
A strategy for fast and precise control of polarity and chirality in magnetic vortices
Can Liu, Xuange Hu, Zefang Li, Xuewei Cao, Xuewen Fu
Front. Phys. ›› 2025, Vol. 20 ›› Issue (2) : 022201.
A strategy for fast and precise control of polarity and chirality in magnetic vortices
Magnetic vortices hold great promise for advanced information storage applications due to their quartet degenerate states and high topological stability. The key to their application lies on meticulous control of its polarity and chirality, which traditionally relies on magnetic fields, currents, and spin waves. However, the vortex core’s intrinsic precession under these stimuli hampers fast switching of the polarity and chirality. Here, we demonstrate a fast and precise control of polarity and chirality in magnetic vortices using combined femtosecond (fs) laser and tiny magnetic fields via micromagnetic simulations on Permalloy nanodisks. The fs laser pulse induces an ultrafast quench effect to establish the initial paramagnetic state, while the simultaneously applied magnetic fields precisely target the final vortex structure. Intriguingly, a 110 mT out-of-plane field and a 7 mT in-plane circular field are sufficient to realize precise control of the polarity and chirality on sub-nanosecond time scale, respectively, which are much lower than that of the previous work. Our approach guarantees fast and reliable switching of magnetic vortex polarity and chirality, paving the groundwork for a high-speed quaternary data storage and contributing a novel perspective to the fundamentals of spintronics.
magnetic vortex / chirality switching / polarity switching / femtosecond laser quenching / micromagnetic simulation
[1] |
T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, Magnetic vortex core observation in circular dots of permalloy, Science 289(5481), 930 (2000)
CrossRef
ADS
Google scholar
|
[2] |
A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, and R. Wiesendanger, Direct observation of internal spin structure of magnetic vortex cores, Science 298(5593), 577 (2002)
CrossRef
ADS
Google scholar
|
[3] |
M. Y. Im, P. Fischer, K. Yamada, T. Sato, S. Kasai, Y. Nakatani, and T. Ono, Symmetry breaking in the formation of magnetic vortex states in a permalloy nanodisk, Nat. Commun. 3(1), 983 (2012)
CrossRef
ADS
Google scholar
|
[4] |
J. A. Fernandez-Roldan, R. P. del Real, C. Bran, M. Vazquez, and O. Chubykalo-Fesenko, Electric current and field control of vortex structures in cylindrical magnetic nanowires, Phys. Rev. B 102(2), 024421 (2020)
CrossRef
ADS
Google scholar
|
[5] |
C. Behncke, C. F. Adolff, N. Lenzing, M. Hänze, B. Schulte, M. Weigand, G. Schütz, and G. Meier, Spin-wave interference in magnetic vortex stacks, Commun. Phys. 1(1), 50 (2018)
CrossRef
ADS
Google scholar
|
[6] |
S. S. P. K. Arekapudi, B. Böhm, L. Ramasubramanian, F. Ganss, P. Heinig, S. Stienen, C. Fowley, K. Lenz, A. M. Deac, M. Albrecht, and O. Hellwig, Direct imaging of distorted vortex structures and magnetic vortex annihilation processes in ferromagnetic/antiferromagnetic disk structures, Phys. Rev. B 103(1), 014405 (2021)
CrossRef
ADS
Google scholar
|
[7] |
S. S. P. Parkin, M. Hayashi, and L. Thomas, Magnetic domain-wall racetrack memory, Science 320(5873), 190 (2008)
CrossRef
ADS
Google scholar
|
[8] |
W. Kang, C. Zheng, Y. Huang, X. Zhang, Y. Zhou, W. Lv, and W. Zhao, Complementary skyrmion racetrack memory with voltage manipulation, IEEE Electron Device Lett. 37(7), 924 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[9] |
L. D. Geng and Y. M. Jin, Magnetic vortex racetrack memory, J. Magn. Magn. Mater. 423, 84 (2017)
CrossRef
ADS
Google scholar
|
[10] |
R. Tomasello,E. Martinez,R. Zivieri,L. Torres,M. Carpentieri,G. Finocchio, A strategy for the design of skyrmion racetrack memories, Sci. Rep. 4(1), 6784 (2014)
|
[11] |
S. Parkin and S. H. Yang, Memory on the racetrack, Nat. Nanotechnol. 10(3), 195 (2015)
CrossRef
ADS
Google scholar
|
[12] |
X. Zhang, M. Ezawa, and Y. Zhou, Magnetic skyrmion logic gates: Conversion, duplication and merging of skyrmions, Sci. Rep. 5(1), 9400 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[13] |
S. Luo, M. Song, X. Li, Y. Zhang, J. Hong, X. Yang, X. Zou, N. Xu, and L. You, Reconfigurable skyrmion logic gates, Nano Lett. 18(2), 1180 (2018)
CrossRef
ADS
Google scholar
|
[14] |
M. Chauwin, X. Hu, F. Garcia-Sanchez, N. Betrabet, A. Paler, C. Moutafis, and J. S. Friedman, Skyrmion logic system for large-scale reversible computation, Phys. Rev. Appl. 12(6), 064053 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[15] |
C. Song, L. Zhao, J. Liu, and W. Jiang, Experimental realization of a skyrmion circulator, Nano Lett. 22(23), 9638 (2022)
CrossRef
ADS
Google scholar
|
[16] |
K. Raab, M. A. Brems, G. Beneke, T. Dohi, J. Rothörl, F. Kammerbauer, J. H. Mentink, and M. Kläui, Brownian reservoir computing realized using geometrically confined skyrmion dynamics, Nat. Commun. 13(1), 6982 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[17] |
C. Psaroudaki and C. Panagopoulos, Skyrmion qubits: A new class of quantum logic elements based on nanoscale magnetization, Phys. Rev. Lett. 127(6), 067201 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[18] |
J. Xia, X. Zhang, X. Liu, Y. Zhou, and M. Ezawa, Universal quantum computation based on nanoscale skyrmion helicity qubits in frustrated magnets, Phys. Rev. Lett. 130(10), 106701 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[19] |
J. Xia, X. Zhang, X. Liu, Y. Zhou, and M. Ezawa, Qubits based on merons in magnetic nanodisks, Commun. Mater. 3(1), 88 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[20] |
V. P. Kravchuk, D. D. Sheka, Y. Gaididei, and F. G. Mertens, Controlled vortex core switching in a magnetic nanodisk by a rotating field, J. Appl. Phys. 102(4), 043908 (2007)
CrossRef
ADS
arXiv
Google scholar
|
[21] |
Z. Zeng, G. Finocchio, and H. Jiang, Spin transfer nano-oscillators, Nanoscale 5(6), 2219 (2013)
CrossRef
ADS
arXiv
Google scholar
|
[22] |
S. Zhang, J. Wang, Q. Zheng, Q. Zhu, X. Liu, S. Chen, C. Jin, Q. Liu, C. Jia, and D. Xue, Current-induced magnetic skyrmions oscillator, New J. Phys. 17(2), 023061 (2015)
CrossRef
ADS
Google scholar
|
[23] |
C. Jin, J. Wang, W. Wang, C. Song, J. Wang, H. Xia, and Q. Liu, Array of synchronized nano-oscillators based on repulsion between domain wall and skyrmion, Phys. Rev. Appl. 9(4), 044007 (2018)
CrossRef
ADS
Google scholar
|
[24] |
F. Garcia-Sanchez,J. Sampaio,N. Reyren,V. Cros,J. V. Kim, A skyrmion-based spin-torque nano-oscillator, New J. Phys. 18(7), 075011 (2016)
|
[25] |
M. Carpentieri, E. Martinez, and G. Finocchio, High frequency spin-torque-oscillators with reduced perpendicular torque effect based on asymmetric vortex polarizer, J. Appl. Phys. 110(9), 093911 (2011)
CrossRef
ADS
Google scholar
|
[26] |
Y. Gaididei, V. P. Kravchuk, and D. D. Sheka, Magnetic vortex dynamics induced by an electrical current, Int. J. Quantum Chem. 110(1), 83 (2010)
CrossRef
ADS
Google scholar
|
[27] |
K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno, A. Thiaville, and T. Ono, Electrical switching of the vortex core in a magnetic disk, Nat. Mater. 6(4), 270 (2007)
CrossRef
ADS
Google scholar
|
[28] |
K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, and T. Ono, Switching magnetic vortex core by a single nanosecond current pulse, Appl. Phys. Lett. 93(15), 152502 (2008)
CrossRef
ADS
arXiv
Google scholar
|
[29] |
S. K. Kim, Y. S. Choi, K. S. Lee, K. Y. Guslienko, and D. E. Jeong, Electric-current-driven vortex-core reversal in soft magnetic nanodots, Appl. Phys. Lett. 91(8), 082506 (2007)
CrossRef
ADS
Google scholar
|
[30] |
S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno, and T. Ono, Current-driven resonant excitation of magnetic vortices, Phys. Rev. Lett. 97(10), 107204 (2006)
CrossRef
ADS
Google scholar
|
[31] |
Y. Zhang, C. Wang, H. Huang, J. Lu, R. Liang, J. Liu, R. Peng, Q. Zhang, Q. Zhang, J. Wang, L. Gu, X. F. Han, L. Q. Chen, R. Ramesh, C. W. Nan, and J. Zhang, Deterministic reversal of single magnetic vortex circulation by an electric field, Sci. Bull. (Beijing) 65(15), 1260 (2020)
CrossRef
ADS
Google scholar
|
[32] |
W. A. S. Aldulaimi, M. B. Okatan, K. Sendur, M. C. Onbasli, and I. B. Misirlioglu, Size driven barrier to chirality reversal in electric control of magnetic vortices in ferromagnetic nanodiscs, Nanoscale 15(2), 707 (2023)
CrossRef
ADS
Google scholar
|
[33] |
B. A. Ivanov and C. E. Zaspel, Excitation of spin dynamics by spin-polarized current in vortex state magnetic disks, Phys. Rev. Lett. 99(24), 247208 (2007)
CrossRef
ADS
arXiv
Google scholar
|
[34] |
S. Yakata, M. Miyata, S. Nonoguchi, H. Wada, and T. Kimura, Control of vortex chirality in regular polygonal nanomagnets using in-plane magnetic field, Appl. Phys. Lett. 97(22), 222503 (2010)
CrossRef
ADS
Google scholar
|
[35] |
M. Jaafar, R. Yanes, D. Perez de Lara, O. Chubykalo-Fesenko, A. Asenjo, E. M. Gonzalez, J. V. Anguita, M. Vazquez, and J. L. Vicent, Control of the chirality and polarity of magnetic vortices in triangular nanodots, Phys. Rev. B 81(5), 054439 (2010)
CrossRef
ADS
arXiv
Google scholar
|
[36] |
Q. F. Xiao, J. Rudge, B. C. Choi, Y. K. Hong, and G. Donohoe, Dynamics of vortex core switching in ferromagnetic nanodisks, Appl. Phys. Lett. 89(26), 262507 (2006)
CrossRef
ADS
Google scholar
|
[37] |
B. Van Waeyenberge, A. Puzic, H. Stoll, K. W. Chou, T. Tyliszczak, R. Hertel, M. Fahnle, H. Bruckl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C. H. Back, and G. Schutz, Magnetic vortex core reversal by excitation with short bursts of an alternating field, Nature 444(7118), 461 (2006)
CrossRef
ADS
Google scholar
|
[38] |
B. Pigeau,G. de Loubens,O. Klein,A. Riegler,F. Lochner,G. Schmidt,L. W. Molenkamp,V. S. Tiberkevich,A. N. Slavin, A frequency-controlled magnetic vortex memory, Appl. Phys. Lett. 96(13), 132506 (2010)
|
[39] |
V. Uhlíř, M. Urbánek, L. Hladík, J. Spousta, M. Y. Im, P. Fischer, N. Eibagi, J. J. Kan, E. E. Fullerton, and T. Šikola, Dynamic switching of the spin circulation in tapered magnetic nanodisks, Nat. Nanotechnol. 8(5), 341 (2013)
CrossRef
ADS
Google scholar
|
[40] |
R. Rückriem, T. Schrefl, and M. Albrecht, Ultra-fast magnetic vortex core reversal by a local field pulse, Appl. Phys. Lett. 104(5), 052414 (2014)
CrossRef
ADS
Google scholar
|
[41] |
H. Zhang, H. Yu, X. F. Zhang, X. X. Yang, J. H. Shim, X. P. Ma, and H. G. Piao, Reliable control of magnetic vortex chirality in asymmetrically optimized magnetic nanodisk, Curr. Appl. Phys. 43, 72 (2022)
CrossRef
ADS
Google scholar
|
[42] |
V. P. Kravchuk, Y. Gaididei, and D. D. Sheka, Nucleation of a vortex-antivortex pair in the presence of an immobile magnetic vortex, Phys. Rev. B 80(10), 100405 (2009)
CrossRef
ADS
arXiv
Google scholar
|
[43] |
M. Kammerer, M. Weigand, M. Curcic, M. Noske, M. Sproll, A. Vansteenkiste, B. Van Waeyenberge, H. Stoll, G. Woltersdorf, C. H. Back, and G. Schuetz, Magnetic vortex core reversal by excitation of spin waves, Nat. Commun. 2(1), 279 (2011)
CrossRef
ADS
arXiv
Google scholar
|
[44] |
K. V. Yershov, V. P. Kravchuk, D. D. Sheka, and Y. Gaididei, Controllable vortex chirality switching on spherical shells, J. Appl. Phys. 117(8), 083908 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[45] |
Y. Wen, Z. Feng, B. F. Miao, R. X. Cao, L. Sun, B. You, D. Wu, W. Zhang, Z. S. Jiang, R. Cheng, and H. F. Ding, Fast and controllable switching the circulation and polarity of magnetic vortices, J. Magn. Magn. Mater. 370, 68 (2014)
CrossRef
ADS
Google scholar
|
[46] |
P. Vavassori, R. Bovolenta, V. Metlushko, and B. Ilic, Vortex rotation control in permalloy disks with small circular voids, J. Appl. Phys. 99(5), 053902 (2006)
CrossRef
ADS
Google scholar
|
[47] |
D. Yu, J. Kang, J. Berakdar, and C. Jia, Nondestructive ultrafast steering of a magnetic vortex by terahertz pulses, NPG Asia Mater. 12(1), 36 (2020)
CrossRef
ADS
Google scholar
|
[48] |
R. Antos and Y. Otani, Simulations of the dynamic switching of vortex chirality in magnetic nanodisks by a uniform field pulse, Phys. Rev. B 80(14), 140404 (2009)
CrossRef
ADS
arXiv
Google scholar
|
[49] |
W. A. S. Aldulaimi, C. Akaoglu, K. Sendur, M. B. Okatan, and I. B. Misirlioglu, Chirality switching in ferromagnetic nanostructures via nanosecond electric pulses, Annalen der Physik 533(10), 2100167 (2021)
CrossRef
ADS
Google scholar
|
[50] |
Y. M. Luo, Y. Z. Wu, C. Q. Yu, H. Li, J. H. Wen, L. Y. Zhu, Z. H. Qian, and T. J. Zhou, Separated edge-soliton-mediated dynamic switching of vortex chirality and polarity, Phys. Rev. Appl. 11(4), 044090 (2019)
CrossRef
ADS
Google scholar
|
[51] |
G. Cao, S. Jiang, J. Åkerman, and J. Weissenrieder, Femtosecond laser driven precessing magnetic gratings, Nanoscale 13(6), 3746 (2021)
CrossRef
ADS
Google scholar
|
[52] |
K. Taguchi, J. I. Ohe, and G. Tatara, Ultrafast magnetic vortex core switching driven by the topological inverse Faraday effect, Phys. Rev. Lett. 109(12), 127204 (2012)
CrossRef
ADS
arXiv
Google scholar
|
[53] |
S. Ghosh, S. Blügel, and Y. Mokrousov, Ultrafast optical generation of antiferromagnetic meron-antimeron pairs with conservation of topological charge, Phys. Rev. Res. 5(2), L022007 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[54] |
E. Beaurepaire, J. C. Merle, A. Daunois, and J. Y. Bigot, Ultrafast spin dynamics in ferromagnetic nickel, Phys. Rev. Lett. 76(22), 4250 (1996)
CrossRef
ADS
Google scholar
|
[55] |
T. Ogasawara, N. Iwata, Y. Murakami, H. Okamoto, and Y. Tokura, Submicron-scale spatial feature of ultrafast photoinduced magnetization reversal in TbFeCo thin film, Appl. Phys. Lett. 94(16), 162507 (2009)
CrossRef
ADS
Google scholar
|
[56] |
X. Fu, S. D. Pollard, B. Chen, B. K. Yoo, H. Yang, and Y. Zhu, Optical manipulation of magnetic vortices visualized in situ by Lorentz electron microscopy, Sci. Adv. 4(7), eaat3077 (2018)
CrossRef
ADS
Google scholar
|
[57] |
K. M. Lebecki and U. Nowak, Ferromagnetic vortex core switching at elevated temperatures, Phys. Rev. B 89(1), 014421 (2014)
CrossRef
ADS
Google scholar
|
[58] |
L. D. Landau and E. M. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowjetunion 8, 153 (1935)
|
[59] |
T. L. Gilbert, A phenomenological theory of damping in ferromagnetic materials, IEEE Trans. Magn. 40(6), 3443 (2004)
|
[60] |
R. Juge, N. Sisodia, J. U. Larrañaga, Q. Zhang, V. T. Pham, K. G. Rana, B. Sarpi, N. Mille, S. Stanescu, R. Belkhou, M. A. Mawass, N. Novakovic-Marinkovic, F. Kronast, M. Weigand, J. Gräfe, S. Wintz, S. Finizio, J. Raabe, L. Aballe, M. Foerster, M. Belmeguenai, L. D. Buda-Prejbeanu, J. Pelloux-Prayer, J. M. Shaw, H. T. Nembach, L. Ranno, G. Gaudin, and O. Boulle, Skyrmions in synthetic antiferromagnets and their nucleation via electrical current and ultra-fast laser illumination, Nat. Commun. 13(1), 4807 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[61] |
M. O. A. Ellis, T. A. Ostler, and R. W. Chantrell, Classical spin model of the relaxation dynamics of rare-earth doped permalloy, Phys. Rev. B 86(17), 174418 (2012)
CrossRef
ADS
Google scholar
|
[62] |
Y. Nozaki and S. Kasai, Microwave-assisted magnetization reversal in exchange-coupled composite media using linearly polarized microwave fields, IEEE Trans. Magn. 52(2), 1 (2016)
CrossRef
ADS
Google scholar
|
[63] |
S. K. Kim, K. S. Lee, Y. S. Choi, and Y. S. Yu, Low-power selective control of ultrafast vortex-core switching by circularly rotating magnetic fields: Circular–rotational eigenmodes, IEEE Trans. Magn. 44(11), 3071 (2008)
CrossRef
ADS
Google scholar
|
[64] |
K. Tanabe, D. Chiba, and T. Ono, Electrical detection of magnetic vortex chirality, Jpn. J. Appl. Phys. 49(7R), 078001 (2010)
CrossRef
ADS
Google scholar
|
[65] |
O. Kumagai, M. Ikeda, and M. Yamamoto, Application of laser diodes to optical disk systems: The history of laser diode development and mass production in three generations of optical disk systems, Proc. IEEE 101(10), 2243 (2013)
CrossRef
ADS
Google scholar
|
[66] |
S. B. Wen, V. M. Sundaram, D. McBride, and Y. Yang, Low-cost, high-precision micro-lensed optical fiber providing deep-micrometer to deep-nanometer-level light focusing, Opt. Lett. 41(8), 1793 (2016)
CrossRef
ADS
Google scholar
|
[67] |
C. E. Zaspel, E. S. Wright, A. Y. Galkin, and B. A. Ivanov, Frequencies of radially symmetric excitations in vortex state disks, Phys. Rev. B 80(9), 094415 (2009)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |