
Van der Waals interface between high-
Jingyu He, Yang Zuo, Tong Yang, Tao Zhu, Ming Yang
Front. Phys. ›› 2025, Vol. 20 ›› Issue (1) : 014301.
Van der Waals interface between high-
Atomically thin two-dimensional (2D) semiconductors are attractive channel materials for next-generation field-effect transistors (FETs). The high-performance 2D electronics requires high-quality integration of high-
two-dimensional semiconductor /
high-
Tab.1 The main figures of merit in FETs. |
Figure of merit | Unit | Reference |
---|---|---|
Equivalent oxide thickness (EOT) | unit | 1.00 [14] |
Subthreshold swing (SS) | mV/dec | 82 (HP), 75 (HD) [14] |
Interface state density (Dit) | cm−2·eV−1 | ~1.0×1010 (Si/SiO2) [26] |
Field-effect mobility | cm2·V−1·s−1 | 125 [14] |
On/off ratio | unit | 8.74×104 (HP), 6.44×106 (HD) [14] |
Band alignment | eV | CBO > 1 eV, VBO > 1 eV [27] |
Gate length | nm | 16 (HP), 18 (HD) [14] |
Leakage current | A/cm2 | 1 at ~1 V [27] |
Hysteresis | mV/(MV/cm) | 0.8 (SOI) [28] |
Transconductance | μS/μm | 1605 [14] |
Saturation voltage | V | 0.092 (HP), 0.104 (HD) [14] |
Spacer | unit | 3.2 [14] |
Fig.3 Typical vdW interfaces prepared by top-down method. (a) Schematic of double-gate transistor. (b‒d) Optical image, transfer curve and comparison of hysteresis of h-BN/MoS2 device. Reproduced with permission from Ref. [61]. (e) The statistics of traditional and novel dielectric materials regarding static dielectric constant and band gap. (f) The temperature-dependent FET mobility of MoS2 on Bi2SiO5 and on SiO2. (g) Transfer curve of Bi2SiO5/MoS2 varying thickness of Bi2SiO5. Reproduced with permission from Ref. [63]. (h) Structure of LaOBr structures from high-throughput screening. Reproduced with permission from Ref. [60]. (i) Transfer curve of LaOBr/MoS2 FET. Reproduced with permission from Ref. [59]. |
Fig.4 Quasi-vdW interfaces prepared by top-down method. (a‒c) SEM image and normalized transfer curve of CaF2/MoS2 interface. Reproduced with permission from Ref. [71]. (d–g) STEM image, optical image and corresponding ID‒VG characterization of two separate research of STO/MoS2 system. Reproduced with permission from Refs. [66, 73]. (h) Main steps of fabricating quasi-vdW interface assisted by 2D surface. (i, j) AFM height measurement and double-sweep transfer curve of a wafer-scale transferred sample Al2O3 and a top-gated MoS2 FET made from wafer-scale Al2O3/MoS2. Reproduced with permission from Ref. [74]. |
Fig.5 The vdW interfaces prepared by bottom-up method. Reproduced with permission from Refs. [68, 75]. (a) Structure information of Bi2SeO5 and Bi2O2Se. (b) Band alignment between Bi2SeO5 and Bi2O2Se. (c) STEM image of Bi2SeO5/Bi2O2Se. (d) Mechanism of unzip Bi2SeO2 by UV oxidation. (e) Transfer curve of a top-dated Bi2SeO5/Bi2O2Se FET. |
Fig.6 Quasi-vdW interfaces prepared by bottom-up method. (a) Structure information of inorganic molecular crystal Sb2O3. Reproduced with permission from Ref. [76]. (b‒d) Schematic diagram of interface, cross-sectional STEM image, SS statistics and short-channel transfer curve based on HfO2/MoS2 transistor with Sb2O3 buffer layer. Reproduced with permission from Ref. [88]. (e‒h) Schematic diagram, STEM image and performance curve of PTCDA-assisted HfO2/MoS2. Reproduced with permission from Ref. [35]. (i) Schematic diagram of HfO2/HfS2 transistor. Reproduced with permission from Ref. [83]. (j) TEM image of HfO2/HfS2 by ozone plasma. Reproduced with permission from Ref. [79]. (k) Liquid metal printing processes. Reproduced with permission from Ref. [84]. (l‒m) MoS2 ink preparation and fabrication process of an all-ink-jet printing HfO2/MoS2 FET. Reproduced with permission from Ref. [77]. |
Fig.7 Scattering diagram of various high- |
[1] |
R. K. Ratnesh, , A. Goel, , G. Kaushik, , H. Garg, , Chandan , , M. Singh, , and and B. Prasad, Advancement and challenges in MOSFET scaling, Mater. Sci. Semicond. Process. 134, 106002 (2021)
CrossRef
ADS
Google scholar
|
[2] |
U. König, Challenges for a Si/Ge heterodevice technology, Microelectron. Eng. 23(1−4), 3 (1994)
CrossRef
ADS
Google scholar
|
[3] |
R. Sharma and A. K. Rana, Strained Si. Opportunities and challenges in nanoscale MOSFET, in: 2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS), 2015, pp 475–480
|
[4] |
G. Bae, D. I. Bae, M. Kang, S. M. Hwang, S. S. Kim, B. Seo, T. Y. Kwon, T. J. Lee, C. Moon, Y. M. Choi, K. Oikawa, S. Masuoka, K. Y. Chun, S. H. Park, H. J. Shin, J. C. Kim, K. K. Bhuwalka, D. H. Kim, W. J. Kim, J. Yoo, H. Y. Jeon, M. S. Yang, S. J. Chung, D. Kim, B. H. Ham, K. J. Park, W. D. Kim, S. H. Park, G. Song, Y. H. Kim, M. S. Kang, K. H. Hwang, C. H. Park, J. H. Lee, D. W. Kim, S. M. Jung, and H. K. Kang, 3 nm GAA technology featuring multi-bridge-channel FET for low power and high performance applications, in: 2018 IEEE International Electron Devices Meeting (IEDM) (2018), pp 28.7.1–28.7.4
|
[5] |
U. Nanda, , K. Bhol, , and and B. Jena, Journey of MOSFET from planar to gate all around: A review, Recent Pat. Nanotechnol. 16(4), 326 (2022)
CrossRef
ADS
Google scholar
|
[6] |
B. Parvais, A. Mercha, N. Collaert, R. Rooyackers, I. Ferain, M. Jurczak, V. Subramanian, A. De Keersgieter, T. Chiarella, C. Kerner, L. Witters, S. Biesemans, and T. Hoffman, The device architecture dilemma for CMOS technologies: Opportunities & challenges of finFET over planar MOSFET, in: 2009 International Symposium on VLSI Technology, Systems, and Applications, 2009, pp 80–81
|
[7] |
S. Verdonckt-Vandebroek, , E. F. Crabbe, , B. S. Meyerson, , D. L. Harame, , P. J. Restle, , J. M. C. Stork, , A. C. Megdanis, , C. L. Stanis, , A. A. Bright, , G. M. W. Kroesen, , and and A. C. Warren, High-mobility modulation-doped SiGe-channel p-MOSFETs, IEEE Electron Device Lett. 12, 447 (1991)
CrossRef
ADS
Google scholar
|
[8] |
M. Yang, , R. Q. Wu, , W. S. Deng, , L. Shen, , Z. D. Sha, , Y. Q. Cai, , Y. P. Feng, , and and S. J. Wang, Electronic structures of β-Si3N4 (0001)/Si (111) interfaces: Perfect bonding and dangling bond effects, J. Appl. Phys. 105(2), 024108 (2009)
CrossRef
ADS
Google scholar
|
[9] |
D. P. Brunco, , B. De Jaeger, , G. Eneman, , J. Mitard, , G. Hellings, , A. Satta, , V. Terzieva, , L. Souriau, , F. E. Leys, , G. Pourtois, , M. Houssa, , G. Winderickx, , E. Vrancken, , S. Sioncke, , K. Opsomer, , G. Nicholas, , M. Caymax, , A. Stesmans, , J. Van Steenbergen, , P. W. Mertens, , M. Meuris, , and and M. M. Heyns, Germanium MOSFET devices: Advances in materials understanding, process development, and electrical performance, J. Electrochem. Soc. 155(7), H552 (2008)
CrossRef
ADS
Google scholar
|
[10] |
K. Saraswat, , C. O. Chui, , T. Krishnamohan, , D. Kim, , A. Nayfeh, , and and A. Pethe, High performance germanium MOSFETs, Mater. Sci. Eng. B 135(3), 242 (2006)
CrossRef
ADS
Google scholar
|
[11] |
S. Chattopadhyay, , L. D. Driscoll, , K. S. K. Kwa, , S. H. Olsen, , and and A. G. O’Neill, Strained Si MOSFETs on relaxed SiGe platforms: Performance and challenges, Solid-State Electron. 48(8), 1407 (2004)
CrossRef
ADS
Google scholar
|
[12] |
M. L. Lee, , E. A. Fitzgerald, , M. T. Bulsara, , M. T. Currie, , and A. Lochtefeld, , and Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors, J. Appl. Phys. 97(1), 011101 (2005)
CrossRef
ADS
Google scholar
|
[13] |
J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E. A. Fitzgerald, and D. A. Antoniadis, Strained silicon MOSFET technology, in: Digest, International Electron Devices Meeting, 2002, pp 23–26
|
[14] |
IRDSTM 2022: More than Moore − IEEE IRDSTM, URL: irds.ieee.org/editions/2022/irds%E2%84%A2-2022-more-than-moore
|
[15] |
IRDSTM 2023: Beyond CMOS and Emerging Materials Integration − IEEE IRDSTM, URL: irds.ieee.org/editions/2023/20-roadmap-2023-edition/126-irds%E2%84%A2-2023-beyond-cmos-and-emerging-materials-integration
|
[16] |
L. W. Wong, , K. Yang, , W. Han, , X. Zheng, , H. Y. Wong, , C. S. Tsang, , C. S. Lee, , S. P. Lau, , T. H. Ly, , M. Yang, , and and J. Zhao, Deciphering the ultra-high plasticity in metal monochalcogenides, Nat. Mater. 23(2), 196 (2024)
CrossRef
ADS
Google scholar
|
[17] |
H. K. Ng, , D. Xiang, , A. Suwardi, , G. Hu, , K. Yang, , Y. Zhao, , T. Liu, , Z. Cao, , H. Liu, , S. Li, , J. Cao, , Q. Zhu, , Z. Dong, , C. K. I. Tan, , D. Chi, , C. W. Qiu, , K. Hippalgaonkar, , G. Eda, , M. Yang, , and and J. Wu, Improving carrier mobility in two-dimensional semiconductors with rippled materials, Nat. Electron. 5(8), 489 (2022)
CrossRef
ADS
Google scholar
|
[18] |
M. Yang, , J. W. Chai, , M. Callsen, , J. Zhou, , T. Yang, , T. T. Song, , J. S. Pan, , D. Z. Chi, , Y. P. Feng, , and and S. J. Wang, Interfacial interaction between HfO2 and MoS2: From thin films to monolayer, J. Phys. Chem. C 120(18), 9804 (2016)
CrossRef
ADS
Google scholar
|
[19] |
J. Chai, , S. Tong, , C. Li, , C. Manzano, , B. Li, , Y. Liu, , M. Lin, , L. Wong, , J. Cheng, , J. Wu, , A. Lau, , Q. Xie, , S. J. Pennycook, , H. Medina, , M. Yang, , S. Wang, , and and D. Chi, MoS2/polymer heterostructures enabling stable resistive switching and multistate randomness, Adv. Mater. 32(42), 2002704 (2020)
CrossRef
ADS
Google scholar
|
[20] |
W. Han, , X. Zheng, , K. Yang, , C. S. Tsang, , F. Zheng, , L. W. Wong, , K. H. Lai, , T. Yang, , Q. Wei, , M. Li, , W. F. Io, , F. Guo, , Y. Cai, , N. Wang, , J. Hao, , S. P. Lau, , C. S. Lee, , T. H. Ly, , M. Yang, , and and J. Zhao, Phase-controllable large-area two-dimensional In2Se3 and ferroelectric heterophase junction, Nat. Nanotechnol. 18(1), 55 (2023)
CrossRef
ADS
Google scholar
|
[21] |
X. Tong, , E. Ashalley, , F. Lin, , H. Li, , and and Z. M. Wang, Advances in MoS2-based field effect transistors (FETs), Nano-Micro Lett. 7(3), 203 (2015)
CrossRef
ADS
Google scholar
|
[22] |
I. Shlyakhov, J. Chai, M. Yang, S. Wang, V. V. Afanas’ev, M. Houssa, and A. Stesmans, Energy band alignment of a monolayer MoS2 with SiO2 and Al2O3 insulators from internal photoemission, Phys. Status Solidi. A 216(8), 1800616 (2019) (a)
|
[23] |
W. Bao, , X. Cai, , D. Kim, , K. Sridhara, , and and M. S. Fuhrer, High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects, Appl. Phys. Lett. 102(4), 042104 (2013)
CrossRef
ADS
arXiv
Google scholar
|
[24] |
A. Rai, , H. C. P. Movva, , A. Roy, , D. Taneja, , S. Chowdhury, , and and S. K. Banerjee, Progress in contact, doping and mobility engineering of MoS2: An atomically thin 2D semiconductor, Crystals (Basel) 8(8), 316 (2018)
CrossRef
ADS
Google scholar
|
[25] |
B. Radisavljevic, , A. Radenovic, , J. Brivio, , V. Giacometti, , and and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)
CrossRef
ADS
Google scholar
|
[26] |
T. Boutchacha, , G. Ghibaudo, , G. Guégan, , and and T. Skotnicki, Low frequency noise characterization of 0.18 μm Si CMOS transistors, Microelectron. Reliab. 37(10−11), 1599 (1997)
CrossRef
ADS
Google scholar
|
[27] |
J. Robertson, High dielectric constant oxides, Eur. Phys. J. Appl. Phys. 28(3), 265 (2004)
CrossRef
ADS
Google scholar
|
[28] |
H. Huang, , D. Bi, , B. Ning, , Y. Zhang, , Z. Zhang, , and and S. Zou, Total dose irradiation-induced degradation of hysteresis effect in partially depleted silicon-on-insulator NMOSFETs, IEEE Trans. Nucl. Sci. 60(2), 1354 (2013)
CrossRef
ADS
Google scholar
|
[29] |
S. M. George, Atomic layer deposition: An overview, Chem. Rev. 110(1), 111 (2010)
CrossRef
ADS
Google scholar
|
[30] |
S. Yang, , K. Liu, , Y. Xu, , L. Liu, , H. Li, , and and T. Zhai, Gate dielectrics integration for 2D electronics: Challenges, advances, and outlook, Adv. Mater. 35(18), 2207901 (2023)
CrossRef
ADS
Google scholar
|
[31] |
Q. H. Wang and M. C. Hersam, Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene, Nat. Chem. 1(3), 206 (2009)
CrossRef
ADS
Google scholar
|
[32] |
J. M. P. Alaboson, , Q. H. Wang, , J. D. Emery, , A. L. Lipson, , M. J. Bedzyk, , J. W. Elam, , M. J. Pellin, , and and M. C. Hersam, Seeding atomic layer deposition of high-κ dielectrics on epitaxial graphene with organic self-assembled monolayers, ACS Nano 5(6), 5223 (2011)
CrossRef
ADS
Google scholar
|
[33] |
Y. Yang, , T. Yang, , T. Song, , J. Zhou, , J. Chai, , L. M. Wong, , H. Zhang, , W. Zhu, , S. Wang, , and and M. Yang, Selective hydrogenation improves interface properties of high-κ dielectrics on 2D semiconductors, Nano Res. 15(5), 4646 (2022)
CrossRef
ADS
Google scholar
|
[34] |
H. Liu, , A. T. Neal, , M. Si, , Y. Du, , and and P. D. Ye, The effect of dielectric capping on few-layer phosphorene transistors: Tuning the Schottky barrier heights, IEEE Electron Device Lett. 35(7), 795 (2014)
CrossRef
ADS
Google scholar
|
[35] |
W. Li, , J. Zhou, , S. Cai, , Z. Yu, , J. Zhang, , N. Fang, , T. Li, , Y. Wu, , T. Chen, , X. Xie, , H. Ma, , K. Yan, , N. Dai, , X. Wu, , H. Zhao, , Z. Wang, , D. He, , L. Pan, , Y. Shi, , P. Wang, , W. Chen, , K. Nagashio, , X. Duan, , and and X. Wang, Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices, Nat. Electron. 2(12), 563 (2019)
CrossRef
ADS
Google scholar
|
[36] |
J. D. Wood, , S. A. Wells, , D. Jariwala, , K. S. Chen, , E. Cho, , V. K. Sangwan, , X. Liu, , L. J. Lauhon, , T. J. Marks, , and and M. C. Hersam, Effective passivation of exfoliated black phosphorus transistors against ambient degradation, Nano Lett. 14(12), 6964 (2014)
CrossRef
ADS
arXiv
Google scholar
|
[37] |
E. Zhang, , W. Wang, , C. Zhang, , Y. Jin, , G. Zhu, , Q. Sun, , D. W. Zhang, , P. Zhou, , and and F. Xiu, Tunable charge-trap memory based on few-layer MoS2, ACS Nano 9(1), 612 (2015)
CrossRef
ADS
Google scholar
|
[38] |
L. Cheng, , X. Qin, , A. T. Lucero, , A. Azcatl, , J. Huang, , R. M. Wallace, , K. Cho, , and and J. Kim, Atomic layer deposition of a high-κ dielectric on MoS2 using trimethylaluminum and ozone, ACS Appl. Mater. Interfaces 6(15), 11834 (2014)
CrossRef
ADS
Google scholar
|
[39] |
J. H. Park, , S. Fathipour, , I. Kwak, , K. Sardashti, , C. F. Ahles, , S. F. Wolf, , M. Edmonds, , S. Vishwanath, , H. G. Xing, , S. K. Fullerton-Shirey, , A. Seabaugh, , and and A. C. Kummel, Atomic layer deposition of Al2O3 on WSe2 functionalized by titanyl phthalocyanine, ACS Nano 10(7), 6888 (2016)
CrossRef
ADS
Google scholar
|
[40] |
S. Son, , S. Yu, , M. Choi, , D. Kim, , and and C. Choi, Improved high temperature integration of Al2O3 on MoS2 by using a metal oxide buffer layer, Appl. Phys. Lett. 106(2), 021601 (2015)
CrossRef
ADS
Google scholar
|
[41] |
T. T. Lee, K. Chiranjeevulu, C. H. Hu, S. Pedaballi, and C. T. Lee, Improved performance of MoS2 FETs using AlN/Al2O3 dielectric and Plasma Enhanced Atomic Layer Deposition (PEALD), J. Nanosci. Res. Rep. 4(1), 1 (2022)
|
[42] |
A. Dkhissi, , G. Mazaleyrat, , A. Estève, , and and M. D. Rouhani, Nucleation and growth of atomic layer deposition of HfO2 gate dielectric layers on silicon oxide: A multiscale modelling investigation, Phys. Chem. Chem. Phys. 11(19), 3701 (2009)
CrossRef
ADS
Google scholar
|
[43] |
Q. H. Luc, , H. B. Do, , M. T. H. Ha, , C. C. Hu, , Y. C. Lin, , and and E. Y. Chang, Plasma enhanced atomic layer deposition passivated HfO2/AlN/In0.53Ga0.47As MOSCAPs with sub-nanometer equivalent oxide thickness and low interface trap density, IEEE Electron Device Lett. 36(12), 1277 (2015)
CrossRef
ADS
Google scholar
|
[44] |
N. Fang and K. Nagashio, Band tail interface states and quantum capacitance in a monolayer molybdenum disulfide field-effect-transistor, J. Phys. D 51(6), 065110 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[45] |
J. Yang, , S. Kim, , W. Choi, , S. H. Park, , Y. Jung, , M. H. Cho, , and and H. Kim, Improved growth behavior of atomic-layer-deposited high-κ dielectrics on multilayer MoS2 by oxygen plasma pretreatment, ACS Appl. Mater. Interfaces 5(11), 4739 (2013)
CrossRef
ADS
Google scholar
|
[46] |
X. Wang, , T. B. Zhang, , W. Yang, , H. Zhu, , L. Chen, , Q. Q. Sun, , and and D. W. Zhang, Improved integration of ultra-thin high-κ dielectrics in few-layer MoS2 FET by remote forming gas plasma pretreatment, Appl. Phys. Lett. 110(5), 053110 (2017)
CrossRef
ADS
Google scholar
|
[47] |
X. Song, , J. Xu, , L. Liu, , P. T. Lai, , and and W. M. Tang, Improved interfacial and electrical properties of few-layered MoS2 FETs with plasma-treated Al2O3 as gate dielectric, Appl. Surf. Sci. 481, 1028 (2019)
CrossRef
ADS
Google scholar
|
[48] |
J. H. Park, H. C. P. Movva, E. Chagarov, K. Sardashti, H. Chou, I. Kwak, K. T. Hu, S. K. Fullerton-Shirey, P. Choudhury, S. K. Banerjee, and A. C. Kummel, In Situ observation of initial stage in dielectric growth and deposition of ultrahigh nucleation density dielectric on two-dimensional surfaces, Nano Lett. 15(10), 6626 (2015)
|
[49] |
L. Liao and X. Zou, Interface engineering for high-performance top-gated MoS2 field effect transistors, in: 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) (2014), pp 1–3
|
[50] |
K. M. Price, , S. Najmaei, , C. E. Ekuma, , R. A. Burke, , M. Dubey, , and and A. D. Franklin, Plasma-enhanced atomic layer deposition of HfO2 on monolayer, bilayer, and trilayer MoS2 for the integration of high-κ dielectrics in two-dimensional devices, ACS Appl. Nano Mater. 2(7), 4085 (2019)
CrossRef
ADS
Google scholar
|
[51] |
H. Zhu, , R. Addou, , Q. Wang, , Y. Nie, , K. Cho, , M. J. Kim, , and and R. M. Wallace, Surface and interfacial study of atomic layer deposited Al2O3 on MoTe2 and WTe2, Nanotechnology 31(5), 055704 (2020)
CrossRef
ADS
Google scholar
|
[52] |
O. Sneh, , R. B. Clark-Phelps, , A. R. Londergan, , J. Winkler, , and and T. E. Seidel, Thin film atomic layer deposition equipment for semiconductor processing, Thin Solid Films 402(1−2), 248 (2002)
CrossRef
ADS
Google scholar
|
[53] |
C. Y. Zhu, J. K. Qin, P. Y. Huang, H. L. Sun, N. F. Sun, Y. L. Shi, L. Zhen, and C. Y. Xu, 2D indium phosphorus sulfide (In2P3S9): An emerging van der Waals high‐κ dielectrics, Small 18(5), 2104401 (2022)
|
[54] |
J. Hu, A. Zheng, E. Pan, J. Chen, R. Bian, J. Li, Q. Liu, G. Cao, P. Meng, X. Jian, A. Molnar, Y. Vysochanskii, and F. Liu, 2D semiconductor SnP2S6 as a new dielectric material for 2D electronics, J. Mater. Chem. C 10(37), 13753 (2022)
|
[55] |
B. A. Holler, K. Crowley, M. H. Berger, and X. P. A. Gao, 2D semiconductor transistors with van der Waals oxide MoO3 as integrated high-κ gate dielectric, Adv. Electron. Mater. 6(10), 2000635 (2020)
|
[56] |
F. Xu, , Z. Wu, , G. Liu, , F. Chen, , J. Guo, , H. Zhou, , J. Huang, , Z. Zhang, , L. Fei, , X. Liao, , and and Y. Zhou, Few-layered MnAl2S4 dielectrics for high-performance van der Waals stacked transistors, ACS Appl. Mater. Interfaces 14(22), 25920 (2022)
CrossRef
ADS
Google scholar
|
[57] |
L. Shen, , J. Zhou, , T. Yang, , M. Yang, , and and Y. P. Feng, High-throughput computational discovery and intelligent design of two-dimensional functional materials for various applications, Acc. Mater. Res. 3(6), 572 (2022)
CrossRef
ADS
Google scholar
|
[58] |
J. Wang, , H. Lai, , X. Huang, , J. Liu, , Y. Lu, , P. Liu, , and and W. Xie, High-κ van der Waals oxide MoO3 as efficient gate dielectric for MoS2 field-effect transistors, Materials (Basel) 15(17), 5859 (2022)
CrossRef
ADS
Google scholar
|
[59] |
A. Söll, , E. Lopriore, , A. Ottesen, , J. Luxa, , G. Pasquale, , J. Sturala, , F. Hájek, , V. Jarý, , D. Sedmidubský, , K. Mosina, , I. Sokolović, , S. Rasouli, , T. Grasser, , U. Diebold, , A. Kis, , and and Z. Sofer, High-κ wide-gap layered dielectric for two-dimensional van der Waals heterostructures, ACS Nano 18(15), 10397 (2024)
CrossRef
ADS
Google scholar
|
[60] |
M. R. Osanloo, , M. L. Van de Put, , A. Saadat, , and and W. G. Vandenberghe, Identification of two-dimensional layered dielectrics from first principles, Nat. Commun. 12(1), 5051 (2021)
CrossRef
ADS
Google scholar
|
[61] |
Q. A. Vu, , S. Fan, , S. H. Lee, , M. K. Joo, , W. J. Yu, , and and Y. H. Lee, Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors, 2D Mater. 5, 031001 (2018)
CrossRef
ADS
Google scholar
|
[62] |
T. Knobloch, , Y. Y. Illarionov, , F. Ducry, , C. Schleich, , S. Wachter, , K. Watanabe, , T. Taniguchi, , T. Mueller, , M. Waltl, , M. Lanza, , M. I. Vexler, , M. Luisier, , and and T. Grasser, The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials, Nat. Electron. 4(2), 98 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[63] |
J. Chen, , Z. Liu, , X. Dong, , Z. Gao, , Y. Lin, , Y. He, , Y. Duan, , T. Cheng, , Z. Zhou, , H. Fu, , F. Luo, , and and J. Wu, Vertically grown ultrathin Bi2SiO5 as high-κ single-crystalline gate dielectric, Nat. Commun. 14(1), 4406 (2023)
CrossRef
ADS
Google scholar
|
[64] |
Y. Zhang, J. Yu, R. Zhu, M. Wang, C. Tan, T. Tu, X. Zhou, C. Zhang, M. Yu, X. Gao, Y. Wang, H. Liu, P. Gao, K. Lai, and H. Peng, A single-crystalline native dielectric for two-dimensional semiconductors with an equivalent oxide thickness below 0.5 nm, Nat. Electron. 5(10), 643 (2022)
|
[65] |
H. Y. Lan, J. Appenzeller, and Z. Chen, Dielectric interface engineering for high-performance monolayer MoS. transistors via hBN interfacial layer and Ta seeding, in: 2022 International Electron Devices Meeting (IEDM), 2022, pp 7.7.1–7.7.4
|
[66] |
J. K. Huang, , Y. Wan, , J. Shi, , J. Zhang, , Z. Wang, , W. Wang, , N. Yang, , Y. Liu, , C. H. Lin, , X. Guan, , L. Hu, , Z. L. Yang, , B. C. Huang, , Y. P. Chiu, , J. Yang, , V. Tung, , D. Wang, , K. Kalantar-Zadeh, , T. Wu, , X. Zu, , L. Qiao, , L. J. Li, , and and S. Li, High-κ perovskite membranes as insulators for two-dimensional transistors, Nature 605(7909), 262 (2022)
CrossRef
ADS
Google scholar
|
[67] |
Y. Pan, , K. Jia, , K. Huang, , Z. Wu, , G. Bai, , J. Yu, , Z. Zhang, , Q. Zhang, , and and H. Yin, Near-ideal subthreshold swing MoS2 back-gate transistors with an optimized ultrathin HfO2 dielectric layer, Nanotechnology 30(9), 095202 (2019)
CrossRef
ADS
Google scholar
|
[68] |
C. Zhang, , T. Tu, , J. Wang, , Y. Zhu, , C. Tan, , L. Chen, , M. Wu, , R. Zhu, , Y. Liu, , H. Fu, , J. Yu, , Y. Zhang, , X. Cong, , X. Zhou, , J. Zhao, , T. Li, , Z. Liao, , X. Wu, , K. Lai, , B. Yan, , P. Gao, , Q. Huang, , H. Xu, , H. Hu, , H. Liu, , J. Yin, , and and H. Peng, Single-crystalline van der Waals layered dielectric with high dielectric constant, Nat. Mater. 22(7), 832 (2023)
CrossRef
ADS
Google scholar
|
[69] |
B. Chamlagain, , Q. Cui, , S. Paudel, , M. M. C. Cheng, , P. Y. Chen, , and and Z. Zhou, Thermally oxidized two-dimensional TaS2 as a high-κ gate dielectric for MoS2 field-effect transistors, 2D Mater. 4, 031002 (2017)
CrossRef
ADS
Google scholar
|
[70] |
K. A. Patel, , R. W. Grady, , K. K. H. Smithe, , E. Pop, , and and R. Sordan, Ultra-scaled MoS2 transistors and circuits fabricated without nanolithography, 2D Mater. 7, 015018 (2019)
CrossRef
ADS
Google scholar
|
[71] |
Y. Y. Illarionov, , A. G. Banshchikov, , D. K. Polyushkin, , S. Wachter, , T. Knobloch, , M. Thesberg, , L. Mennel, , M. Paur, , M. Stöger-Pollach, , A. Steiger-Thirsfeld, , M. I. Vexler, , M. Waltl, , N. S. Sokolov, , T. Mueller, , and and T. Grasser, Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors, Nat. Electron. 2(6), 230 (2019)
CrossRef
ADS
Google scholar
|
[72] |
M. Sebek, , Z. Wang, , N. G. West, , M. Yang, , D. C. J. Neo, , X. Su, , S. Wang, , J. Pan, , N. T. K. Thanh, , and and J. Teng, Van der Waals enabled formation and integration of ultrathin high-κ dielectrics on 2D semiconductors, npj 2D Mater. Appl. 8, 1 (2024)
CrossRef
ADS
Google scholar
|
[73] |
A. J. Yang, , K. Han, , K. Huang, , C. Ye, , W. Wen, , R. Zhu, , R. Zhu, , J. Xu, , T. Yu, , P. Gao, , Q. Xiong, , and and X. Renshaw Wang, Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors, Nat. Electron. 5(4), 233 (2022)
CrossRef
ADS
Google scholar
|
[74] |
Z. Lu, , Y. Chen, , W. Dang, , L. Kong, , Q. Tao, , L. Ma, , D. Lu, , L. Liu, , W. Li, , Z. Li, , X. Liu, , Y. Wang, , X. Duan, , L. Liao, , and and Y. Liu, Wafer-scale high-κ dielectrics for two-dimensional circuits via van der Waals integration, Nat. Commun. 14(1), 2340 (2023)
CrossRef
ADS
Google scholar
|
[75] |
T. Li, T. Tu, Y. Sun, H. Fu, J. Yu, L. Xing, Z. Wang, H. Wang, R. Jia, J. Wu, C. Tan, Y. Liang, Y. Zhang, C. Zhang, Y. Dai, C. Qiu, M. Li, R. Huang, L. Jiao, K. Lai, B. Yan, P. Gao, and H. Peng, A native oxide high-κ gate dielectric for two-dimensional electronics, Nat. Electron. 3(8), 473 (2020)
|
[76] |
K. Liu, B. Jin, W. Han, X. Chen, P. Gong, L. Huang, Y. Zhao, L. Li, S. Yang, X. Hu, J. Duan, L. Liu, F. Wang, F. Zhuge, and T. Zhai, A wafer-scale van der Waals dielectric made from an inorganic molecular crystal film, Nat. Electron. 4(12), 906 (2021)
|
[77] |
O. Song, D. Rhee, J. Kim, Y. Jeon, V. Mazánek, A. Söll, Y. A. Kwon, J. H. Cho, Y. -H. Kim, Z. Sofer, and J. Kang, All inkjet-printed electronics based on electrochemically exfoliated two-dimensional metal, semiconductor, and dielectric, npj 2D Mater. Appl. 6, 1 (2022)
|
[78] |
A. Bastola, , Y. He, , J. Im, , G. Rivers, , F. Wang, , R. Worsley, , J. S. Austin, , O. Nelson-Dummett, , R. D. Wildman, , R. Hague, , C. J. Tuck, , and and L. Turyanska, Formulation of functional materials for ink-jet printing: A pathway towards fully 3D printed electronics, Materials Today Electronics 6, 100058 (2023)
CrossRef
ADS
Google scholar
|
[79] |
S. Lai, , S. Byeon, , S. K. Jang, , J. Lee, , B. H. Lee, , J. H. Park, , Y. H. Kim, , and and S. Lee, HfO2/HfS2 hybrid heterostructure fabricated via controllable chemical conversion of two-dimensional HfS2, Nanoscale 10(39), 18758 (2018)
CrossRef
ADS
Google scholar
|
[80] |
T. T. T. Can and W. S. Choi, Improved electrical properties of EHD jet-patterned MoS2 thin-film transistors with printed Ag electrodes on a high-κ dielectric, Nanomaterials (Basel) 13(1), 194 (2023)
CrossRef
ADS
Google scholar
|
[81] |
T. Carey, , A. Arbab, , L. Anzi, , H. Bristow, , F. Hui, , S. Bohm, , G. Wyatt-Moon, , A. Flewitt, , A. Wadsworth, , N. Gasparini, , J. M. Kim, , M. Lanza, , I. McCulloch, , R. Sordan, , and and F. Torrisi, Inkjet printed circuits with 2D semiconductor inks for high‐performance electronics, Adv. Electron. Mater. 7(7), 2100112 (2021)
CrossRef
ADS
Google scholar
|
[82] |
K. Cho, , T. Lee, , and and S. Chung, Inkjet printing of two-dimensional van der Waals materials: A new route towards emerging electronic device applications, Nanoscale Horiz. 7(10), 1161 (2022)
CrossRef
ADS
Google scholar
|
[83] |
N. Peimyoo, , M. D. Barnes, , J. D. Mehew, , A. De Sanctis, , I. Amit, , J. Escolar, , K. Anastasiou, , A. P. Rooney, , S. J. Haigh, , S. Russo, , M. F. Craciun, , and and F. Withers, Laser-writable high-κ dielectric for van der Waals nanoelectronics, Sci. Adv. 5(1), eaau0906 (2019)
CrossRef
ADS
Google scholar
|
[84] |
Y. Zhang, , D. Venkatakrishnarao, , M. Bosman, , W. Fu, , S. Das, , F. Bussolotti, , R. Lee, , S. L. Teo, , D. Huang, , I. Verzhbitskiy, , Z. Jiang, , Z. Jiang, , J. Chai, , S. W. Tong, , Z. E. Ooi, , C. P. Y. Wong, , Y. S. Ang, , K. E. J. Goh, , and and C. S. Lau, Liquid−metal-printed ultrathin oxides for atomically smooth 2D material heterostructures, ACS Nano 17(8), 7929 (2023)
CrossRef
ADS
Google scholar
|
[85] |
P. Luo, , C. Liu, , J. Lin, , X. Duan, , W. Zhang, , C. Ma, , Y. Lv, , X. Zou, , Y. Liu, , F. Schwierz, , W. Qin, , L. Liao, , J. He, , and and X. Liu, Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation, Nat. Electron. 5(12), 849 (2022)
CrossRef
ADS
Google scholar
|
[86] |
T. E. Lee, Y. C. Su, B. J. Lin, Y. X. Chen, W. S. Yun, P. H. Ho, J. F. Wang, S. K. Su, C. F. Hsu, P. S. Mao, Y. C. Chang, C. H. Chien, B. H. Liu, C. Y. Su, C. C. Kei, H. Wang, H. S. Philip Wong, T. Y. Lee, W. H. Chang, C. C. Cheng, and I. P. Radu, Nearly ideal subthreshold swing in monolayer MoS2 top-gate nFETs with scaled EOT of . nm, in: 2022 International Electron Devices Meeting (IEDM), 2022, pp 7.4.1–7.4.4
|
[87] |
G. Lin, , M. Q. Zhao, , M. Jia, , J. Zhang, , P. Cui, , L. Wei, , H. Zhao, , A. T. C. Johnson, , L. Gundlach, , and and Y. Zeng, Performance enhancement of monolayer MoS2 transistors by atomic layer deposition of high-κ dielectric assisted by Al2O3 seed layer, J. Phys. D Appl. Phys. 53(10), 105103 (2020)
CrossRef
ADS
Google scholar
|
[88] |
Y. Xu, , T. Liu, , K. Liu, , Y. Zhao, , L. Liu, , P. Li, , A. Nie, , L. Liu, , J. Yu, , X. Feng, , F. Zhuge, , H. Li, , X. Wang, , and and T. Zhai, Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors, Nat. Mater. 22(9), 1078 (2023)
CrossRef
ADS
Google scholar
|
[89] |
J. Pang, , A. Bachmatiuk, , Y. Yin, , B. Trzebicka, , L. Zhao, , L. Fu, , R. G. Mendes, , T. Gemming, , Z. Liu, , and and M. H. Rummeli, Applications of phosphorene and black phosphorus in energy conversion and storage devices, Adv. Energy Mater. 8(8), 1702093 (2018)
CrossRef
ADS
Google scholar
|
[90] |
M. Sup Choi, , G. H. Lee, , Y. J. Yu, , D. Y. Lee, , S. Hwan Lee, , P. Kim, , J. Hone, , and and W. Jong Yoo, Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices, Nat. Commun. 4(1), 1624 (2013)
CrossRef
ADS
Google scholar
|
[91] |
T. Roy, , M. Tosun, , J. S. Kang, , A. B. Sachid, , S. B. Desai, , M. Hettick, , C. C. Hu, , and and A. Javey, Field-effect transistors built from all two-dimensional material components, ACS Nano 8(6), 6259 (2014)
CrossRef
ADS
Google scholar
|
[92] |
G. H. Lee, , X. Cui, , Y. D. Kim, , G. Arefe, , X. Zhang, , C. H. Lee, , F. Ye, , K. Watanabe, , T. Taniguchi, , P. Kim, , and and J. Hone, Highly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltage, ACS Nano 9(7), 7019 (2015)
CrossRef
ADS
Google scholar
|
[93] |
X. Cui, , G. H. Lee, , Y. D. Kim, , G. Arefe, , P. Y. Huang, , C. H. Lee, , D. A. Chenet, , X. Zhang, , L. Wang, , F. Ye, , F. Pizzocchero, , B. S. Jessen, , K. Watanabe, , T. Taniguchi, , D. A. Muller, , T. Low, , P. Kim, , and and J. Hone, Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform, Nat. Nanotechnol. 10(6), 534 (2015)
CrossRef
ADS
Google scholar
|
[94] |
Z. Zhang, , X. Ji, , J. Shi, , X. Zhou, , S. Zhang, , Y. Hou, , Y. Qi, , Q. Fang, , Q. Ji, , Y. Zhang, , M. Hong, , P. Yang, , X. Liu, , Q. Zhang, , L. Liao, , C. Jin, , Z. Liu, , and and Y. Zhang, Direct chemical vapor deposition growth and band-gap characterization of MoS2/h-BN van der Waals heterostructures on Au foils, ACS Nano 11(4), 4328 (2017)
CrossRef
ADS
Google scholar
|
[95] |
M. Mattinen, , G. Popov, , M. Vehkamäki, , P. J. King, , K. Mizohata, , P. Jalkanen, , J. Räisänen, , M. Leskelä, , and M. Ritala, , and Atomic layer deposition of emerging 2D semiconductors, HfS2 and ZrS2, for optoelectronics, Chem. Mater. 31(15), 5713 (2019)
CrossRef
ADS
Google scholar
|
[96] |
M. J. Mleczko, , C. Zhang, , H. R. Lee, , H. H. Kuo, , B. Magyari-Köpe, , R. G. Moore, , Z. X. Shen, , I. R. Fisher, , Y. Nishi, , and and E. Pop, HfSe2 and ZrSe2: Two-dimensional semiconductors with native high-κ oxides, Sci. Adv. 3(8), e1700481 (2017)
CrossRef
ADS
Google scholar
|
[97] |
Y. Jin, , J. Sun, , L. Zhang, , J. Yang, , Y. Wu, , B. You, , X. Liu, , K. Leng, , and and S. Liu, Controllable oxidation of ZrS2 to prepare high‐κ, single‐crystal m‐ZrO2 for 2D electronics, Adv. Mater. 35(18), 2212079 (2023)
CrossRef
ADS
Google scholar
|
[98] |
L. Yang, R. Jaramillo, R. K. Kalia, A. Nakano, and P. Vashishta, Pressure-dependent layer-by-layer oxidation of ZrS2(001) surface, arXiv: 2023)
arXiv
|
[99] |
Q. Smets, G. Arutchelvan, J. Jussot, D. Verreck, I. Asselberghs, A. N. Mehta, A. Gaur, D. Lin, S. E. Kazzi, B. Groven, M. Caymax, and I. Radu, Ultra-scaled MOCVD MoS2 MOSFETs with 42 nm contact pitch and 250 μA/μm drain current, in: 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp 23.2.1–23.2.4
|
[100] |
H. B. Jeon, , G. H. Shin, , K. J. Lee, , and and S. Y. Choi, Vertical‐tunneling field‐effect transistor based on WSe2–MoS2 heterostructure with ion gel dielectric, Adv. Electron. Mater. 6(7), 2000091 (2020)
CrossRef
ADS
Google scholar
|
[101] |
K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
|
[102] |
J. Cai, , X. Han, , X. Wang, , and and X. Meng, Atomic layer deposition of two-dimensional layered materials: Processes, growth mechanisms, and characteristics, Matter 2(3), 587 (2020)
CrossRef
ADS
Google scholar
|
[103] |
D. Akinwande, , C. Huyghebaert, , C. H. Wang, , M. I. Serna, , S. Goossens, , L. J. Li, , H. S. P. Wong, , and and F. H. L. Koppens, Graphene and two-dimensional materials for silicon technology, Nature 573(7775), 507 (2019)
CrossRef
ADS
Google scholar
|
[104] |
H. Abuzaid, , N. X. Williams, , and and A. D. Franklin, How good are 2D transistors? An application-specific benchmarking study, Appl. Phys. Lett. 118(3), 030501 (2021)
CrossRef
ADS
Google scholar
|
[105] |
F. Zhuo, , J. Wu, , B. Li, , M. Li, , C. L. Tan, , Z. Luo, , H. Sun, , Y. Xu, , and and Z. Yu, Modifying the power and performance of 2-dimensional MoS2 field effect transistors, Research 6, 0057 (2023)
CrossRef
ADS
Google scholar
|
[106] |
Y. Liu, , X. Duan, , H. J. Shin, , S. Park, , Y. Huang, , and and X. Duan, Promises and prospects of two-dimensional transistors, Nature 591(7848), 43 (2021)
CrossRef
ADS
Google scholar
|
[107] |
S. Zeng, , C. Liu, , and and P. Zhou, Transistor engineering based on 2D materials in the post-silicon era, Nat. Rev. Electr. Eng. 1, 335 (2024)
CrossRef
ADS
Google scholar
|
[108] |
C. Liu, , H. Chen, , S. Wang, , Q. Liu, , Y. G. Jiang, , D. W. Zhang, , M. Liu, , and and P. Zhou, Two-dimensional materials for next-generation computing technologies, Nat. Nanotechnol. 15(7), 545 (2020)
CrossRef
ADS
Google scholar
|
[109] |
Y. Liu, N. O. Weiss, X. Duan, H. -C. Cheng, Y. Huang, and X. Duan, Van der Waals heterostructures and devices, Nat. Rev. Mater. 1, 1 (2016)
|
[110] |
Y. Liu, , Y. Huang, , and and X. Duan, Van der Waals integration before and beyond two-dimensional materials, Nature 567(7748), 323 (2019)
CrossRef
ADS
Google scholar
|
[111] |
X. Zhang, , Y. Zhang, , H. Yu, , H. Zhao, , Z. Cao, , Z. Zhang, , and and Y. Zhang, Van der Waals‐interface‐dominated all‐2D electronics, Adv. Mater. 35(50), 2207966 (2023)
CrossRef
ADS
Google scholar
|
[112] |
S. Kim, , J. Seo, , J. Choi, , and and H. Yoo, Vertically integrated electronics: New opportunities from emerging materials and devices, Nano-Micro Lett. 14(1), 201 (2022)
CrossRef
ADS
Google scholar
|
[113] |
L. Liu and T. Zhai, Wafer-scale vertical van der Waals heterostructures, InfoMat 3(1), 3 (2021)
CrossRef
ADS
Google scholar
|
[114] |
I. E. Dzyaloshinskii, , E. M. Lifshitz, , and and L. P. Pitaevskii, The general theory of van der Waals forces, Adv. Phys. 10(38), 165 (1961)
CrossRef
ADS
Google scholar
|
[115] |
A. Cabrero-Vilatela, , J. A. Alexander-Webber, , A. A. Sagade, , A. I. Aria, , P. Braeuninger-Weimer, , M. B. Martin, , R. S. Weatherup, , and and S. Hofmann, Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer, Nanotechnology 28(48), 485201 (2017)
CrossRef
ADS
Google scholar
|
[116] |
S. B. Desai, , S. R. Madhvapathy, , M. Amani, , D. Kiriya, , M. Hettick, , M. Tosun, , Y. Zhou, , M. Dubey, , J. W. Ager, , D. Chrzan, , and and A. Javey, Gold‐mediated exfoliation of ultralarge optoelectronically-perfect monolayers, Adv. Mater. 28, 4053 (2016)
CrossRef
ADS
Google scholar
|
[117] |
B. Wang, , W. Huang, , L. Chi, , M. Al-Hashimi, , T. J. Marks, , and and A. Facchetti, High-κ gate dielectrics for emerging flexible and stretchable electronics, Chem. Rev. 118, 5690 (2018)
CrossRef
ADS
Google scholar
|
[118] |
R. P. Ortiz, , A. Facchetti, , and and T. J. Marks, High-κ organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors, Chem. Rev. 110, 205 (2010)
CrossRef
ADS
Google scholar
|
[119] |
A. V. Zaretski, , H. Moetazedi, , C. Kong, , E. J. Sawyer, , S. Savagatrup, , E. Valle, , T. F. O’Connor, , A. D. Printz, , and and D. J. Lipomi, Metal-assisted exfoliation (MAE): Green, roll-to-roll compatible method for transferring graphene to flexible substrates, Nanotechnology 26, 045301 (2015)
CrossRef
ADS
Google scholar
|
[120] |
A. V. Zaretski and D. J. Lipomi, Processes for non-destructive transfer of graphene: Widening the bottleneck for industrial scale production, Nanoscale 7, 9963 (2015)
CrossRef
ADS
Google scholar
|
[121] |
X. Cui, , Z. Kong, , E. Gao, , D. Huang, , Y. Hao, , H. Shen, , C. Di, , Z. Xu, , J. Zheng, , and and D. Zhu, Rolling up transition metal dichalcogenide nanoscrolls via one drop of ethanol, Nat. Commun. 9, 1301 (2018)
CrossRef
ADS
Google scholar
|
[122] |
A. Gurarslan, , Y. Yu, , L. Su, , Y. Yu, , F. Suarez, , S. Yao, , Y. Zhu, , M. Ozturk, , Y. Zhang, , and and L. Cao, Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates, ACS Nano 8, 11522 (2014)
CrossRef
ADS
Google scholar
|
[123] |
L. Niinistö, , M. Nieminen, , J. Päiväsaari, , J. Niinistö, , M. Putkonen, , and and M. Nieminen, Advanced electronic and optoelectronic materials by Atomic Layer Deposition: An overview with special emphasis on recent progress in processing of high-κ dielectrics and other oxide materials, physica status solidi (a) 201, 1443 (2004)
CrossRef
ADS
Google scholar
|
[124] |
M. Leskelä and M. Ritala, Atomic layer deposition chemistry: Recent developments and future challenges, Angewandte Chemie International Edition 42, 5548 (2003)
CrossRef
ADS
Google scholar
|
[125] |
M. D. Groner and S. M. George, High-κ dielectrics grown by atomic layer deposition, in: Interlayer Dielectrics for Semiconductor Technologies, edited by S. P. Murarka, M. Eizenberg, and A. K. Sinha, Academic Press, 2003, pp 327–348
|
[126] |
J. T. Gaskins, , P. E. Hopkins, , D. R. Merrill, , S. R. Bauers, , E. Hadland, , D. C. Johnson, , D. Koh, , J. H. Yum, , S. Banerjee, , B. J. Nordell, , M. M. Paquette, , A. N. Caruso, , W. A. Lanford, , P. Henry, , L. Ross, , H. Li, , L. Li, , M. French, , A. M. Rudolph, , and and S. W. King, Investigation and review of the thermal, mechanical, electrical, optical, and structural properties of atomic layer deposited high-κ dielectrics: Beryllium oxide, aluminum oxide, hafnium oxide, and aluminum nitride, ECS J. Solid State Sci. Technol. 6, N189 (2017)
CrossRef
ADS
Google scholar
|
[127] |
A. Eskandari Nasrabad, and and R. Laghaei, Computational studies on thermodynamic properties, effective diameters, and free volume of argon using an ab initio potential, J. Chem. Phys. 125, 084510 (2006)
CrossRef
ADS
Google scholar
|
[128] |
J. Hermann, , R. A. Jr. DiStasio, , and and A. Tkatchenko, First-principles models for van der Waals interactions in molecules and materials: Concepts, theory, and applications, Chem. Rev. 117, 4714 (2017)
CrossRef
ADS
Google scholar
|
[129] |
K. Liu and T. Zhai, Emergence of two-dimensional inorganic molecular crystals, Acc. Mater. Res. 5(6), 665 (2024)
CrossRef
ADS
Google scholar
|
[130] |
A. Jabeen, , A. Majid, , M. Alkhedher, , S. Haider, , and and M. S. Akhtar, Impacts of structural downscaling of inorganic molecular crystals ‒ A DFT study of Sb2O3, Mater. Sci. Semicond. Process. 166, 107729 (2023)
CrossRef
ADS
Google scholar
|
[131] |
W. Han, , P. Huang, , L. Li, , F. Wang, , P. Luo, , K. Liu, , X. Zhou, , H. Li, , X. Zhang, , Y. Cui, , and and T. Zhai, Two-dimensional inorganic molecular crystals, Nat. Commun. 10, 4728 (2019)
CrossRef
ADS
Google scholar
|
[132] |
T. Kang, J. Park, H. Jung, H. Choi, S. -M. Lee, N. Lee, R. -G. Lee, G. Kim, S. -H. Kim, H. Kim, C. -W. Yang, J. Jeon, Y. -H. Kim, and S. Lee, High-κ dielectric (HfO2)/2D semiconductor (HfSe2) gate stack for low-power steep-switching computing devices, Adv. Mater. 36(26), 2312747
|
[133] |
C. Lee, S. Rathi, M. A. Khan, D. Lim, Y. Kim, S. J. Yun, D. -H. Youn, K. Watanabe, T. Taniguchi, and G. -H. Kim, Comparison of trapped charges and hysteresis behavior in hBN encapsulated single MoS2 flake based field effect transistors on SiO2 and hBN substrates, Nanotechnology 29, 335202 (2018)
|
[134] |
X. Han, , J. Lin, , J. Liu, , N. Wang, , and and D. Pan, Effects of hexagonal boron nitride encapsulation on the electronic structure of few-layer MoS2, J. Phys. Chem. C 123, 14797 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[135] |
S. Fiore, , C. Klinkert, , F. Ducry, , J. Backman, , and and M. Luisier, Influence of the hBN dielectric layers on the quantum transport properties of MoS2 transistors, Materials 15, 1062 (2022)
CrossRef
ADS
Google scholar
|
[136] |
A. Shivayogimath, , P. R. Whelan, , D. M. A. Mackenzie, , B. Luo, , D. Huang, , D. Luo, , M. Wang, , L. Gammelgaard, , H. Shi, , R. S. Ruoff, , P. Bøggild, , and and T. J. Booth, Do-it-yourself transfer of large-area graphene using an office laminator and water, Chem. Mater. 31, 2328 (2019)
CrossRef
ADS
Google scholar
|
[137] |
H. Xu, , H. Zhang, , Z. Guo, , Y. Shan, , S. Wu, , J. Wang, , W. Hu, , H. Liu, , Z. Sun, , C. Luo, , X. Wu, , Z. Xu, , D. W. Zhang, , W. Bao, , and and P. Zhou, High-performance wafer-scale MoS2 transistors toward practical application, Small 14, 1803465 (2018)
CrossRef
ADS
Google scholar
|
[138] |
A. Quellmalz, , X. Wang, , S. Sawallich, , B. Uzlu, , M. Otto, , S. Wagner, , Z. Wang, , M. Prechtl, , O. Hartwig, , S. Luo, , G. S. Duesberg, , M. C. Lemme, , K. B. Gylfason, , N. Roxhed, , G. Stemme, , and and F. Niklaus, Large-area integration of two-dimensional materials and their heterostructures by wafer bonding, Nat. Commun. 12, 917 (2021)
CrossRef
ADS
Google scholar
|
[139] |
Y. Kim, T. Kim, J. Lee, Y. S. Choi, J. Moon, S. Y. Park, T. H. Lee, H. K. Park, S. A. Lee, M. S. Kwon, H. -G. Byun, J. -H. Lee, M. -G. Lee, B. H. Hong, and H. W. Jang, Tailored graphene micropatterns by wafer-scale direct transfer for flexible chemical sensor platform, Adv. Mater. 33, 2004827 (2021)
|
[140] |
P. S. Borhade, R. Raman, Z. -L. Yen, Y. -P. Hsieh, and M. Hofmann, Transferrable alumina membranes as high-performance dielectric for flexible 2D materials devices, Adv. Electron. Mater. 10, 2300783 (2024)
|
[141] |
H. Yu, M. Liao, W. Zhao, G. Liu, X. J. Zhou, Z. Wei, X. Xu, K. Liu, Z. Hu, K. Deng, S. Zhou, J. -A. Shi, L. Gu, C. Shen, T. Zhang, L. Du, L. Xie, J. Zhu, W. Chen, R. Yang, D. Shi, and G. Zhang, Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films, ACS Nano 11, 12001 (2017)
|
Part of a collection:
/
〈 |
|
〉 |