Fast evaluating phonon life time and thermal conductivity determined by Grüneisen parameter and phase space size of three-phonon scattering
Yi Wang, Shenshen Yan, Xi Wu, Jie Ren
Fast evaluating phonon life time and thermal conductivity determined by Grüneisen parameter and phase space size of three-phonon scattering
Efficiently and fast seeking specific lattices with targeted phonon thermal conductivity plays an important role in the thermal design and thermal management of materials. How to efficiently and accurately evaluate the phonon lifetime determined by anharmonicity becomes a critical bottleneck when high-throughput measuring . Here, we propose a method of fast evaluating three-phonon scattering induced lifetime based on the many-body theory of phonon gas. In the high temperature limit, the phonon scattering rate is simply determined by the product of only two anharmonic parameters: the square of Grüneisen parameter and the phase space size of three-phonon scattering, both of which can be quickly derived from the harmonic phonon properties. We demonstrate the effectiveness of the method in high-throughput evaluating the in first-principles calculation, which exhibits a good consistence with our collected experimental data. This method shows promising application potential in exploring material screening of the targeted , which by improving the ability of characterizing phonon anharmonicity will further enhance the performance of prediction.
many-body theory / thermal conductivity / anharmonic properties / three-phonon scattering / first-principles calculation / high-throughput calculations
[1] |
M.BornK. Huang, Dynamical theory of crystal lattices, International Series of Monographs on Physics, Oxford University Press, Oxford, 1954
|
[2] |
G.P. Srivastava, The Physics of Phonons, Taylor & Francis, New York, 1990
|
[3] |
N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Phononics: Manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys. 84(3), 1045 (2012)
CrossRef
ADS
Google scholar
|
[4] |
Y. Li, W. Li, T. Han, X. Zheng, J. Li, B. Li, S. Fan, and C. W. Qiu, Transforming heat transfer with thermal metamaterials and devices, Nat. Rev. Mater. 6(6), 488 (2021)
CrossRef
ADS
Google scholar
|
[5] |
J. Chen, J. He, D. Pan, X. Wang, N. Yang, J. Zhu, S. A. Yang, and G. Zhang, Emerging theory and phenomena in thermal conduction: A selective review, Sci. China Phys. Mech. 65, 117002 (2022)
|
[6] |
A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, Photovoltaic materials: Present efficiencies and future challenges, Science 352(6283), aad4424 (2016)
CrossRef
ADS
Google scholar
|
[7] |
R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature 413(6856), 597 (2001)
CrossRef
ADS
Google scholar
|
[8] |
Y. Ammar, S. Joyce, R. Norman, Y. Wang, and A. P. Roskilly, Low grade thermal energy sources and uses from the process industry in the UK, Appl. Energy 89(1), 3 (2012)
CrossRef
ADS
Google scholar
|
[9] |
C. Liu, C. Wu, T. Song, Y. Zhao, J. Yang, P. Lu, G. Zhang, and Y. Chen, An efficient strategy for searching high lattice thermal conductivity materials, ACS Appl. Energy Mater. 5(12), 15356 (2022)
CrossRef
ADS
Google scholar
|
[10] |
M. M. Waldrop, The chips are down for Moore’s law, Nature 530(7589), 144 (2016)
CrossRef
ADS
Google scholar
|
[11] |
L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature 508(7496), 373 (2014)
CrossRef
ADS
Google scholar
|
[12] |
C. W. Li, J. Hong, A. F. May, D. Bansal, S. Chi, T. Hong, G. Ehlers, and O. Delaire, Orbitally driven giant phonon anharmonicity in SnSe, Nat. Phys. 11(12), 1063 (2015)
CrossRef
ADS
Google scholar
|
[13] |
J. He, M. Amsler, Y. Xia, S. S. Naghavi, V. I. Hegde, S. Hao, S. Goedecker, V. Ozoliņš, and C. Wolverton, Ultralow thermal conductivity in full Heusler semiconductors, Phys. Rev. Lett. 117(4), 046602 (2016)
CrossRef
ADS
Google scholar
|
[14] |
C. Chang and L. D. Zhao, Anharmoncity and low thermal conductivity in thermoelectrics, Mater. Today Phys. 4, 50 (2018)
CrossRef
ADS
Google scholar
|
[15] |
H.XieJ. YanX.GuH.Bao, A scattering rate model for accelerated evaluation of lattice thermal conductivity bypassing anharmonic force constants, J. Appl. Phys. 125(20), 205104 (2019)
|
[16] |
J. Ding, T. Lanigan-Atkins, M. Calderón-Cueva, A. Banerjee, D. L. Abernathy, A. Said, A. Zevalkink, and O. Delaire, Soft anharmonic phonons and ultralow thermal conductivity in Mg3(Sb,Bi)2 thermoelectrics, Sci. Adv. 7(21), eabg1449 (2021)
CrossRef
ADS
Google scholar
|
[17] |
J. Zhang, H. Zhang, and G. Zhang, Nanophononic metamaterials induced proximity effect in heat flux regulation, Front. Phys. 19(2), 23204 (2024)
CrossRef
ADS
Google scholar
|
[18] |
W. Li, J. Carrete, N. A. Katcho, and N. Mingo, ShengBTE: A solver of the Boltzmann transport equation for phonons, Comput. Phys. Commun. 185(6), 1747 (2014)
CrossRef
ADS
Google scholar
|
[19] |
Z. Han, X. Yang, W. Li, T. Feng, and X. Ruan, Fourphonon: An extension module to ShengBTE for computing four-phonon scattering rates and thermal conductivity, Comput. Phys. Commun. 270, 108179 (2022)
CrossRef
ADS
Google scholar
|
[20] |
J. S. Kang, M. Li, H. Wu, H. Nguyen, and Y. Hu, Experimental observation of high thermal conductivity in boron arsenide, Science 361(6402), 575 (2018)
CrossRef
ADS
Google scholar
|
[21] |
S. Mukhopadhyay, D. S. Parker, B. C. Sales, A. A. Puretzky, M. A. McGuire, and L. Lindsay, Two-channel model for ultralow thermal conductivity of crystalline Tl3VSe4, Science 360(6396), 1455 (2018)
CrossRef
ADS
Google scholar
|
[22] |
X. Qian, J. Zhou, and G. Chen, Phonon-engineered extreme thermal conductivity materials, Nat. Mater. 20(9), 1188 (2021)
CrossRef
ADS
Google scholar
|
[23] |
G. A. Slack, Nonmetallic crystals with high thermal conductivity, J. Phys. Chem. Solids 34(2), 321 (1973)
CrossRef
ADS
Google scholar
|
[24] |
C. Toher, J. J. Plata, O. Levy, M. De Jong, M. Asta, M. B. Nardelli, S. Curtarolo, and High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model, Phys. Rev. B 90(17), 174107 (2014)
CrossRef
ADS
Google scholar
|
[25] |
P. Nath, J. J. Plata, D. Usanmaz, C. Toher, M. Fornari, M. Buongiorno Nardelli, and S. Curtarolo, High throughput combinatorial method for fast and robust prediction of lattice thermal conductivity, Scr. Mater. 129, 88 (2017)
CrossRef
ADS
Google scholar
|
[26] |
J. Callaway, Model for lattice thermal conductivity at low temperatures, Phys. Rev. 113(4), 1046 (1959)
CrossRef
ADS
Google scholar
|
[27] |
J. Yan, P. Gorai, B. Ortiz, S. Miller, S. A. Barnett, T. Mason, V. Stevanović, and E. S. Toberer, Material descriptors for predicting thermoelectric performance, Energy Environ. Sci. 8(3), 983 (2015)
CrossRef
ADS
Google scholar
|
[28] |
D. G. Cahill, S. K. Watson, and R. O. Pohl, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B 46(10), 6131 (1992)
CrossRef
ADS
Google scholar
|
[29] |
D.R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings, Surf. Coat. Tech. 163–164, 67 (2003)
|
[30] |
S. Yan, Y. Wang, F. Tao, and J. Ren, High-throughput estimation of phonon thermal conductivity from first-principles calculations of elasticity, J. Phys. Chem. A 126(46), 8771 (2022)
CrossRef
ADS
Google scholar
|
[31] |
T. Pandey, C. A. Polanco, L. Lindsay, and D. S. Parker, Lattice thermal transport in La3Cu3X4 compounds (X = P, As, Sb, Bi): Interplay of anharmonicity and scattering phase space, Phys. Rev. B 95(22), 224306 (2017)
CrossRef
ADS
Google scholar
|
[32] |
M. Raya-Moreno, R. Rurali, and X. Cartoixà, Thermal conductivity for III−V and II−VI semiconductor wurtzite and zincblende polytypes: The role of anharmonicity and phase space, Phys. Rev. Mater. 3(8), 084607 (2019)
CrossRef
ADS
Google scholar
|
[33] |
L. Zhu, W. Li, and F. Ding, Giant thermal conductivity in diamane and the influence of horizontal reflection symmetry on phonon scattering, Nanoscale 11(10), 4248 (2019)
CrossRef
ADS
Google scholar
|
[34] |
M. K. Gupta, S. Kumar, R. Mittal, S. K. Mishra, S. Rols, O. Delaire, A. Thamizhavel, P. Sastry, and S. L. Chaplot, Distinct anharmonic characteristics of phonon-driven lattice thermal conductivity and thermal expansion in bulk MoSe2 and WSe2, J. Mater. Chem. A 11(40), 21864 (2023)
CrossRef
ADS
Google scholar
|
[35] |
Y. M. Zhao, C. Zhang, S. Shin, and L. Shen, Thermal conductivity of sliding bilayer h-BN and its manipulation with strain and layer confinement, J. Mater. Chem. C 11(32), 11082 (2023)
CrossRef
ADS
Google scholar
|
[36] |
A.WardD. BroidoD.A. StewartG.Deinzer, Ab initio theory of the lattice thermal conductivity in diamond, Phys. Rev. B 80(12), 125203 (2009)
|
[37] |
L. Lindsay, D. Broido, and T. Reinecke, First-principles determination of ultrahigh thermal conductivity of boron arsenide: A competitor for diamond, Phys. Rev. Lett. 111(2), 025901 (2013)
CrossRef
ADS
Google scholar
|
[38] |
D. A. Broido, M. Malorny, G. Birner, N. Mingo, and D. Stewart, Intrinsic lattice thermal conductivity of semiconductors from first principles, Appl. Phys. Lett. 91(23), 231922 (2007)
CrossRef
ADS
Google scholar
|
[39] |
T. Feng and X. Ruan, Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids, Phys. Rev. B 93(4), 045202 (2016)
CrossRef
ADS
Google scholar
|
[40] |
Z. Gao, F. Tao, and J. Ren, Unusually low thermal conductivity of atomically thin 2D tellurium, Nanoscale 10(27), 12997 (2018)
CrossRef
ADS
Google scholar
|
[41] |
Y. Wang and J. Ren, Strain-driven switchable thermal conductivity in ferroelastic PdSe2, ACS Appl. Mater. Interfaces 13(29), 34724 (2021)
CrossRef
ADS
Google scholar
|
[42] |
A. Maradudin and A. Fein, Scattering of neutrons by an anharmonic crystal, Phys. Rev. 128(6), 2589 (1962)
CrossRef
ADS
Google scholar
|
[43] |
S. Hepplestone and G. Srivastava, Phonon-phonon interactions in single-wall carbon nanotubes, Phys. Rev. B 74(16), 165420 (2006)
CrossRef
ADS
Google scholar
|
[44] |
P.Klemens, Thermal conductivity and lattice vibrational modes, in: Solid State Physics, Vol. 7, Elsevier, 1958, pp 1–98
|
[45] |
J. Xie, S. de Gironcoli, S. Baroni, and M. Scheffler, First-principles calculation of the thermal properties of silver, Phys. Rev. B 59(2), 965 (1999)
CrossRef
ADS
Google scholar
|
[46] |
L. Lindsay and D. Broido, Three-phonon phase space and lattice thermal conductivity in semiconductors, J. Phys.: Condens. Matter 20(16), 165209 (2008)
CrossRef
ADS
Google scholar
|
[47] |
S. Ju, R. Yoshida, C. Liu, S. Wu, K. Hongo, T. Tadano, and J. Shiomi, Exploring diamond-like lattice thermal conductivity crystals via feature-based transfer learning, Phys. Rev. Mater. 5(5), 053801 (2021)
CrossRef
ADS
Google scholar
|
[48] |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef
ADS
Google scholar
|
[49] |
G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef
ADS
Google scholar
|
[50] |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef
ADS
Google scholar
|
[51] |
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef
ADS
Google scholar
|
[52] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[53] |
S. Baroni, S. De Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73(2), 515 (2001)
CrossRef
ADS
Google scholar
|
[54] |
A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between Rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008)
CrossRef
ADS
Google scholar
|
[55] |
B. Wei, Q. Sun, C. Li, and J. Hong, Phonon anharmonicity: A pertinent review of recent progress and perspective, Sci. China Phys. Mech. Astron. 64(11), 117001 (2021)
CrossRef
ADS
Google scholar
|
[56] |
Z. Gao, G. Liu, and J. Ren, High thermoelectric performance in two-dimensional tellurium: An ab initio study, ACS Appl. Mater. Interfaces 10(47), 40702 (2018)
CrossRef
ADS
Google scholar
|
[57] |
X. Zhou, Y. Yan, X. Lu, H. Zhu, X. Han, G. Chen, and Z. Ren, Routes for high-performance thermoelectric materials, Mater. Today 21(9), 974 (2018)
CrossRef
ADS
Google scholar
|
[58] |
Y. Liu, D. Jia, Y. Zhou, Y. Zhou, J. Zhao, Q. Li, and B. Liu, Discovery of ABO4 Scheelites with the extra low thermal conductivity through high-throughput calculations, J. Materiomics 6(4), 702 (2020)
CrossRef
ADS
Google scholar
|
[59] |
Y. Zhuo, A. Mansouri Tehrani, A. O. Oliynyk, A. C. Duke, and J. Brgoch, Identifying an efficient, thermally robust inorganic phosphor host via machine learning, Nat. Commun. 9(1), 4377 (2018)
CrossRef
ADS
Google scholar
|
[60] |
H. Zhu, C. Zhao, P. Nan, X. Jiang, J. Zhao, B. Ge, C. Xiao, and Y. Xie, Intrinsically low lattice thermal conductivity in natural superlattice (Bi2)m(Bi2Te3)n thermoelectric materials, Chem. Mater. 33(4), 1140 (2021)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |