Fast evaluating phonon life time and thermal conductivity determined by Grüneisen parameter and phase space size of three-phonon scattering

Yi Wang, Shenshen Yan, Xi Wu, Jie Ren

PDF(1979 KB)
PDF(1979 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (1) : 014212. DOI: 10.15302/frontphys.2025.014212
RESEARCH ARTICLE

Fast evaluating phonon life time and thermal conductivity determined by Grüneisen parameter and phase space size of three-phonon scattering

Author information +
History +

Abstract

Efficiently and fast seeking specific lattices with targeted phonon thermal conductivity κL plays an important role in the thermal design and thermal management of materials. How to efficiently and accurately evaluate the phonon lifetime determined by anharmonicity becomes a critical bottleneck when high-throughput measuring κL. Here, we propose a method of fast evaluating three-phonon scattering induced lifetime based on the many-body theory of phonon gas. In the high temperature limit, the phonon scattering rate is simply determined by the product of only two anharmonic parameters: the square of Grüneisen parameter and the phase space size of three-phonon scattering, both of which can be quickly derived from the harmonic phonon properties. We demonstrate the effectiveness of the method in high-throughput evaluating the κL in first-principles calculation, which exhibits a good consistence with our collected experimental data. This method shows promising application potential in exploring material screening of the targeted κL, which by improving the ability of characterizing phonon anharmonicity will further enhance the performance of κL prediction.

Graphical abstract

Keywords

many-body theory / thermal conductivity / anharmonic properties / three-phonon scattering / first-principles calculation / high-throughput calculations

Cite this article

Download citation ▾
Yi Wang, Shenshen Yan, Xi Wu, Jie Ren. Fast evaluating phonon life time and thermal conductivity determined by Grüneisen parameter and phase space size of three-phonon scattering. Front. Phys., 2025, 20(1): 014212 https://doi.org/10.15302/frontphys.2025.014212

References

[1]
M.BornK. Huang, Dynamical theory of crystal lattices, International Series of Monographs on Physics, Oxford University Press, Oxford, 1954
[2]
G.P. Srivastava, The Physics of Phonons, Taylor & Francis, New York, 1990
[3]
N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Phononics: Manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys. 84(3), 1045 (2012)
CrossRef ADS Google scholar
[4]
Y. Li, W. Li, T. Han, X. Zheng, J. Li, B. Li, S. Fan, and C. W. Qiu, Transforming heat transfer with thermal metamaterials and devices, Nat. Rev. Mater. 6(6), 488 (2021)
CrossRef ADS Google scholar
[5]
J. Chen, J. He, D. Pan, X. Wang, N. Yang, J. Zhu, S. A. Yang, and G. Zhang, Emerging theory and phenomena in thermal conduction: A selective review, Sci. China Phys. Mech. 65, 117002 (2022)
[6]
A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, Photovoltaic materials: Present efficiencies and future challenges, Science 352(6283), aad4424 (2016)
CrossRef ADS Google scholar
[7]
R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature 413(6856), 597 (2001)
CrossRef ADS Google scholar
[8]
Y. Ammar, S. Joyce, R. Norman, Y. Wang, and A. P. Roskilly, Low grade thermal energy sources and uses from the process industry in the UK, Appl. Energy 89(1), 3 (2012)
CrossRef ADS Google scholar
[9]
C. Liu, C. Wu, T. Song, Y. Zhao, J. Yang, P. Lu, G. Zhang, and Y. Chen, An efficient strategy for searching high lattice thermal conductivity materials, ACS Appl. Energy Mater. 5(12), 15356 (2022)
CrossRef ADS Google scholar
[10]
M. M. Waldrop, The chips are down for Moore’s law, Nature 530(7589), 144 (2016)
CrossRef ADS Google scholar
[11]
L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature 508(7496), 373 (2014)
CrossRef ADS Google scholar
[12]
C. W. Li, J. Hong, A. F. May, D. Bansal, S. Chi, T. Hong, G. Ehlers, and O. Delaire, Orbitally driven giant phonon anharmonicity in SnSe, Nat. Phys. 11(12), 1063 (2015)
CrossRef ADS Google scholar
[13]
J. He, M. Amsler, Y. Xia, S. S. Naghavi, V. I. Hegde, S. Hao, S. Goedecker, V. Ozoliņš, and C. Wolverton, Ultralow thermal conductivity in full Heusler semiconductors, Phys. Rev. Lett. 117(4), 046602 (2016)
CrossRef ADS Google scholar
[14]
C. Chang and L. D. Zhao, Anharmoncity and low thermal conductivity in thermoelectrics, Mater. Today Phys. 4, 50 (2018)
CrossRef ADS Google scholar
[15]
H.XieJ. YanX.GuH.Bao, A scattering rate model for accelerated evaluation of lattice thermal conductivity bypassing anharmonic force constants, J. Appl. Phys. 125(20), 205104 (2019)
[16]
J. Ding, T. Lanigan-Atkins, M. Calderón-Cueva, A. Banerjee, D. L. Abernathy, A. Said, A. Zevalkink, and O. Delaire, Soft anharmonic phonons and ultralow thermal conductivity in Mg3(Sb,Bi)2 thermoelectrics, Sci. Adv. 7(21), eabg1449 (2021)
CrossRef ADS Google scholar
[17]
J. Zhang, H. Zhang, and G. Zhang, Nanophononic metamaterials induced proximity effect in heat flux regulation, Front. Phys. 19(2), 23204 (2024)
CrossRef ADS Google scholar
[18]
W. Li, J. Carrete, N. A. Katcho, and N. Mingo, ShengBTE: A solver of the Boltzmann transport equation for phonons, Comput. Phys. Commun. 185(6), 1747 (2014)
CrossRef ADS Google scholar
[19]
Z. Han, X. Yang, W. Li, T. Feng, and X. Ruan, Fourphonon: An extension module to ShengBTE for computing four-phonon scattering rates and thermal conductivity, Comput. Phys. Commun. 270, 108179 (2022)
CrossRef ADS Google scholar
[20]
J. S. Kang, M. Li, H. Wu, H. Nguyen, and Y. Hu, Experimental observation of high thermal conductivity in boron arsenide, Science 361(6402), 575 (2018)
CrossRef ADS Google scholar
[21]
S. Mukhopadhyay, D. S. Parker, B. C. Sales, A. A. Puretzky, M. A. McGuire, and L. Lindsay, Two-channel model for ultralow thermal conductivity of crystalline Tl3VSe4, Science 360(6396), 1455 (2018)
CrossRef ADS Google scholar
[22]
X. Qian, J. Zhou, and G. Chen, Phonon-engineered extreme thermal conductivity materials, Nat. Mater. 20(9), 1188 (2021)
CrossRef ADS Google scholar
[23]
G. A. Slack, Nonmetallic crystals with high thermal conductivity, J. Phys. Chem. Solids 34(2), 321 (1973)
CrossRef ADS Google scholar
[24]
C. Toher, J. J. Plata, O. Levy, M. De Jong, M. Asta, M. B. Nardelli, S. Curtarolo, and High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model, Phys. Rev. B 90(17), 174107 (2014)
CrossRef ADS Google scholar
[25]
P. Nath, J. J. Plata, D. Usanmaz, C. Toher, M. Fornari, M. Buongiorno Nardelli, and S. Curtarolo, High throughput combinatorial method for fast and robust prediction of lattice thermal conductivity, Scr. Mater. 129, 88 (2017)
CrossRef ADS Google scholar
[26]
J. Callaway, Model for lattice thermal conductivity at low temperatures, Phys. Rev. 113(4), 1046 (1959)
CrossRef ADS Google scholar
[27]
J. Yan, P. Gorai, B. Ortiz, S. Miller, S. A. Barnett, T. Mason, V. Stevanović, and E. S. Toberer, Material descriptors for predicting thermoelectric performance, Energy Environ. Sci. 8(3), 983 (2015)
CrossRef ADS Google scholar
[28]
D. G. Cahill, S. K. Watson, and R. O. Pohl, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B 46(10), 6131 (1992)
CrossRef ADS Google scholar
[29]
D.R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings, Surf. Coat. Tech. 163–164, 67 (2003)
[30]
S. Yan, Y. Wang, F. Tao, and J. Ren, High-throughput estimation of phonon thermal conductivity from first-principles calculations of elasticity, J. Phys. Chem. A 126(46), 8771 (2022)
CrossRef ADS Google scholar
[31]
T. Pandey, C. A. Polanco, L. Lindsay, and D. S. Parker, Lattice thermal transport in La3Cu3X4 compounds (X = P, As, Sb, Bi): Interplay of anharmonicity and scattering phase space, Phys. Rev. B 95(22), 224306 (2017)
CrossRef ADS Google scholar
[32]
M. Raya-Moreno, R. Rurali, and X. Cartoixà, Thermal conductivity for III−V and II−VI semiconductor wurtzite and zincblende polytypes: The role of anharmonicity and phase space, Phys. Rev. Mater. 3(8), 084607 (2019)
CrossRef ADS Google scholar
[33]
L. Zhu, W. Li, and F. Ding, Giant thermal conductivity in diamane and the influence of horizontal reflection symmetry on phonon scattering, Nanoscale 11(10), 4248 (2019)
CrossRef ADS Google scholar
[34]
M. K. Gupta, S. Kumar, R. Mittal, S. K. Mishra, S. Rols, O. Delaire, A. Thamizhavel, P. Sastry, and S. L. Chaplot, Distinct anharmonic characteristics of phonon-driven lattice thermal conductivity and thermal expansion in bulk MoSe2 and WSe2, J. Mater. Chem. A 11(40), 21864 (2023)
CrossRef ADS Google scholar
[35]
Y. M. Zhao, C. Zhang, S. Shin, and L. Shen, Thermal conductivity of sliding bilayer h-BN and its manipulation with strain and layer confinement, J. Mater. Chem. C 11(32), 11082 (2023)
CrossRef ADS Google scholar
[36]
A.WardD. BroidoD.A. StewartG.Deinzer, Ab initio theory of the lattice thermal conductivity in diamond, Phys. Rev. B 80(12), 125203 (2009)
[37]
L. Lindsay, D. Broido, and T. Reinecke, First-principles determination of ultrahigh thermal conductivity of boron arsenide: A competitor for diamond, Phys. Rev. Lett. 111(2), 025901 (2013)
CrossRef ADS Google scholar
[38]
D. A. Broido, M. Malorny, G. Birner, N. Mingo, and D. Stewart, Intrinsic lattice thermal conductivity of semiconductors from first principles, Appl. Phys. Lett. 91(23), 231922 (2007)
CrossRef ADS Google scholar
[39]
T. Feng and X. Ruan, Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids, Phys. Rev. B 93(4), 045202 (2016)
CrossRef ADS Google scholar
[40]
Z. Gao, F. Tao, and J. Ren, Unusually low thermal conductivity of atomically thin 2D tellurium, Nanoscale 10(27), 12997 (2018)
CrossRef ADS Google scholar
[41]
Y. Wang and J. Ren, Strain-driven switchable thermal conductivity in ferroelastic PdSe2, ACS Appl. Mater. Interfaces 13(29), 34724 (2021)
CrossRef ADS Google scholar
[42]
A. Maradudin and A. Fein, Scattering of neutrons by an anharmonic crystal, Phys. Rev. 128(6), 2589 (1962)
CrossRef ADS Google scholar
[43]
S. Hepplestone and G. Srivastava, Phonon-phonon interactions in single-wall carbon nanotubes, Phys. Rev. B 74(16), 165420 (2006)
CrossRef ADS Google scholar
[44]
P.Klemens, Thermal conductivity and lattice vibrational modes, in: Solid State Physics, Vol. 7, Elsevier, 1958, pp 1–98
[45]
J. Xie, S. de Gironcoli, S. Baroni, and M. Scheffler, First-principles calculation of the thermal properties of silver, Phys. Rev. B 59(2), 965 (1999)
CrossRef ADS Google scholar
[46]
L. Lindsay and D. Broido, Three-phonon phase space and lattice thermal conductivity in semiconductors, J. Phys.: Condens. Matter 20(16), 165209 (2008)
CrossRef ADS Google scholar
[47]
S. Ju, R. Yoshida, C. Liu, S. Wu, K. Hongo, T. Tadano, and J. Shiomi, Exploring diamond-like lattice thermal conductivity crystals via feature-based transfer learning, Phys. Rev. Mater. 5(5), 053801 (2021)
CrossRef ADS Google scholar
[48]
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[49]
G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef ADS Google scholar
[50]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef ADS Google scholar
[51]
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef ADS Google scholar
[52]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[53]
S. Baroni, S. De Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73(2), 515 (2001)
CrossRef ADS Google scholar
[54]
A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between Rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008)
CrossRef ADS Google scholar
[55]
B. Wei, Q. Sun, C. Li, and J. Hong, Phonon anharmonicity: A pertinent review of recent progress and perspective, Sci. China Phys. Mech. Astron. 64(11), 117001 (2021)
CrossRef ADS Google scholar
[56]
Z. Gao, G. Liu, and J. Ren, High thermoelectric performance in two-dimensional tellurium: An ab initio study, ACS Appl. Mater. Interfaces 10(47), 40702 (2018)
CrossRef ADS Google scholar
[57]
X. Zhou, Y. Yan, X. Lu, H. Zhu, X. Han, G. Chen, and Z. Ren, Routes for high-performance thermoelectric materials, Mater. Today 21(9), 974 (2018)
CrossRef ADS Google scholar
[58]
Y. Liu, D. Jia, Y. Zhou, Y. Zhou, J. Zhao, Q. Li, and B. Liu, Discovery of ABO4 Scheelites with the extra low thermal conductivity through high-throughput calculations, J. Materiomics 6(4), 702 (2020)
CrossRef ADS Google scholar
[59]
Y. Zhuo, A. Mansouri Tehrani, A. O. Oliynyk, A. C. Duke, and J. Brgoch, Identifying an efficient, thermally robust inorganic phosphor host via machine learning, Nat. Commun. 9(1), 4377 (2018)
CrossRef ADS Google scholar
[60]
H. Zhu, C. Zhao, P. Nan, X. Jiang, J. Zhao, B. Ge, C. Xiao, and Y. Xie, Intrinsically low lattice thermal conductivity in natural superlattice (Bi2)m(Bi2Te3)n thermoelectric materials, Chem. Mater. 33(4), 1140 (2021)
CrossRef ADS Google scholar

Declarations

The authors declare no competing interests and no conflicts.

Acknowledgements

We acknowledge the support from the National Natural Science Foundation of China (Nos. 11935010), the Natural Science Foundation of Shanghai (No. 23ZR1481200), the Program of Shanghai Academic Research Leader (No. 23XD1423800), the National Key R&D Program of China (Grant No. 2022YFA1404400), and the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(1979 KB)

Accesses

Citations

Detail

Sections
Recommended

/