS
Google scholar
|
[53] |
D. M. Stamper-Kurn and M. Ueda , Spinor Bose gases: Symmetries, magnetism, and quantum dynamics, Rev. Mod. Phys. 85(3), 1191 (2013)
CrossRef
ADS
Google scholar
|
[54] |
D. S. Wang , Y. R. Shi , K. W. Chow , Z. X. Yu , and X. G. Li , Matter-wave solitons in a spin-1 Bose–Einstein condensate with time-modulated external potential and scattering lengths, Eur. Phys. J. D 67(11), 242 (2013)
CrossRef
ADS
Google scholar
|
[55] |
G.B. ArfkenH.J. WeberF.E. Harris, Mathematical Methods for Physicists, 7th Ed., Academic Press, New York, 2000
|
[56] |
Z. F. Xu , Y. Kawaguchi , L. You , and M. Ueda , Symmetry classification of spin–orbit-coupled spinor Bose–Einstein condensates, Phys. Rev. A 86(3), 033628 (2012)
CrossRef
ADS
Google scholar
|
[57] |
Z. Lan and P. Öhberg , Raman-dressed spin-1 spin–orbit coupled quantum gas, Phys. Rev. A 89(2), 023630 (2014)
CrossRef
ADS
Google scholar
|
[58] |
Y. Zhang , L. Mao , and C. Zhang , Mean-field dynamics of spin–orbit coupled Bose–Einstein condensates, Phys. Rev. Lett. 108(3), 035302 (2012)
CrossRef
ADS
Google scholar
|
[59] |
F. Dalfovo and S. Stringari , Bosons in anisotropic traps: Ground state and vortices, Phys. Rev. A 53(4), 2477 (1996)
CrossRef
ADS
Google scholar
|
[60] |
M. L. Chiofalo , S. Succi , and M. P. Tosi , Ground state of trapped interacting Bose–Einstein condensates by an explicit imaginary-time algorithm, Phys. Rev. E 62(5), 7438 (2000)
CrossRef
ADS
Google scholar
|
[61] |
W.BaoI.L. ChernF.Y. Lim, Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose–Einstein condensates, J. Comput. Phys. 219(2), 836 (2006)
|
[62] |
C. Wang , C. Gao , C. M. Jian , and H. Zhai , Spin-orbit coupled spinor Bose–Einstein condensates, Phys. Rev. Lett. 105(16), 160403 (2010)
CrossRef
ADS
Google scholar
|
[63] |
T. Mizushima , N. Kobayashi , and K. Machida , Coreless and singular vortex lattices in rotating spinor Bose–Einstein condensates, Phys. Rev. A 70(4), 043613 (2004)
CrossRef
ADS
Google scholar
|
[64] |
K. Kasamatsu , M. Tsubota , and M. Ueda , Spin textures in rotating two-component Bose–Einstein condensates, Phys. Rev. A 71(4), 043611 (2005)
CrossRef
ADS
Google scholar
|
[65] |
S. Heinze , K. von Bergmann , M. Menzel , J. Brede , A. Kubetzka , R. Wiesendanger , G. Bihlmayer , and S. Blügel , Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions, Nat. Phys. 7(9), 713 (2011)
CrossRef
ADS
Google scholar
|
[66] |
S. Banerjee , J. Rowland , O. Erten , and M. Randeria , Enhanced stability of skyrmions in two-dimensional chiral magnets with Rashba spin–orbit coupling, Phys. Rev. X 4(3), 031045 (2014)
CrossRef
ADS
Google scholar
|
[67] |
B. Dong , Q. Sun , W. M. Liu , A. C. Ji , X. F. Zhang , and S. G. Zhang , Multiply quantized and fractional skyrmions in a binary dipolar Bose–Einstein condensate under rotation, Phys. Rev. A 96(1), 013619 (2017)
CrossRef
ADS
Google scholar
|
[68] |
H. Saito , Y. Kawaguchi , and M. Ueda , Breaking of chiral symmetry and spontaneous rotation in a spinor Bose–Einstein condensate, Phys. Rev. Lett. 96(6), 065302 (2006)
CrossRef
ADS
Google scholar
|
[69] |
X. Z. Yu , W. Koshibae , Y. Tokunaga , K. Shibata , Y. Taguchi , N. Nagaosa , and Y. Tokura , Transformation between meron and skyrmion topological spin textures in a chiral magnet, Nature 564(7734), 95 (2018)
CrossRef
ADS
Google scholar
|
[70] |
C. Chin , R. Grimm , P. Julienne , and E. Tiesinga , Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82(2), 1225 (2010)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |