A strategy for fast and precise control of polarity and chirality in magnetic vortices

Can Liu, Xuange Hu, Zefang Li, Xuewei Cao, Xuewen Fu

Front. Phys. ›› 2025, Vol. 20 ›› Issue (2) : 022201.

PDF(2534 KB)
PDF(2534 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (2) : 022201. DOI: 10.15302/frontphys.2025.022201
RESEARCH ARTICLE

A strategy for fast and precise control of polarity and chirality in magnetic vortices

Author information +
History +

Abstract

Magnetic vortices hold great promise for advanced information storage applications due to their quartet degenerate states and high topological stability. The key to their application lies on meticulous control of its polarity and chirality, which traditionally relies on magnetic fields, currents, and spin waves. However, the vortex core’s intrinsic precession under these stimuli hampers fast switching of the polarity and chirality. Here, we demonstrate a fast and precise control of polarity and chirality in magnetic vortices using combined femtosecond (fs) laser and tiny magnetic fields via micromagnetic simulations on Permalloy nanodisks. The fs laser pulse induces an ultrafast quench effect to establish the initial paramagnetic state, while the simultaneously applied magnetic fields precisely target the final vortex structure. Intriguingly, a 110 mT out-of-plane field and a 7 mT in-plane circular field are sufficient to realize precise control of the polarity and chirality on sub-nanosecond time scale, respectively, which are much lower than that of the previous work. Our approach guarantees fast and reliable switching of magnetic vortex polarity and chirality, paving the groundwork for a high-speed quaternary data storage and contributing a novel perspective to the fundamentals of spintronics.

Graphical abstract

Keywords

magnetic vortex / chirality switching / polarity switching / femtosecond laser quenching / micromagnetic simulation

Cite this article

Download citation ▾
Can Liu, Xuange Hu, Zefang Li, Xuewei Cao, Xuewen Fu. A strategy for fast and precise control of polarity and chirality in magnetic vortices. Front. Phys., 2025, 20(2): 022201 https://doi.org/10.15302/frontphys.2025.022201

References

[1]
T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, Magnetic vortex core observation in circular dots of permalloy, Science 289(5481), 930 (2000)
CrossRef ADS Google scholar
[2]
A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, and R. Wiesendanger, Direct observation of internal spin structure of magnetic vortex cores, Science 298(5593), 577 (2002)
CrossRef ADS Google scholar
[3]
M. Y. Im, P. Fischer, K. Yamada, T. Sato, S. Kasai, Y. Nakatani, and T. Ono, Symmetry breaking in the formation of magnetic vortex states in a permalloy nanodisk, Nat. Commun. 3(1), 983 (2012)
CrossRef ADS Google scholar
[4]
J. A. Fernandez-Roldan, R. P. del Real, C. Bran, M. Vazquez, and O. Chubykalo-Fesenko, Electric current and field control of vortex structures in cylindrical magnetic nanowires, Phys. Rev. B 102(2), 024421 (2020)
CrossRef ADS Google scholar
[5]
C. Behncke, C. F. Adolff, N. Lenzing, M. Hänze, B. Schulte, M. Weigand, G. Schütz, and G. Meier, Spin-wave interference in magnetic vortex stacks, Commun. Phys. 1(1), 50 (2018)
CrossRef ADS Google scholar
[6]
S. S. P. K. Arekapudi, B. Böhm, L. Ramasubramanian, F. Ganss, P. Heinig, S. Stienen, C. Fowley, K. Lenz, A. M. Deac, M. Albrecht, and O. Hellwig, Direct imaging of distorted vortex structures and magnetic vortex annihilation processes in ferromagnetic/antiferromagnetic disk structures, Phys. Rev. B 103(1), 014405 (2021)
CrossRef ADS Google scholar
[7]
S. S. P. Parkin, M. Hayashi, and L. Thomas, Magnetic domain-wall racetrack memory, Science 320(5873), 190 (2008)
CrossRef ADS Google scholar
[8]
W. Kang, C. Zheng, Y. Huang, X. Zhang, Y. Zhou, W. Lv, and W. Zhao, Complementary skyrmion racetrack memory with voltage manipulation, IEEE Electron Device Lett. 37(7), 924 (2016)
CrossRef ADS arXiv Google scholar
[9]
L. D. Geng and Y. M. Jin, Magnetic vortex racetrack memory, J. Magn. Magn. Mater. 423, 84 (2017)
CrossRef ADS Google scholar
[10]
R. Tomasello,E. Martinez,R. Zivieri,L. Torres,M. Carpentieri,G. Finocchio, A strategy for the design of skyrmion racetrack memories, Sci. Rep. 4(1), 6784 (2014)
[11]
S. Parkin and S. H. Yang, Memory on the racetrack, Nat. Nanotechnol. 10(3), 195 (2015)
CrossRef ADS Google scholar
[12]
X. Zhang, M. Ezawa, and Y. Zhou, Magnetic skyrmion logic gates: Conversion, duplication and merging of skyrmions, Sci. Rep. 5(1), 9400 (2015)
CrossRef ADS arXiv Google scholar
[13]
S. Luo, M. Song, X. Li, Y. Zhang, J. Hong, X. Yang, X. Zou, N. Xu, and L. You, Reconfigurable skyrmion logic gates, Nano Lett. 18(2), 1180 (2018)
CrossRef ADS Google scholar
[14]
M. Chauwin, X. Hu, F. Garcia-Sanchez, N. Betrabet, A. Paler, C. Moutafis, and J. S. Friedman, Skyrmion logic system for large-scale reversible computation, Phys. Rev. Appl. 12(6), 064053 (2019)
CrossRef ADS arXiv Google scholar
[15]
C. Song, L. Zhao, J. Liu, and W. Jiang, Experimental realization of a skyrmion circulator, Nano Lett. 22(23), 9638 (2022)
CrossRef ADS Google scholar
[16]
K. Raab, M. A. Brems, G. Beneke, T. Dohi, J. Rothörl, F. Kammerbauer, J. H. Mentink, and M. Kläui, Brownian reservoir computing realized using geometrically confined skyrmion dynamics, Nat. Commun. 13(1), 6982 (2022)
CrossRef ADS arXiv Google scholar
[17]
C. Psaroudaki and C. Panagopoulos, Skyrmion qubits: A new class of quantum logic elements based on nanoscale magnetization, Phys. Rev. Lett. 127(6), 067201 (2021)
CrossRef ADS arXiv Google scholar
[18]
J. Xia, X. Zhang, X. Liu, Y. Zhou, and M. Ezawa, Universal quantum computation based on nanoscale skyrmion helicity qubits in frustrated magnets, Phys. Rev. Lett. 130(10), 106701 (2023)
CrossRef ADS arXiv Google scholar
[19]
J. Xia, X. Zhang, X. Liu, Y. Zhou, and M. Ezawa, Qubits based on merons in magnetic nanodisks, Commun. Mater. 3(1), 88 (2022)
CrossRef ADS arXiv Google scholar
[20]
V. P. Kravchuk, D. D. Sheka, Y. Gaididei, and F. G. Mertens, Controlled vortex core switching in a magnetic nanodisk by a rotating field, J. Appl. Phys. 102(4), 043908 (2007)
CrossRef ADS arXiv Google scholar
[21]
Z. Zeng, G. Finocchio, and H. Jiang, Spin transfer nano-oscillators, Nanoscale 5(6), 2219 (2013)
CrossRef ADS arXiv Google scholar
[22]
S. Zhang, J. Wang, Q. Zheng, Q. Zhu, X. Liu, S. Chen, C. Jin, Q. Liu, C. Jia, and D. Xue, Current-induced magnetic skyrmions oscillator, New J. Phys. 17(2), 023061 (2015)
CrossRef ADS Google scholar
[23]
C. Jin, J. Wang, W. Wang, C. Song, J. Wang, H. Xia, and Q. Liu, Array of synchronized nano-oscillators based on repulsion between domain wall and skyrmion, Phys. Rev. Appl. 9(4), 044007 (2018)
CrossRef ADS Google scholar
[24]
F. Garcia-Sanchez,J. Sampaio,N. Reyren,V. Cros,J. V. Kim, A skyrmion-based spin-torque nano-oscillator, New J. Phys. 18(7), 075011 (2016)
[25]
M. Carpentieri, E. Martinez, and G. Finocchio, High frequency spin-torque-oscillators with reduced perpendicular torque effect based on asymmetric vortex polarizer, J. Appl. Phys. 110(9), 093911 (2011)
CrossRef ADS Google scholar
[26]
Y. Gaididei, V. P. Kravchuk, and D. D. Sheka, Magnetic vortex dynamics induced by an electrical current, Int. J. Quantum Chem. 110(1), 83 (2010)
CrossRef ADS Google scholar
[27]
K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno, A. Thiaville, and T. Ono, Electrical switching of the vortex core in a magnetic disk, Nat. Mater. 6(4), 270 (2007)
CrossRef ADS Google scholar
[28]
K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, and T. Ono, Switching magnetic vortex core by a single nanosecond current pulse, Appl. Phys. Lett. 93(15), 152502 (2008)
CrossRef ADS arXiv Google scholar
[29]
S. K. Kim, Y. S. Choi, K. S. Lee, K. Y. Guslienko, and D. E. Jeong, Electric-current-driven vortex-core reversal in soft magnetic nanodots, Appl. Phys. Lett. 91(8), 082506 (2007)
CrossRef ADS Google scholar
[30]
S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno, and T. Ono, Current-driven resonant excitation of magnetic vortices, Phys. Rev. Lett. 97(10), 107204 (2006)
CrossRef ADS Google scholar
[31]
Y. Zhang, C. Wang, H. Huang, J. Lu, R. Liang, J. Liu, R. Peng, Q. Zhang, Q. Zhang, J. Wang, L. Gu, X. F. Han, L. Q. Chen, R. Ramesh, C. W. Nan, and J. Zhang, Deterministic reversal of single magnetic vortex circulation by an electric field, Sci. Bull. (Beijing) 65(15), 1260 (2020)
CrossRef ADS Google scholar
[32]
W. A. S. Aldulaimi, M. B. Okatan, K. Sendur, M. C. Onbasli, and I. B. Misirlioglu, Size driven barrier to chirality reversal in electric control of magnetic vortices in ferromagnetic nanodiscs, Nanoscale 15(2), 707 (2023)
CrossRef ADS Google scholar
[33]
B. A. Ivanov and C. E. Zaspel, Excitation of spin dynamics by spin-polarized current in vortex state magnetic disks, Phys. Rev. Lett. 99(24), 247208 (2007)
CrossRef ADS arXiv Google scholar
[34]
S. Yakata, M. Miyata, S. Nonoguchi, H. Wada, and T. Kimura, Control of vortex chirality in regular polygonal nanomagnets using in-plane magnetic field, Appl. Phys. Lett. 97(22), 222503 (2010)
CrossRef ADS Google scholar
[35]
M. Jaafar, R. Yanes, D. Perez de Lara, O. Chubykalo-Fesenko, A. Asenjo, E. M. Gonzalez, J. V. Anguita, M. Vazquez, and J. L. Vicent, Control of the chirality and polarity of magnetic vortices in triangular nanodots, Phys. Rev. B 81(5), 054439 (2010)
CrossRef ADS arXiv Google scholar
[36]
Q. F. Xiao, J. Rudge, B. C. Choi, Y. K. Hong, and G. Donohoe, Dynamics of vortex core switching in ferromagnetic nanodisks, Appl. Phys. Lett. 89(26), 262507 (2006)
CrossRef ADS Google scholar
[37]
B. Van Waeyenberge, A. Puzic, H. Stoll, K. W. Chou, T. Tyliszczak, R. Hertel, M. Fahnle, H. Bruckl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C. H. Back, and G. Schutz, Magnetic vortex core reversal by excitation with short bursts of an alternating field, Nature 444(7118), 461 (2006)
CrossRef ADS Google scholar
[38]
B. Pigeau,G. de Loubens,O. Klein,A. Riegler,F. Lochner,G. Schmidt,L. W. Molenkamp,V. S. Tiberkevich,A. N. Slavin, A frequency-controlled magnetic vortex memory, Appl. Phys. Lett. 96(13), 132506 (2010)
[39]
V. Uhlíř, M. Urbánek, L. Hladík, J. Spousta, M. Y. Im, P. Fischer, N. Eibagi, J. J. Kan, E. E. Fullerton, and T. Šikola, Dynamic switching of the spin circulation in tapered magnetic nanodisks, Nat. Nanotechnol. 8(5), 341 (2013)
CrossRef ADS Google scholar
[40]
R. Rückriem, T. Schrefl, and M. Albrecht, Ultra-fast magnetic vortex core reversal by a local field pulse, Appl. Phys. Lett. 104(5), 052414 (2014)
CrossRef ADS Google scholar
[41]
H. Zhang, H. Yu, X. F. Zhang, X. X. Yang, J. H. Shim, X. P. Ma, and H. G. Piao, Reliable control of magnetic vortex chirality in asymmetrically optimized magnetic nanodisk, Curr. Appl. Phys. 43, 72 (2022)
CrossRef ADS Google scholar
[42]
V. P. Kravchuk, Y. Gaididei, and D. D. Sheka, Nucleation of a vortex-antivortex pair in the presence of an immobile magnetic vortex, Phys. Rev. B 80(10), 100405 (2009)
CrossRef ADS arXiv Google scholar
[43]
M. Kammerer, M. Weigand, M. Curcic, M. Noske, M. Sproll, A. Vansteenkiste, B. Van Waeyenberge, H. Stoll, G. Woltersdorf, C. H. Back, and G. Schuetz, Magnetic vortex core reversal by excitation of spin waves, Nat. Commun. 2(1), 279 (2011)
CrossRef ADS arXiv Google scholar
[44]
K. V. Yershov, V. P. Kravchuk, D. D. Sheka, and Y. Gaididei, Controllable vortex chirality switching on spherical shells, J. Appl. Phys. 117(8), 083908 (2015)
CrossRef ADS arXiv Google scholar
[45]
Y. Wen, Z. Feng, B. F. Miao, R. X. Cao, L. Sun, B. You, D. Wu, W. Zhang, Z. S. Jiang, R. Cheng, and H. F. Ding, Fast and controllable switching the circulation and polarity of magnetic vortices, J. Magn. Magn. Mater. 370, 68 (2014)
CrossRef ADS Google scholar
[46]
P. Vavassori, R. Bovolenta, V. Metlushko, and B. Ilic, Vortex rotation control in permalloy disks with small circular voids, J. Appl. Phys. 99(5), 053902 (2006)
CrossRef ADS Google scholar
[47]
D. Yu, J. Kang, J. Berakdar, and C. Jia, Nondestructive ultrafast steering of a magnetic vortex by terahertz pulses, NPG Asia Mater. 12(1), 36 (2020)
CrossRef ADS Google scholar
[48]
R. Antos and Y. Otani, Simulations of the dynamic switching of vortex chirality in magnetic nanodisks by a uniform field pulse, Phys. Rev. B 80(14), 140404 (2009)
CrossRef ADS arXiv Google scholar
[49]
W. A. S. Aldulaimi, C. Akaoglu, K. Sendur, M. B. Okatan, and I. B. Misirlioglu, Chirality switching in ferromagnetic nanostructures via nanosecond electric pulses, Annalen der Physik 533(10), 2100167 (2021)
CrossRef ADS Google scholar
[50]
Y. M. Luo, Y. Z. Wu, C. Q. Yu, H. Li, J. H. Wen, L. Y. Zhu, Z. H. Qian, and T. J. Zhou, Separated edge-soliton-mediated dynamic switching of vortex chirality and polarity, Phys. Rev. Appl. 11(4), 044090 (2019)
CrossRef ADS Google scholar
[51]
G. Cao, S. Jiang, J. Åkerman, and J. Weissenrieder, Femtosecond laser driven precessing magnetic gratings, Nanoscale 13(6), 3746 (2021)
CrossRef ADS Google scholar
[52]
K. Taguchi, J. I. Ohe, and G. Tatara, Ultrafast magnetic vortex core switching driven by the topological inverse Faraday effect, Phys. Rev. Lett. 109(12), 127204 (2012)
CrossRef ADS arXiv Google scholar
[53]
S. Ghosh, S. Blügel, and Y. Mokrousov, Ultrafast optical generation of antiferromagnetic meron-antimeron pairs with conservation of topological charge, Phys. Rev. Res. 5(2), L022007 (2023)
CrossRef ADS arXiv Google scholar
[54]
E. Beaurepaire, J. C. Merle, A. Daunois, and J. Y. Bigot, Ultrafast spin dynamics in ferromagnetic nickel, Phys. Rev. Lett. 76(22), 4250 (1996)
CrossRef ADS Google scholar
[55]
T. Ogasawara, N. Iwata, Y. Murakami, H. Okamoto, and Y. Tokura, Submicron-scale spatial feature of ultrafast photoinduced magnetization reversal in TbFeCo thin film, Appl. Phys. Lett. 94(16), 162507 (2009)
CrossRef ADS Google scholar
[56]
X. Fu, S. D. Pollard, B. Chen, B. K. Yoo, H. Yang, and Y. Zhu, Optical manipulation of magnetic vortices visualized in situ by Lorentz electron microscopy, Sci. Adv. 4(7), eaat3077 (2018)
CrossRef ADS Google scholar
[57]
K. M. Lebecki and U. Nowak, Ferromagnetic vortex core switching at elevated temperatures, Phys. Rev. B 89(1), 014421 (2014)
CrossRef ADS Google scholar
[58]
L. D. Landau and E. M. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowjetunion 8, 153 (1935)
[59]
T. L. Gilbert, A phenomenological theory of damping in ferromagnetic materials, IEEE Trans. Magn. 40(6), 3443 (2004)
[60]
R. Juge, N. Sisodia, J. U. Larrañaga, Q. Zhang, V. T. Pham, K. G. Rana, B. Sarpi, N. Mille, S. Stanescu, R. Belkhou, M. A. Mawass, N. Novakovic-Marinkovic, F. Kronast, M. Weigand, J. Gräfe, S. Wintz, S. Finizio, J. Raabe, L. Aballe, M. Foerster, M. Belmeguenai, L. D. Buda-Prejbeanu, J. Pelloux-Prayer, J. M. Shaw, H. T. Nembach, L. Ranno, G. Gaudin, and O. Boulle, Skyrmions in synthetic antiferromagnets and their nucleation via electrical current and ultra-fast laser illumination, Nat. Commun. 13(1), 4807 (2022)
CrossRef ADS arXiv Google scholar
[61]
M. O. A. Ellis, T. A. Ostler, and R. W. Chantrell, Classical spin model of the relaxation dynamics of rare-earth doped permalloy, Phys. Rev. B 86(17), 174418 (2012)
CrossRef ADS Google scholar
[62]
Y. Nozaki and S. Kasai, Microwave-assisted magnetization reversal in exchange-coupled composite media using linearly polarized microwave fields, IEEE Trans. Magn. 52(2), 1 (2016)
CrossRef ADS Google scholar
[63]
S. K. Kim, K. S. Lee, Y. S. Choi, and Y. S. Yu, Low-power selective control of ultrafast vortex-core switching by circularly rotating magnetic fields: Circular–rotational eigenmodes, IEEE Trans. Magn. 44(11), 3071 (2008)
CrossRef ADS Google scholar
[64]
K. Tanabe, D. Chiba, and T. Ono, Electrical detection of magnetic vortex chirality, Jpn. J. Appl. Phys. 49(7R), 078001 (2010)
CrossRef ADS Google scholar
[65]
O. Kumagai, M. Ikeda, and M. Yamamoto, Application of laser diodes to optical disk systems: The history of laser diode development and mass production in three generations of optical disk systems, Proc. IEEE 101(10), 2243 (2013)
CrossRef ADS Google scholar
[66]
S. B. Wen, V. M. Sundaram, D. McBride, and Y. Yang, Low-cost, high-precision micro-lensed optical fiber providing deep-micrometer to deep-nanometer-level light focusing, Opt. Lett. 41(8), 1793 (2016)
CrossRef ADS Google scholar
[67]
C. E. Zaspel, E. S. Wright, A. Y. Galkin, and B. A. Ivanov, Frequencies of radially symmetric excitations in vortex state disks, Phys. Rev. B 80(9), 094415 (2009)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Author contributions

X. F. conceived the research project. C. L. and X. H. performed the simulations. C. L. proceeded with data analysis. C. L. wrote the manuscript with input from Z. L., X. C., and X. F.. All authors contributed to the discussion and revision of the manuscript.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.15302/frontphys.2025.022201.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2020YFA0309300), the National Natural Science Foundation of China (NSFC) (Grant Nos. 12127803 and 12304146), China Postdoctoral Science Foundation (No. 2023M741828), Science and Technology Projects in Guangzhou (Grant No. 202201000008), Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2021B1515120047 and 2023B1515020112), the Natural Science Foundation of Tianjin (Grant No. 20JCJQJC00210), the 111 Project (Grant No. B23045), and the “Fundamental Research Funds for the Central Universities”, Nankai University (Grant Nos. 63213040, C029211101, C02922101, ZB22000104, DK2300010207, 63243194, and 9242000728).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(2534 KB)

Accesses

Citations

Detail

Sections
Recommended

/