Van der Waals interface between high-κ dielectrics and 2D semiconductors

Jingyu He, Yang Zuo, Tong Yang, Tao Zhu, Ming Yang

PDF(5715 KB)
PDF(5715 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (1) : 014301. DOI: 10.15302/frontphys.2025.014301
TOPICAL REVIEW

Van der Waals interface between high-κ dielectrics and 2D semiconductors

Author information +
History +

Abstract

Atomically thin two-dimensional (2D) semiconductors are attractive channel materials for next-generation field-effect transistors (FETs). The high-performance 2D electronics requires high-quality integration of high-κ dielectrics, which however remains a significant challenge. In this mini-review, we provide a brief introduction on recent progress in the van der Waals (vdW) integration of high-κ dielectrics onto 2D semiconductors. We first highlight the importance of high-κ dielectric integration for 2D FETs. Next, we summarize the recent breakthroughs in the various vdW integrations of high-κ dielectrics with 2D semiconductors, along with their interfaces’ properties. Additionally, we examine the quasi-vdW integration of conventional high-κ dielectrics onto 2D semiconductors. Finally, we discuss the challenges and potential future research directions in this field.

Graphical abstract

Keywords

two-dimensional semiconductor / high-${\color{khaki}{\kappa }} $ dielectrics / van der Waals interface

Cite this article

Download citation ▾
Jingyu He, Yang Zuo, Tong Yang, Tao Zhu, Ming Yang. Van der Waals interface between high-κ dielectrics and 2D semiconductors. Front. Phys., 2025, 20(1): 014301 https://doi.org/10.15302/frontphys.2025.014301

References

[1]
R. K. Ratnesh, A. Goel, G. Kaushik, H. Garg, Chandan Singh, and M. Prasad, Advancement and challenges in MOSFET scaling, Mater. Sci. Semicond. Process. 134, 106002 (2021)
CrossRef ADS Google scholar
[2]
U. König, Challenges for a Si/Ge heterodevice technology, Microelectron. Eng. 23(1−4), 3 (1994)
CrossRef ADS Google scholar
[3]
R.SharmaA. K. Rana, Strained Si. Opportunities and challenges in nanoscale MOSFET, in: 2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS), 2015, pp 475–480
[4]
G.BaeD. I. BaeM.KangS.M. HwangS.S. Kim B.SeoT. Y. KwonT.J. LeeC.MoonY.M. Choi K.OikawaS. MasuokaK.Y. ChunS.H. ParkH.J. Shin J.C. KimK. K. BhuwalkaD.H. KimW.J. KimJ.Yoo H.Y. JeonM. S. YangS.J. ChungD.KimB.H. Ham K.J. ParkW. D. KimS.H. ParkG.SongY.H. Kim M.S. KangK. H. HwangC.H. ParkJ.H. LeeD.W. Kim S.M. JungH. K. Kang, 3 nm GAA technology featuring multi-bridge-channel FET for low power and high performance applications, in: 2018 IEEE International Electron Devices Meeting (IEDM) (2018), pp 28.7.1–28.7.4
[5]
U. Nanda, K. Bhol, and B. Jena, Journey of MOSFET from planar to gate all around: A review, Recent Pat. Nanotechnol. 16(4), 326 (2022)
CrossRef ADS Google scholar
[6]
B.ParvaisA. MerchaN.CollaertR.RooyackersI.Ferain M.JurczakV. SubramanianA.De KeersgieterT.ChiarellaC.Kerner L.WittersS. BiesemansT.Hoffman, The device architecture dilemma for CMOS technologies: Opportunities & challenges of finFET over planar MOSFET, in: 2009 International Symposium on VLSI Technology, Systems, and Applications, 2009, pp 80–81
[7]
S. Verdonckt-Vandebroek, E. F. Crabbe, B. S. Meyerson, D. L. Harame, P. J. Restle, J. M. C. Stork, A. C. Megdanis, C. L. Stanis, A. A. Bright, G. M. W. Kroesen, and A. C. Warren, High-mobility modulation-doped SiGe-channel p-MOSFETs, IEEE Electron Device Lett. 12, 447 (1991)
CrossRef ADS Google scholar
[8]
M. Yang, R. Q. Wu, W. S. Deng, L. Shen, Z. D. Sha, Y. Q. Cai, Y. P. Feng, and S. J. Wang, Electronic structures of β-Si3N4 (0001)/Si (111) interfaces: Perfect bonding and dangling bond effects, J. Appl. Phys. 105(2), 024108 (2009)
CrossRef ADS Google scholar
[9]
D. P. Brunco, B. De Jaeger, G. Eneman, J. Mitard, G. Hellings, A. Satta, V. Terzieva, L. Souriau, F. E. Leys, G. Pourtois, M. Houssa, G. Winderickx, E. Vrancken, S. Sioncke, K. Opsomer, G. Nicholas, M. Caymax, A. Stesmans, J. Van Steenbergen, P. W. Mertens, M. Meuris, and M. M. Heyns, Germanium MOSFET devices: Advances in materials understanding, process development, and electrical performance, J. Electrochem. Soc. 155(7), H552 (2008)
CrossRef ADS Google scholar
[10]
K. Saraswat, C. O. Chui, T. Krishnamohan, D. Kim, A. Nayfeh, and A. Pethe, High performance germanium MOSFETs, Mater. Sci. Eng. B 135(3), 242 (2006)
CrossRef ADS Google scholar
[11]
S. Chattopadhyay, L. D. Driscoll, K. S. K. Kwa, S. H. Olsen, and A. G. O’Neill, Strained Si MOSFETs on relaxed SiGe platforms: Performance and challenges, Solid-State Electron. 48(8), 1407 (2004)
CrossRef ADS Google scholar
[12]
M. L. Lee, E. A. Fitzgerald, M. T. Bulsara, M. T. Currie, A. Lochtefeld, and Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors, J. Appl. Phys. 97(1), 011101 (2005)
CrossRef ADS Google scholar
[13]
J.L. HoytH. M. NayfehS.EguchiI.AbergG.Xia T.DrakeE. A. FitzgeraldD.A. Antoniadis, Strained silicon MOSFET technology, in: Digest, International Electron Devices Meeting, 2002, pp 23–26
[14]
IRDSTM 2022: More than Moore − IEEE IRDSTM, URL: irds.ieee.org/editions/2022/irds%E2%84%A2-2022-more-than-moore
[15]
IRDSTM 2023: Beyond CMOS and Emerging Materials Integration − IEEE IRDSTM, URL: irds.ieee.org/editions/2023/20-roadmap-2023-edition/126-irds%E2%84%A2-2023-beyond-cmos-and-emerging-materials-integration
[16]
L. W. Wong, K. Yang, W. Han, X. Zheng, H. Y. Wong, C. S. Tsang, C. S. Lee, S. P. Lau, T. H. Ly, M. Yang, and J. Zhao, Deciphering the ultra-high plasticity in metal monochalcogenides, Nat. Mater. 23(2), 196 (2024)
CrossRef ADS Google scholar
[17]
H. K. Ng, D. Xiang, A. Suwardi, G. Hu, K. Yang, Y. Zhao, T. Liu, Z. Cao, H. Liu, S. Li, J. Cao, Q. Zhu, Z. Dong, C. K. I. Tan, D. Chi, C. W. Qiu, K. Hippalgaonkar, G. Eda, M. Yang, and J. Wu, Improving carrier mobility in two-dimensional semiconductors with rippled materials, Nat. Electron. 5(8), 489 (2022)
CrossRef ADS Google scholar
[18]
M. Yang, J. W. Chai, M. Callsen, J. Zhou, T. Yang, T. T. Song, J. S. Pan, D. Z. Chi, Y. P. Feng, and S. J. Wang, Interfacial interaction between HfO2 and MoS2: From thin films to monolayer, J. Phys. Chem. C 120(18), 9804 (2016)
CrossRef ADS Google scholar
[19]
J. Chai, S. Tong, C. Li, C. Manzano, B. Li, Y. Liu, M. Lin, L. Wong, J. Cheng, J. Wu, A. Lau, Q. Xie, S. J. Pennycook, H. Medina, M. Yang, S. Wang, and D. Chi, MoS2/polymer heterostructures enabling stable resistive switching and multistate randomness, Adv. Mater. 32(42), 2002704 (2020)
CrossRef ADS Google scholar
[20]
W. Han, X. Zheng, K. Yang, C. S. Tsang, F. Zheng, L. W. Wong, K. H. Lai, T. Yang, Q. Wei, M. Li, W. F. Io, F. Guo, Y. Cai, N. Wang, J. Hao, S. P. Lau, C. S. Lee, T. H. Ly, M. Yang, and J. Zhao, Phase-controllable large-area two-dimensional In2Se3 and ferroelectric heterophase junction, Nat. Nanotechnol. 18(1), 55 (2023)
CrossRef ADS Google scholar
[21]
X. Tong, E. Ashalley, F. Lin, H. Li, and Z. M. Wang, Advances in MoS2-based field effect transistors (FETs), Nano-Micro Lett. 7(3), 203 (2015)
CrossRef ADS Google scholar
[22]
I.ShlyakhovJ. ChaiM.YangS.WangV.V. Afanas’evM.HoussaA.Stesmans, Energy band alignment of a monolayer MoS2 with SiO2 and Al2O3 insulators from internal photoemission, Phys. Status Solidi. A 216(8), 1800616 (2019) (a)
[23]
W. Bao, X. Cai, D. Kim, K. Sridhara, and M. S. Fuhrer, High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects, Appl. Phys. Lett. 102(4), 042104 (2013)
CrossRef ADS arXiv Google scholar
[24]
A. Rai, H. C. P. Movva, A. Roy, D. Taneja, S. Chowdhury, and S. K. Banerjee, Progress in contact, doping and mobility engineering of MoS2: An atomically thin 2D semiconductor, Crystals (Basel) 8(8), 316 (2018)
CrossRef ADS Google scholar
[25]
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)
CrossRef ADS Google scholar
[26]
T. Boutchacha, G. Ghibaudo, G. Guégan, and T. Skotnicki, Low frequency noise characterization of 0.18 μm Si CMOS transistors, Microelectron. Reliab. 37(10−11), 1599 (1997)
CrossRef ADS Google scholar
[27]
J. Robertson, High dielectric constant oxides, Eur. Phys. J. Appl. Phys. 28(3), 265 (2004)
CrossRef ADS Google scholar
[28]
H. Huang, D. Bi, B. Ning, Y. Zhang, Z. Zhang, and S. Zou, Total dose irradiation-induced degradation of hysteresis effect in partially depleted silicon-on-insulator NMOSFETs, IEEE Trans. Nucl. Sci. 60(2), 1354 (2013)
CrossRef ADS Google scholar
[29]
S. M. George, Atomic layer deposition: An overview, Chem. Rev. 110(1), 111 (2010)
CrossRef ADS Google scholar
[30]
S. Yang, K. Liu, Y. Xu, L. Liu, H. Li, and T. Zhai, Gate dielectrics integration for 2D electronics: Challenges, advances, and outlook, Adv. Mater. 35(18), 2207901 (2023)
CrossRef ADS Google scholar
[31]
Q. H. Wang and M. C. Hersam, Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene, Nat. Chem. 1(3), 206 (2009)
CrossRef ADS Google scholar
[32]
J. M. P. Alaboson, Q. H. Wang, J. D. Emery, A. L. Lipson, M. J. Bedzyk, J. W. Elam, M. J. Pellin, and M. C. Hersam, Seeding atomic layer deposition of high-κ dielectrics on epitaxial graphene with organic self-assembled monolayers, ACS Nano 5(6), 5223 (2011)
CrossRef ADS Google scholar
[33]
Y. Yang, T. Yang, T. Song, J. Zhou, J. Chai, L. M. Wong, H. Zhang, W. Zhu, S. Wang, and M. Yang, Selective hydrogenation improves interface properties of high-κ dielectrics on 2D semiconductors, Nano Res. 15(5), 4646 (2022)
CrossRef ADS Google scholar
[34]
H. Liu, A. T. Neal, M. Si, Y. Du, and P. D. Ye, The effect of dielectric capping on few-layer phosphorene transistors: Tuning the Schottky barrier heights, IEEE Electron Device Lett. 35(7), 795 (2014)
CrossRef ADS Google scholar
[35]
W. Li, J. Zhou, S. Cai, Z. Yu, J. Zhang, N. Fang, T. Li, Y. Wu, T. Chen, X. Xie, H. Ma, K. Yan, N. Dai, X. Wu, H. Zhao, Z. Wang, D. He, L. Pan, Y. Shi, P. Wang, W. Chen, K. Nagashio, X. Duan, and X. Wang, Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices, Nat. Electron. 2(12), 563 (2019)
CrossRef ADS Google scholar
[36]
J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, Effective passivation of exfoliated black phosphorus transistors against ambient degradation, Nano Lett. 14(12), 6964 (2014)
CrossRef ADS arXiv Google scholar
[37]
E. Zhang, W. Wang, C. Zhang, Y. Jin, G. Zhu, Q. Sun, D. W. Zhang, P. Zhou, and F. Xiu, Tunable charge-trap memory based on few-layer MoS2, ACS Nano 9(1), 612 (2015)
CrossRef ADS Google scholar
[38]
L. Cheng, X. Qin, A. T. Lucero, A. Azcatl, J. Huang, R. M. Wallace, K. Cho, and J. Kim, Atomic layer deposition of a high-κ dielectric on MoS2 using trimethylaluminum and ozone, ACS Appl. Mater. Interfaces 6(15), 11834 (2014)
CrossRef ADS Google scholar
[39]
J. H. Park, S. Fathipour, I. Kwak, K. Sardashti, C. F. Ahles, S. F. Wolf, M. Edmonds, S. Vishwanath, H. G. Xing, S. K. Fullerton-Shirey, A. Seabaugh, and A. C. Kummel, Atomic layer deposition of Al2O3 on WSe2 functionalized by titanyl phthalocyanine, ACS Nano 10(7), 6888 (2016)
CrossRef ADS Google scholar
[40]
S. Son, S. Yu, M. Choi, D. Kim, and C. Choi, Improved high temperature integration of Al2O3 on MoS2 by using a metal oxide buffer layer, Appl. Phys. Lett. 106(2), 021601 (2015)
CrossRef ADS Google scholar
[41]
T.T. LeeK. ChiranjeevuluC.H. HuS.PedaballiC.T. Lee, Improved performance of MoS2 FETs using AlN/Al2O3 dielectric and Plasma Enhanced Atomic Layer Deposition (PEALD), J. Nanosci. Res. Rep. 4(1), 1 (2022)
[42]
A. Dkhissi, G. Mazaleyrat, A. Estève, and M. D. Rouhani, Nucleation and growth of atomic layer deposition of HfO2 gate dielectric layers on silicon oxide: A multiscale modelling investigation, Phys. Chem. Chem. Phys. 11(19), 3701 (2009)
CrossRef ADS Google scholar
[43]
Q. H. Luc, H. B. Do, M. T. H. Ha, C. C. Hu, Y. C. Lin, and E. Y. Chang, Plasma enhanced atomic layer deposition passivated HfO2/AlN/In0.53Ga0.47As MOSCAPs with sub-nanometer equivalent oxide thickness and low interface trap density, IEEE Electron Device Lett. 36(12), 1277 (2015)
CrossRef ADS Google scholar
[44]
N. Fang and K. Nagashio, Band tail interface states and quantum capacitance in a monolayer molybdenum disulfide field-effect-transistor, J. Phys. D 51(6), 065110 (2018)
CrossRef ADS arXiv Google scholar
[45]
J. Yang, S. Kim, W. Choi, S. H. Park, Y. Jung, M. H. Cho, and H. Kim, Improved growth behavior of atomic-layer-deposited high-κ dielectrics on multilayer MoS2 by oxygen plasma pretreatment, ACS Appl. Mater. Interfaces 5(11), 4739 (2013)
CrossRef ADS Google scholar
[46]
X. Wang, T. B. Zhang, W. Yang, H. Zhu, L. Chen, Q. Q. Sun, and D. W. Zhang, Improved integration of ultra-thin high-κ dielectrics in few-layer MoS2 FET by remote forming gas plasma pretreatment, Appl. Phys. Lett. 110(5), 053110 (2017)
CrossRef ADS Google scholar
[47]
X. Song, J. Xu, L. Liu, P. T. Lai, and W. M. Tang, Improved interfacial and electrical properties of few-layered MoS2 FETs with plasma-treated Al2O3 as gate dielectric, Appl. Surf. Sci. 481, 1028 (2019)
CrossRef ADS Google scholar
[48]
J.H. ParkH. C. P. MovvaE.ChagarovK.SardashtiH.Chou I.KwakK. T. HuS.K. Fullerton-ShireyP.ChoudhuryS.K. BanerjeeA.C. Kummel, In Situ observation of initial stage in dielectric growth and deposition of ultrahigh nucleation density dielectric on two-dimensional surfaces, Nano Lett. 15(10), 6626 (2015)
[49]
L.LiaoX. Zou, Interface engineering for high-performance top-gated MoS2 field effect transistors, in: 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) (2014), pp 1–3
[50]
K. M. Price, S. Najmaei, C. E. Ekuma, R. A. Burke, M. Dubey, and A. D. Franklin, Plasma-enhanced atomic layer deposition of HfO2 on monolayer, bilayer, and trilayer MoS2 for the integration of high-κ dielectrics in two-dimensional devices, ACS Appl. Nano Mater. 2(7), 4085 (2019)
CrossRef ADS Google scholar
[51]
H. Zhu, R. Addou, Q. Wang, Y. Nie, K. Cho, M. J. Kim, and R. M. Wallace, Surface and interfacial study of atomic layer deposited Al2O3 on MoTe2 and WTe2, Nanotechnology 31(5), 055704 (2020)
CrossRef ADS Google scholar
[52]
O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, Thin film atomic layer deposition equipment for semiconductor processing, Thin Solid Films 402(1−2), 248 (2002)
CrossRef ADS Google scholar
[53]
C.Y. ZhuJ. K. QinP.Y. HuangH.L. SunN.F. Sun Y.L. ShiL. ZhenC.Y. Xu, 2D indium phosphorus sulfide (In2P3S9): An emerging van der Waals high‐κ dielectrics, Small 18(5), 2104401 (2022)
[54]
J.HuA.Zheng E.PanJ. ChenR.BianJ.LiQ.Liu G.CaoP. MengX.JianA.MolnarY.VysochanskiiF.Liu, 2D semiconductor SnP2S6 as a new dielectric material for 2D electronics, J. Mater. Chem. C 10(37), 13753 (2022)
[55]
B.A. HollerK. CrowleyM.H. BergerX.P. A. Gao, 2D semiconductor transistors with van der Waals oxide MoO3 as integrated high-κ gate dielectric, Adv. Electron. Mater. 6(10), 2000635 (2020)
[56]
F. Xu, Z. Wu, G. Liu, F. Chen, J. Guo, H. Zhou, J. Huang, Z. Zhang, L. Fei, X. Liao, and Y. Zhou, Few-layered MnAl2S4 dielectrics for high-performance van der Waals stacked transistors, ACS Appl. Mater. Interfaces 14(22), 25920 (2022)
CrossRef ADS Google scholar
[57]
L. Shen, J. Zhou, T. Yang, M. Yang, and Y. P. Feng, High-throughput computational discovery and intelligent design of two-dimensional functional materials for various applications, Acc. Mater. Res. 3(6), 572 (2022)
CrossRef ADS Google scholar
[58]
J. Wang, H. Lai, X. Huang, J. Liu, Y. Lu, P. Liu, and W. Xie, High-κ van der Waals oxide MoO3 as efficient gate dielectric for MoS2 field-effect transistors, Materials (Basel) 15(17), 5859 (2022)
CrossRef ADS Google scholar
[59]
A. Söll, E. Lopriore, A. Ottesen, J. Luxa, G. Pasquale, J. Sturala, F. Hájek, V. Jarý, D. Sedmidubský, K. Mosina, I. Sokolović, S. Rasouli, T. Grasser, U. Diebold, A. Kis, and Z. Sofer, High-κ wide-gap layered dielectric for two-dimensional van der Waals heterostructures, ACS Nano 18(15), 10397 (2024)
CrossRef ADS Google scholar
[60]
M. R. Osanloo, M. L. Van de Put, A. Saadat, and W. G. Vandenberghe, Identification of two-dimensional layered dielectrics from first principles, Nat. Commun. 12(1), 5051 (2021)
CrossRef ADS Google scholar
[61]
Q. A. Vu, S. Fan, S. H. Lee, M. K. Joo, W. J. Yu, and Y. H. Lee, Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors, 2D Mater. 5, 031001 (2018)
CrossRef ADS Google scholar
[62]
T. Knobloch, Y. Y. Illarionov, F. Ducry, C. Schleich, S. Wachter, K. Watanabe, T. Taniguchi, T. Mueller, M. Waltl, M. Lanza, M. I. Vexler, M. Luisier, and T. Grasser, The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials, Nat. Electron. 4(2), 98 (2021)
CrossRef ADS arXiv Google scholar
[63]
J. Chen, Z. Liu, X. Dong, Z. Gao, Y. Lin, Y. He, Y. Duan, T. Cheng, Z. Zhou, H. Fu, F. Luo, and J. Wu, Vertically grown ultrathin Bi2SiO5 as high-κ single-crystalline gate dielectric, Nat. Commun. 14(1), 4406 (2023)
CrossRef ADS Google scholar
[64]
Y.ZhangJ. YuR.ZhuM.WangC.Tan T.TuX.Zhou C.ZhangM. YuX.GaoY.WangH.Liu P.GaoK. LaiH.Peng, A single-crystalline native dielectric for two-dimensional semiconductors with an equivalent oxide thickness below 0.5 nm, Nat. Electron. 5(10), 643 (2022)
[65]
H.Y. LanJ. AppenzellerZ.Chen, Dielectric interface engineering for high-performance monolayer MoS. transistors via hBN interfacial layer and Ta seeding, in: 2022 International Electron Devices Meeting (IEDM), 2022, pp 7.7.1–7.7.4
[66]
J. K. Huang, Y. Wan, J. Shi, J. Zhang, Z. Wang, W. Wang, N. Yang, Y. Liu, C. H. Lin, X. Guan, L. Hu, Z. L. Yang, B. C. Huang, Y. P. Chiu, J. Yang, V. Tung, D. Wang, K. Kalantar-Zadeh, T. Wu, X. Zu, L. Qiao, L. J. Li, and S. Li, High-κ perovskite membranes as insulators for two-dimensional transistors, Nature 605(7909), 262 (2022)
CrossRef ADS Google scholar
[67]
Y. Pan, K. Jia, K. Huang, Z. Wu, G. Bai, J. Yu, Z. Zhang, Q. Zhang, and H. Yin, Near-ideal subthreshold swing MoS2 back-gate transistors with an optimized ultrathin HfO2 dielectric layer, Nanotechnology 30(9), 095202 (2019)
CrossRef ADS Google scholar
[68]
C. Zhang, T. Tu, J. Wang, Y. Zhu, C. Tan, L. Chen, M. Wu, R. Zhu, Y. Liu, H. Fu, J. Yu, Y. Zhang, X. Cong, X. Zhou, J. Zhao, T. Li, Z. Liao, X. Wu, K. Lai, B. Yan, P. Gao, Q. Huang, H. Xu, H. Hu, H. Liu, J. Yin, and H. Peng, Single-crystalline van der Waals layered dielectric with high dielectric constant, Nat. Mater. 22(7), 832 (2023)
CrossRef ADS Google scholar
[69]
B. Chamlagain, Q. Cui, S. Paudel, M. M. C. Cheng, P. Y. Chen, and Z. Zhou, Thermally oxidized two-dimensional TaS2 as a high-κ gate dielectric for MoS2 field-effect transistors, 2D Mater. 4, 031002 (2017)
CrossRef ADS Google scholar
[70]
K. A. Patel, R. W. Grady, K. K. H. Smithe, E. Pop, and R. Sordan, Ultra-scaled MoS2 transistors and circuits fabricated without nanolithography, 2D Mater. 7, 015018 (2019)
CrossRef ADS Google scholar
[71]
Y. Y. Illarionov, A. G. Banshchikov, D. K. Polyushkin, S. Wachter, T. Knobloch, M. Thesberg, L. Mennel, M. Paur, M. Stöger-Pollach, A. Steiger-Thirsfeld, M. I. Vexler, M. Waltl, N. S. Sokolov, T. Mueller, and T. Grasser, Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors, Nat. Electron. 2(6), 230 (2019)
CrossRef ADS Google scholar
[72]
M. Sebek, Z. Wang, N. G. West, M. Yang, D. C. J. Neo, X. Su, S. Wang, J. Pan, N. T. K. Thanh, and J. Teng, Van der Waals enabled formation and integration of ultrathin high-κ dielectrics on 2D semiconductors, npj 2D Mater. Appl. 8, 1 (2024)
CrossRef ADS Google scholar
[73]
A. J. Yang, K. Han, K. Huang, C. Ye, W. Wen, R. Zhu, R. Zhu, J. Xu, T. Yu, P. Gao, Q. Xiong, and X. Renshaw Wang, Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors, Nat. Electron. 5(4), 233 (2022)
CrossRef ADS Google scholar
[74]
Z. Lu, Y. Chen, W. Dang, L. Kong, Q. Tao, L. Ma, D. Lu, L. Liu, W. Li, Z. Li, X. Liu, Y. Wang, X. Duan, L. Liao, and Y. Liu, Wafer-scale high-κ dielectrics for two-dimensional circuits via van der Waals integration, Nat. Commun. 14(1), 2340 (2023)
CrossRef ADS Google scholar
[75]
T.LiT.Tu Y.SunH. FuJ.YuL.XingZ.Wang H.WangR. JiaJ.WuC.TanY.Liang Y.ZhangC. ZhangY.DaiC.QiuM.Li R.HuangL. JiaoK.LaiB.YanP.Gao H.Peng, A native oxide high-κ gate dielectric for two-dimensional electronics, Nat. Electron. 3(8), 473 (2020)
[76]
K.LiuB. JinW.HanX.ChenP.Gong L.HuangY. ZhaoL.LiS.YangX.Hu J.DuanL. LiuF.WangF.ZhugeT.Zhai, A wafer-scale van der Waals dielectric made from an inorganic molecular crystal film, Nat. Electron. 4(12), 906 (2021)
[77]
O.SongD. RheeJ.KimY.JeonV.MazánekA.SöllY.A. KwonJ.H. Cho Y.-H. KimZ. SoferJ.Kang, All inkjet-printed electronics based on electrochemically exfoliated two-dimensional metal, semiconductor, and dielectric, npj 2D Mater. Appl. 6, 1 (2022)
[78]
A. Bastola, Y. He, J. Im, G. Rivers, F. Wang, R. Worsley, J. S. Austin, O. Nelson-Dummett, R. D. Wildman, R. Hague, C. J. Tuck, and L. Turyanska, Formulation of functional materials for ink-jet printing: A pathway towards fully 3D printed electronics, Materials Today Electronics 6, 100058 (2023)
CrossRef ADS Google scholar
[79]
S. Lai, S. Byeon, S. K. Jang, J. Lee, B. H. Lee, J. H. Park, Y. H. Kim, and S. Lee, HfO2/HfS2 hybrid heterostructure fabricated via controllable chemical conversion of two-dimensional HfS2, Nanoscale 10(39), 18758 (2018)
CrossRef ADS Google scholar
[80]
T. T. T. Can and W. S. Choi, Improved electrical properties of EHD jet-patterned MoS2 thin-film transistors with printed Ag electrodes on a high-κ dielectric, Nanomaterials (Basel) 13(1), 194 (2023)
CrossRef ADS Google scholar
[81]
T. Carey, A. Arbab, L. Anzi, H. Bristow, F. Hui, S. Bohm, G. Wyatt-Moon, A. Flewitt, A. Wadsworth, N. Gasparini, J. M. Kim, M. Lanza, I. McCulloch, R. Sordan, and F. Torrisi, Inkjet printed circuits with 2D semiconductor inks for high‐performance electronics, Adv. Electron. Mater. 7(7), 2100112 (2021)
CrossRef ADS Google scholar
[82]
K. Cho, T. Lee, and S. Chung, Inkjet printing of two-dimensional van der Waals materials: A new route towards emerging electronic device applications, Nanoscale Horiz. 7(10), 1161 (2022)
CrossRef ADS Google scholar
[83]
N. Peimyoo, M. D. Barnes, J. D. Mehew, A. De Sanctis, I. Amit, J. Escolar, K. Anastasiou, A. P. Rooney, S. J. Haigh, S. Russo, M. F. Craciun, and F. Withers, Laser-writable high-κ dielectric for van der Waals nanoelectronics, Sci. Adv. 5(1), eaau0906 (2019)
CrossRef ADS Google scholar
[84]
Y. Zhang, D. Venkatakrishnarao, M. Bosman, W. Fu, S. Das, F. Bussolotti, R. Lee, S. L. Teo, D. Huang, I. Verzhbitskiy, Z. Jiang, Z. Jiang, J. Chai, S. W. Tong, Z. E. Ooi, C. P. Y. Wong, Y. S. Ang, K. E. J. Goh, and C. S. Lau, Liquid−metal-printed ultrathin oxides for atomically smooth 2D material heterostructures, ACS Nano 17(8), 7929 (2023)
CrossRef ADS Google scholar
[85]
P. Luo, C. Liu, J. Lin, X. Duan, W. Zhang, C. Ma, Y. Lv, X. Zou, Y. Liu, F. Schwierz, W. Qin, L. Liao, J. He, and X. Liu, Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation, Nat. Electron. 5(12), 849 (2022)
CrossRef ADS Google scholar
[86]
T.E. LeeY. C. SuB.J. LinY.X. ChenW.S. Yun P.H. HoJ. F. WangS.K. SuC.F. HsuP.S. Mao Y.C. ChangC. H. ChienB.H. LiuC.Y. SuC.C. Kei H.WangH. S. Philip WongT.Y. Lee W.H. ChangC. C. ChengI.P. Radu, Nearly ideal subthreshold swing in monolayer MoS2 top-gate nFETs with scaled EOT of . nm, in: 2022 International Electron Devices Meeting (IEDM), 2022, pp 7.4.1–7.4.4
[87]
G. Lin, M. Q. Zhao, M. Jia, J. Zhang, P. Cui, L. Wei, H. Zhao, A. T. C. Johnson, L. Gundlach, and Y. Zeng, Performance enhancement of monolayer MoS2 transistors by atomic layer deposition of high-κ dielectric assisted by Al2O3 seed layer, J. Phys. D Appl. Phys. 53(10), 105103 (2020)
CrossRef ADS Google scholar
[88]
Y. Xu, T. Liu, K. Liu, Y. Zhao, L. Liu, P. Li, A. Nie, L. Liu, J. Yu, X. Feng, F. Zhuge, H. Li, X. Wang, and T. Zhai, Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors, Nat. Mater. 22(9), 1078 (2023)
CrossRef ADS Google scholar
[89]
J. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka, L. Zhao, L. Fu, R. G. Mendes, T. Gemming, Z. Liu, and M. H. Rummeli, Applications of phosphorene and black phosphorus in energy conversion and storage devices, Adv. Energy Mater. 8(8), 1702093 (2018)
CrossRef ADS Google scholar
[90]
M. Sup Choi, G. H. Lee, Y. J. Yu, D. Y. Lee, S. Hwan Lee, P. Kim, J. Hone, and W. Jong Yoo, Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices, Nat. Commun. 4(1), 1624 (2013)
CrossRef ADS Google scholar
[91]
T. Roy, M. Tosun, J. S. Kang, A. B. Sachid, S. B. Desai, M. Hettick, C. C. Hu, and A. Javey, Field-effect transistors built from all two-dimensional material components, ACS Nano 8(6), 6259 (2014)
CrossRef ADS Google scholar
[92]
G. H. Lee, X. Cui, Y. D. Kim, G. Arefe, X. Zhang, C. H. Lee, F. Ye, K. Watanabe, T. Taniguchi, P. Kim, and J. Hone, Highly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltage, ACS Nano 9(7), 7019 (2015)
CrossRef ADS Google scholar
[93]
X. Cui, G. H. Lee, Y. D. Kim, G. Arefe, P. Y. Huang, C. H. Lee, D. A. Chenet, X. Zhang, L. Wang, F. Ye, F. Pizzocchero, B. S. Jessen, K. Watanabe, T. Taniguchi, D. A. Muller, T. Low, P. Kim, and J. Hone, Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform, Nat. Nanotechnol. 10(6), 534 (2015)
CrossRef ADS Google scholar
[94]
Z. Zhang, X. Ji, J. Shi, X. Zhou, S. Zhang, Y. Hou, Y. Qi, Q. Fang, Q. Ji, Y. Zhang, M. Hong, P. Yang, X. Liu, Q. Zhang, L. Liao, C. Jin, Z. Liu, and Y. Zhang, Direct chemical vapor deposition growth and band-gap characterization of MoS2/h-BN van der Waals heterostructures on Au foils, ACS Nano 11(4), 4328 (2017)
CrossRef ADS Google scholar
[95]
M. Mattinen, G. Popov, M. Vehkamäki, P. J. King, K. Mizohata, P. Jalkanen, J. Räisänen, M. Leskelä, M. Ritala, and Atomic layer deposition of emerging 2D semiconductors, HfS2 and ZrS2, for optoelectronics, Chem. Mater. 31(15), 5713 (2019)
CrossRef ADS Google scholar
[96]
M. J. Mleczko, C. Zhang, H. R. Lee, H. H. Kuo, B. Magyari-Köpe, R. G. Moore, Z. X. Shen, I. R. Fisher, Y. Nishi, and E. Pop, HfSe2 and ZrSe2: Two-dimensional semiconductors with native high-κ oxides, Sci. Adv. 3(8), e1700481 (2017)
CrossRef ADS Google scholar
[97]
Y. Jin, J. Sun, L. Zhang, J. Yang, Y. Wu, B. You, X. Liu, K. Leng, and S. Liu, Controllable oxidation of ZrS2 to prepare high‐κ, single‐crystal m‐ZrO2 for 2D electronics, Adv. Mater. 35(18), 2212079 (2023)
CrossRef ADS Google scholar
[98]
L.YangR. JaramilloR.K. KaliaA.NakanoP.Vashishta, Pressure-dependent layer-by-layer oxidation of ZrS2(001) surface, arXiv: 2023)
arXiv
[99]
Q.SmetsG. ArutchelvanJ.JussotD.VerreckI.AsselberghsA.N. MehtaA.GaurD.Lin S.E. KazziB. GrovenM.CaymaxI.Radu, Ultra-scaled MOCVD MoS2 MOSFETs with 42 nm contact pitch and 250 μA/μm drain current, in: 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp 23.2.1–23.2.4
[100]
H. B. Jeon, G. H. Shin, K. J. Lee, and S. Y. Choi, Vertical‐tunneling field‐effect transistor based on WSe2–MoS2 heterostructure with ion gel dielectric, Adv. Electron. Mater. 6(7), 2000091 (2020)
CrossRef ADS Google scholar
[101]
K.S. NovoselovA.MishchenkoA.Carvalho A.H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
[102]
J. Cai, X. Han, X. Wang, and X. Meng, Atomic layer deposition of two-dimensional layered materials: Processes, growth mechanisms, and characteristics, Matter 2(3), 587 (2020)
CrossRef ADS Google scholar
[103]
D. Akinwande, C. Huyghebaert, C. H. Wang, M. I. Serna, S. Goossens, L. J. Li, H. S. P. Wong, and F. H. L. Koppens, Graphene and two-dimensional materials for silicon technology, Nature 573(7775), 507 (2019)
CrossRef ADS Google scholar
[104]
H. Abuzaid, N. X. Williams, and A. D. Franklin, How good are 2D transistors? An application-specific benchmarking study, Appl. Phys. Lett. 118(3), 030501 (2021)
CrossRef ADS Google scholar
[105]
F. Zhuo, J. Wu, B. Li, M. Li, C. L. Tan, Z. Luo, H. Sun, Y. Xu, and Z. Yu, Modifying the power and performance of 2-dimensional MoS2 field effect transistors, Research 6, 0057 (2023)
CrossRef ADS Google scholar
[106]
Y. Liu, X. Duan, H. J. Shin, S. Park, Y. Huang, and X. Duan, Promises and prospects of two-dimensional transistors, Nature 591(7848), 43 (2021)
CrossRef ADS Google scholar
[107]
S. Zeng, C. Liu, and P. Zhou, Transistor engineering based on 2D materials in the post-silicon era, Nat. Rev. Electr. Eng. 1, 335 (2024)
CrossRef ADS Google scholar
[108]
C. Liu, H. Chen, S. Wang, Q. Liu, Y. G. Jiang, D. W. Zhang, M. Liu, and P. Zhou, Two-dimensional materials for next-generation computing technologies, Nat. Nanotechnol. 15(7), 545 (2020)
CrossRef ADS Google scholar
[109]
Y.LiuN. O. WeissX.DuanH.-C. ChengY.Huang X.Duan, Van der Waals heterostructures and devices, Nat. Rev. Mater. 1, 1 (2016)
[110]
Y. Liu, Y. Huang, and X. Duan, Van der Waals integration before and beyond two-dimensional materials, Nature 567(7748), 323 (2019)
CrossRef ADS Google scholar
[111]
X. Zhang, Y. Zhang, H. Yu, H. Zhao, Z. Cao, Z. Zhang, and Y. Zhang, Van der Waals‐interface‐dominated all‐2D electronics, Adv. Mater. 35(50), 2207966 (2023)
CrossRef ADS Google scholar
[112]
S. Kim, J. Seo, J. Choi, and H. Yoo, Vertically integrated electronics: New opportunities from emerging materials and devices, Nano-Micro Lett. 14(1), 201 (2022)
CrossRef ADS Google scholar
[113]
L. Liu and T. Zhai, Wafer-scale vertical van der Waals heterostructures, InfoMat 3(1), 3 (2021)
CrossRef ADS Google scholar
[114]
I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, The general theory of van der Waals forces, Adv. Phys. 10(38), 165 (1961)
CrossRef ADS Google scholar
[115]
A. Cabrero-Vilatela, J. A. Alexander-Webber, A. A. Sagade, A. I. Aria, P. Braeuninger-Weimer, M. B. Martin, R. S. Weatherup, and S. Hofmann, Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer, Nanotechnology 28(48), 485201 (2017)
CrossRef ADS Google scholar
[116]
S. B. Desai, S. R. Madhvapathy, M. Amani, D. Kiriya, M. Hettick, M. Tosun, Y. Zhou, M. Dubey, J. W. Ager, D. Chrzan, and A. Javey, Gold‐mediated exfoliation of ultralarge optoelectronically-perfect monolayers, Adv. Mater. 28, 4053 (2016)
CrossRef ADS Google scholar
[117]
B. Wang, W. Huang, L. Chi, M. Al-Hashimi, T. J. Marks, and A. Facchetti, High-κ gate dielectrics for emerging flexible and stretchable electronics, Chem. Rev. 118, 5690 (2018)
CrossRef ADS Google scholar
[118]
R. P. Ortiz, A. Facchetti, and T. J. Marks, High-κ organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors, Chem. Rev. 110, 205 (2010)
CrossRef ADS Google scholar
[119]
A. V. Zaretski, H. Moetazedi, C. Kong, E. J. Sawyer, S. Savagatrup, E. Valle, T. F. O’Connor, A. D. Printz, and D. J. Lipomi, Metal-assisted exfoliation (MAE): Green, roll-to-roll compatible method for transferring graphene to flexible substrates, Nanotechnology 26, 045301 (2015)
CrossRef ADS Google scholar
[120]
A. V. Zaretski and D. J. Lipomi, Processes for non-destructive transfer of graphene: Widening the bottleneck for industrial scale production, Nanoscale 7, 9963 (2015)
CrossRef ADS Google scholar
[121]
X. Cui, Z. Kong, E. Gao, D. Huang, Y. Hao, H. Shen, C. Di, Z. Xu, J. Zheng, and D. Zhu, Rolling up transition metal dichalcogenide nanoscrolls via one drop of ethanol, Nat. Commun. 9, 1301 (2018)
CrossRef ADS Google scholar
[122]
A. Gurarslan, Y. Yu, L. Su, Y. Yu, F. Suarez, S. Yao, Y. Zhu, M. Ozturk, Y. Zhang, and L. Cao, Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates, ACS Nano 8, 11522 (2014)
CrossRef ADS Google scholar
[123]
L. Niinistö, M. Nieminen, J. Päiväsaari, J. Niinistö, M. Putkonen, and M. Nieminen, Advanced electronic and optoelectronic materials by Atomic Layer Deposition: An overview with special emphasis on recent progress in processing of high-κ dielectrics and other oxide materials, physica status solidi (a) 201, 1443 (2004)
CrossRef ADS Google scholar
[124]
M. Leskelä and M. Ritala, Atomic layer deposition chemistry: Recent developments and future challenges, Angewandte Chemie International Edition 42, 5548 (2003)
CrossRef ADS Google scholar
[125]
M.D. GronerS. M. George, High-κ dielectrics grown by atomic layer deposition, in: Interlayer Dielectrics for Semiconductor Technologies, edited by S. P. Murarka, M. Eizenberg, and A. K. Sinha, Academic Press, 2003, pp 327–348
[126]
J. T. Gaskins, P. E. Hopkins, D. R. Merrill, S. R. Bauers, E. Hadland, D. C. Johnson, D. Koh, J. H. Yum, S. Banerjee, B. J. Nordell, M. M. Paquette, A. N. Caruso, W. A. Lanford, P. Henry, L. Ross, H. Li, L. Li, M. French, A. M. Rudolph, and S. W. King, Investigation and review of the thermal, mechanical, electrical, optical, and structural properties of atomic layer deposited high-κ dielectrics: Beryllium oxide, aluminum oxide, hafnium oxide, and aluminum nitride, ECS J. Solid State Sci. Technol. 6, N189 (2017)
CrossRef ADS Google scholar
[127]
A. Eskandari Nasrabad and R. Laghaei, Computational studies on thermodynamic properties, effective diameters, and free volume of argon using an ab initio potential, J. Chem. Phys. 125, 084510 (2006)
CrossRef ADS Google scholar
[128]
J. Hermann, R. A. Jr. DiStasio, and A. Tkatchenko, First-principles models for van der Waals interactions in molecules and materials: Concepts, theory, and applications, Chem. Rev. 117, 4714 (2017)
CrossRef ADS Google scholar
[129]
K. Liu and T. Zhai, Emergence of two-dimensional inorganic molecular crystals, Acc. Mater. Res. 5(6), 665 (2024)
CrossRef ADS Google scholar
[130]
A. Jabeen, A. Majid, M. Alkhedher, S. Haider, and M. S. Akhtar, Impacts of structural downscaling of inorganic molecular crystals ‒ A DFT study of Sb2O3, Mater. Sci. Semicond. Process. 166, 107729 (2023)
CrossRef ADS Google scholar
[131]
W. Han, P. Huang, L. Li, F. Wang, P. Luo, K. Liu, X. Zhou, H. Li, X. Zhang, Y. Cui, and T. Zhai, Two-dimensional inorganic molecular crystals, Nat. Commun. 10, 4728 (2019)
CrossRef ADS Google scholar
[132]
T.KangJ. ParkH.JungH.ChoiS.-M. Lee N.LeeR. -G. LeeG.KimS.-H. KimH.Kim C.-W. YangJ. JeonY.-H. KimS.Lee, High-κ dielectric (HfO2)/2D semiconductor (HfSe2) gate stack for low-power steep-switching computing devices, Adv. Mater. 36(26), 2312747
[133]
C.LeeS. RathiM.A. KhanD.LimY.Kim S.J. YunD. -H. YounK.WatanabeT.TaniguchiG.-H. Kim, Comparison of trapped charges and hysteresis behavior in hBN encapsulated single MoS2 flake based field effect transistors on SiO2 and hBN substrates, Nanotechnology 29, 335202 (2018)
[134]
X. Han, J. Lin, J. Liu, N. Wang, and D. Pan, Effects of hexagonal boron nitride encapsulation on the electronic structure of few-layer MoS2, J. Phys. Chem. C 123, 14797 (2019)
CrossRef ADS arXiv Google scholar
[135]
S. Fiore, C. Klinkert, F. Ducry, J. Backman, and M. Luisier, Influence of the hBN dielectric layers on the quantum transport properties of MoS2 transistors, Materials 15, 1062 (2022)
CrossRef ADS Google scholar
[136]
A. Shivayogimath, P. R. Whelan, D. M. A. Mackenzie, B. Luo, D. Huang, D. Luo, M. Wang, L. Gammelgaard, H. Shi, R. S. Ruoff, P. Bøggild, and T. J. Booth, Do-it-yourself transfer of large-area graphene using an office laminator and water, Chem. Mater. 31, 2328 (2019)
CrossRef ADS Google scholar
[137]
H. Xu, H. Zhang, Z. Guo, Y. Shan, S. Wu, J. Wang, W. Hu, H. Liu, Z. Sun, C. Luo, X. Wu, Z. Xu, D. W. Zhang, W. Bao, and P. Zhou, High-performance wafer-scale MoS2 transistors toward practical application, Small 14, 1803465 (2018)
CrossRef ADS Google scholar
[138]
A. Quellmalz, X. Wang, S. Sawallich, B. Uzlu, M. Otto, S. Wagner, Z. Wang, M. Prechtl, O. Hartwig, S. Luo, G. S. Duesberg, M. C. Lemme, K. B. Gylfason, N. Roxhed, G. Stemme, and F. Niklaus, Large-area integration of two-dimensional materials and their heterostructures by wafer bonding, Nat. Commun. 12, 917 (2021)
CrossRef ADS Google scholar
[139]
Y.KimT. KimJ.LeeY.S. ChoiJ.Moon S.Y. ParkT. H. LeeH.K. ParkS.A. LeeM.S. Kwon H.-G. ByunJ. -H. LeeM.-G. LeeB.H. HongH.W. Jang, Tailored graphene micropatterns by wafer-scale direct transfer for flexible chemical sensor platform, Adv. Mater. 33, 2004827 (2021)
[140]
P.S. BorhadeR.RamanZ.-L. Yen Y.-P. HsiehM. Hofmann, Transferrable alumina membranes as high-performance dielectric for flexible 2D materials devices, Adv. Electron. Mater. 10, 2300783 (2024)
[141]
H.YuM.Liao W.ZhaoG. LiuX.J. ZhouZ.WeiX.Xu K.LiuZ. HuK.DengS.ZhouJ.-A. Shi L.GuC.Shen T.ZhangL. DuL.XieJ.ZhuW.Chen R.YangD. ShiG.Zhang, Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films, ACS Nano 11, 12001 (2017)

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

M. Y. acknowledges the funding support from the National Key R&D Program of the Ministry of Science and Technology of China (Project No. 2022YFA1203804), the Hong Kong Polytechnic University (Project Nos. P0034827, P0042711, P0039734, P0039679, URIS2023-050, and URIS2023-052), PolyU RCNN (Project No. P0048122), and Research Grants Council, Hong Kong (Project Nos. P0046939 and P0045061). We thank the computing resources from the National Supercomputer Centre, Singapore. T. Z. was supported by the National Natural Science Foundation of China (Grant No. 12204346).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5715 KB)

Accesses

Citations

Detail

Sections
Recommended

/