Strain-tunable electronic properties and quantum capacitance of ScHfCO2 MXene as supercapacitor electrodes

Hui Ding, Xiao-Hong Li, Rui-Zhou Zhang, Hong-Ling Cui

PDF(2802 KB)
PDF(2802 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (1) : 014211. DOI: 10.15302/frontphys.2025.014211
RESEARCH ARTICLE

Strain-tunable electronic properties and quantum capacitance of ScHfCO2 MXene as supercapacitor electrodes

Author information +
History +

Abstract

MXenes have wide applications in energy storage devices because of their compositional diversity. Electronic and optical properties, Bader charge and quantum capacitance of Janus ScHfCO2 MXene under biaxial strain are studied by density functional theory (DFT). The substitution of Hf atoms induces the decrease of the band gap of ScHfCO2, which changes from direct semiconductor into indirect semiconductor. Band gap generally increases with the increase of the tensile strain because of the blueshift of Sc-d and Hf-d orbits, and ScHfCO2 changes to M→K indirect semiconductor at +5% strain. ScHfCO2 under strains from −5% to +4% maintains the indirect bandgap characteristics. The appearance of built-in electric field in ScHfCO2 under strain improves the charge redistribution across Janus layer. ScHfCO2 under compressive strain has better conductivity than ScHfCO2 under tensile strain. ScHfCO2 under strains are all promising cathode materials. Larger voltage improves the character of cathode materials because of their much larger |Qc| when compared with those at aqueous system.

Graphical abstract

Keywords

Janus MXene / electronic properties / quantum capacitance / density functional theory / charge transfer

Cite this article

Download citation ▾
Hui Ding, Xiao-Hong Li, Rui-Zhou Zhang, Hong-Ling Cui. Strain-tunable electronic properties and quantum capacitance of ScHfCO2 MXene as supercapacitor electrodes. Front. Phys., 2025, 20(1): 014211 https://doi.org/10.15302/frontphys.2025.014211

References

[1]
C. Guan, J. L. Liu, Y. D. Wang, L. Mao, Z. X. Fan, Z. X. Shen, H. Zhang, and J. Wang, Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability, ACS Nano 9(5), 5198 (2015)
CrossRef ADS Google scholar
[2]
K. Poonam, K. Sharma, A. Arora, and S. K. Tripathi, Review of supercapacitors: Materials and devices, J. Energy Storage 21, 801 (2019)
CrossRef ADS Google scholar
[3]
M.ŞahinF.BlaabjergA.Sangwongwanich, A comprehensive review on supercapacitor applications and developments, Energies 15(3), 674 (2022)
[4]
J. J. Caparrós Mancera, J. L. Saenz, E. López, J. M. Andújar, F. Segura Manzano, F. J. Vivas, and F. Isorna, Experimental analysis of the effects of supercapacitor banks in a renewable DC microgrid, Appl. Energy 308, 118355 (2022)
CrossRef ADS Google scholar
[5]
A.MuzaffarM. B. AhamedK.DeshmukhJ.Thirumalai, A review on recent advances in hybrid supercapacitors: Design, fabrication and applications, Renew. Sustain. Energy Rev. 101, 123 (2019)
[6]
M. Y. Bhat, S. A. Hashmi, M. Khan, D. Choi, and A. Qurashi, Frontiers and recent developments on supercapacitor’s materials, design, and applications: Transport and power system applications, J. Energy Storage 58, 106104 (2023)
CrossRef ADS Google scholar
[7]
K. Keum, J. W. Kim, S. Y. Hong, J. G. Son, S. S. Lee, and J. S. Ha, Flexible/Stretchable supercapacitors with novel functionality for wearable electronics, Adv. Mater. 32(51), 2002180 (2020)
CrossRef ADS Google scholar
[8]
J. R. Miller and P. Simon, Electrochemical capacitors for energy management, Science 321(5889), 651 (2008)
CrossRef ADS Google scholar
[9]
P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7(11), 845 (2008)
CrossRef ADS Google scholar
[10]
Q. Zhou, L. Wang, W. Ju, D. Su, J. Zhu, Y. Yong, and S. Wu, Quantum capacitance of graphene-like/graphene heterostructures for supercapacitor electrodes, Electrochim. Acta 461, 142655 (2023)
CrossRef ADS Google scholar
[11]
J. Xia, F. Chen, J. Li, and N. Tao, Measurement of the quantum capacitance of graphene, Nat. Nanotechnol. 4(8), 505 (2009)
CrossRef ADS Google scholar
[12]
Y. Wang, Y. Wu, Y. Huang, F. Zhang, X. Yang, Y. Ma, and Y. Chen, Preventing graphene sheets from restacking for high-capacitance performance, J. Phys. Chem. C 115(46), 23192 (2011)
CrossRef ADS Google scholar
[13]
M. F. El-Kady, V. Strong, S. Dubin, and R. B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors, Science 335(6074), 1326 (2012)
CrossRef ADS Google scholar
[14]
Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, Supercapacitor devices based on graphene materials, J. Phys. Chem. C 113(30), 13103 (2009)
CrossRef ADS Google scholar
[15]
J. Chen, C. Li, and G. Shi, Graphene materials for electrochemical capacitors, J. Phys. Chem. Lett. 4(8), 1244 (2013)
CrossRef ADS Google scholar
[16]
S. Jana, A. Bandyopadhyay, S. Datta, D. Bhattacharya, and D. Jana, Emerging properties of carbon based 2D material beyond graphene, J. Phys.: Condens. Matter 34(5), 053001 (2021)
CrossRef ADS Google scholar
[17]
M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, MXenes: A new family of two-dimensional materials, Adv. Mater. 26(7), 992 (2014)
CrossRef ADS Google scholar
[18]
J.ZhouX. ZhaF.Y. ChenQ.YeP.Eklund S.DuQ.Huang, A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5, Angew. Chem. Int. Ed. 55(16), 5008 (2016)
[19]
B.AnasoriM. R. LukatskayaY.Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater. 2(2), 16098 (2017)
[20]
M. Naguib, M. W. Barsoum, and Y. Gogotsi, Ten years of progress in the synthesis and development of MXenes, Adv. Mater. 33(39), 2103393 (2021)
CrossRef ADS Google scholar
[21]
T. P. Nguyen, D. M. Tuan Nguyen, D. L. Tran, H. K. Le, D. V. N. Vo, S. S. Lam, R. S. Varma, M. Shokouhimehr, C. C. Nguyen, and Q. V. Le, MXenes: Applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO2 reduction, Mol. Catal. 486, 110850 (2020)
CrossRef ADS Google scholar
[22]
K. Zhang, D. Q. Li, H. Y. Cao, Q. H. Zhu, C. Trapalis, P. F. Zhu, X. H. Gao, and C. Y. Wang, Insights into different dimensional MXenes for photocatalysis, Chem. Eng. J. 424, 130340 (2021)
CrossRef ADS Google scholar
[23]
G. Shan, Z. Ding, and Y. Gogotsi, Two-dimensional MXenes and their applications, Front. Phys. 18, 13604 (2023)
CrossRef ADS Google scholar
[24]
X.ZhuY. ZhangM.LiuY.LiuY.Liu, 2D titanium carbide MXenes as emerging optical biosensing platforms, Biosens. Bioelectron. 171, 112730 (2021)
[25]
H. Huang, C. Dong, W. Feng, Y. Wang, B. Huang, and Y. Chen, Biomedical engineering of two-dimensional MXenes, Adv. Drug Deliv. Rev. 184, 114178 (2022)
CrossRef ADS Google scholar
[26]
S.AlwarappanN.NesakumarD.L. Sun T.Y. HuC. Z. Li, 2D metal carbides and nitrides (MXenes) for sensors and biosensors, Biosens. Bioelectron. 205, 113943 (2022)
[27]
C. Zhang, Y. L. Ma, X. T. Zhang, S. Abdolhosseinzadeh, H. W. Sheng, W. Lan, A. Pakdel, J. Heier, and F. Nüesch, Two-dimensional transition metal carbides and nitrides (MXenes): Synthesis, properties, and electrochemical energy storage applications, Energy Environ. Mater. 3(1), 29 (2020)
CrossRef ADS Google scholar
[28]
S. Nahirniak, A. Ray, and B. Saruhan, Challenges and future prospects of the MXene-based materials for energy storage applications, Batteries (Basel) 9(2), 126 (2023)
CrossRef ADS Google scholar
[29]
J. Zhang, Z. Cui, J. Liu, C. Li, H. Tan, G. Shan, and R. Ma, Bifunctional oxygen electrocatalysts for rechargeable zinc−air battery based on MXene and beyond, Front. Phys. 18, 13603 (2023)
CrossRef ADS Google scholar
[30]
R. Ma, Z. Chen, D. Zhao, X. Zhang, J. Zhuo, Y. Yin, X. Wang, G. Yang, and F. Yi, Ti3C2Tx MXene for electrode materials of supercapacitors, J. Mater. Chem. A 9(19), 11501 (2021)
CrossRef ADS Google scholar
[31]
Q. Z. Zhu, J. P. Li, P. Simon, and B. Xu, Two-dimensional MXenes for electrochemical capacitor applications: Progress, challenges and perspectives, Energy Storage Mater. 35, 630 (2021)
CrossRef ADS Google scholar
[32]
Z. Peng, J. Huang, and Z. Guo, Anisotropic Janus materials: From micro-/nanostructures to applications, Nanoscale 13(45), 18839 (2021)
CrossRef ADS Google scholar
[33]
X. Pang, C. Wan, M. Wang, and Z. Lin, Strictly biphasic soft and hard Janus structures: Synthesis, properties, and applications, Angew. Chem. Int. Ed. 53(22), 5524 (2014)
CrossRef ADS Google scholar
[34]
J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V. B. Shenoy, L. Shi, and J. Lou, Janus monolayer transition-metal dichalcogenides, ACS Nano 11(8), 8192 (2017)
CrossRef ADS Google scholar
[35]
A. Y. Lu, H. Zhu, J. Xiao, C. P. Chuu, Y. Han, M. H. Chiu, C. C. Cheng, C. W. Yang, K. H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D. A. Muller, M. Y. Chou, X. Zhang, and L. J. Li, Janus monolayers of transition metal dichalcogenides, Nat. Nanotechnol. 12(8), 744 (2017)
CrossRef ADS Google scholar
[36]
A. C. Riis-Jensen, T. Deilmann, T. Olsen, and K. S. Thygesen, Classifying the electronic and optical properties of Janus monolayers, ACS Nano 13(11), 13354 (2019)
CrossRef ADS Google scholar
[37]
M. Yagmurcukardes, Y. Qin, S. Ozen, M. Sayyad, F. M. Peeters, S. Tongay, and H. Sahin, Quantum properties and applications of 2D Janus crystals and their superlattices, Appl. Phys. Rev. 7(1), 011311 (2020)
CrossRef ADS Google scholar
[38]
L. Zhang, Z. J. F. Yang, T. Gong, R. K. Pan, H. D. Wang, Z. A. Guo, H. Zhang, and X. Fu, Recent advances in emerging Janus two-dimensional materials: From fundamental physics to device applications, J. Mater. Chem. A 8(18), 8813 (2020)
CrossRef ADS Google scholar
[39]
S. W. Ng, N. Noor, and Z. Zheng, Graphene-based two-dimensional Janus materials, NPG Asia Mater. 10(4), 217 (2018)
CrossRef ADS Google scholar
[40]
R. Li, Y. Cheng, and W. Huang, Recent progress of Janus 2D transition metal chalcogenides: From theory to experiments, Small 14(45), 1802091 (2018)
CrossRef ADS Google scholar
[41]
X.TangL. Kou, 2D Janus transition metal dichalcogenides: Properties and applications, Phys. Status Solidi B 259(4), 2100562 (2022)
[42]
W. Jin, S. Wu, and Z. Wang, Structural, electronic and mechanical properties of two-dimensional Janus transition metal carbides and nitrides, Physica E 103, 307 (2018)
CrossRef ADS Google scholar
[43]
B. Akgenc, Intriguing of two-dimensional Janus surface-functionalized MXenes: An ab initio calculation, Comput. Mater. Sci. 171, 109231 (2020)
CrossRef ADS Google scholar
[44]
R. Tang, S. Zhou, C. Li, R. Chen, L. Zhang, Z. Zhang, and L. Yin, Janus-structured Co-Ti3C2 MXene quantum dots as a Schottky catalyst for high-performance photoelectrochemical water oxidation, Adv. Funct. Mater. 30(19), 2000637 (2020)
CrossRef ADS Google scholar
[45]
P. Gao, M. Song, X. Wang, Q. Liu, S. He, Y. Su, and P. Qian, Theoretical study on the electronic structure and magnetic properties regulation of Janus structure of M’MCO2 2D MXenes, Nanomaterials (Basel) 12(3), 556 (2022)
CrossRef ADS Google scholar
[46]
M. Das and S. Ghosh, Improved charge storage capacity of supercapacitor electrodes by engineering surfaces: The case of Janus MXenes, J. Phys. Chem. C 128(3), 1014 (2024)
CrossRef ADS Google scholar
[47]
K. Xiong, Z. Cheng, J. Liu, P. F. Liu, Z. Zi, Computational studies on functionalized Janus MXenes MM′CT2, and (M = Zr, Hf, M ≠ M′; T = –O, –F, –OH): Photoelectronic properties and potential photocatalytic activities, RSC Advances 13(12), 7972 (2023)
CrossRef ADS Google scholar
[48]
Z. Guan, S. Ni, and S. Hu, Tunable electronic and optical properties of monolayer and multilayer Janus MoSSe as a photocatalyst for solar water splitting: A first-principles study, J. Phys. Chem. C 122(11), 6209 (2018)
CrossRef ADS Google scholar
[49]
Z. Peng, X. Chen, Y. Fan, D. J. Srolovitz, and D. Lei, Strain engineering of 2D semiconductors and graphene: From strain fields to band-structure tuning and photonic applications, Light Sci. Appl. 9(1), 190 (2020)
CrossRef ADS Google scholar
[50]
L. L. Hou, J. H. Li, C. C. Cui, X. H. Li, R. Z. Zhang, and H. L. Cui, Biaxial strain tunable electronic properties, photocatalytic properties and quantum capacitance of Sc2CO2 MXenes, Vacuum 212, 112016 (2023)
CrossRef ADS Google scholar
[51]
R. P. Reji, S. K. C. Balaji, Y. Sivalingam, Y. Kawazoe, and S. Velappa Jayaraman, First-principles density functional theory calculations on the potential of Sc2CO2 MXene nanosheets as a dual-mode sensor for detection of volatile organic compounds in exhaled human breath, ACS Appl. Nano Mater. 6(7), 5345 (2023)
CrossRef ADS Google scholar
[52]
X. H. Zha, Q. Huang, J. He, H. He, J. Zhai, J. S. Francisco, and S. Du, The thermal and electrical properties of the promising semiconductor MXene Hf2CO2, Sci. Rep. 6, 27971 (2016)
CrossRef ADS Google scholar
[53]
X. Li, Y. Dai, Y. Ma, Q. Liu, B. Huang, and Intriguing electronic properties of two dimensional MoS2/TM2CO2 (TM= Ti, Zr, or Hf) hetero-bilayers: Type-II semiconductors with tunable band gaps, Nanotechnology 26(13), 135703 (2015)
CrossRef ADS Google scholar
[54]
A. Jain, Y. Shin, and K. A. Persson, Computational predictions of energy materials using density functional theory, Nat. Rev. Mater. 1(1), 15004 (2016)
CrossRef ADS Google scholar
[55]
H. Levämäki, M. Kuisma, and K. Kokko, Space partitioning of exchange-correlation functionals with the projector augmented-wave method, J. Chem. Phys. 150(5), 054101 (2019)
CrossRef ADS Google scholar
[56]
H. W. Peng and J. P. Perdew, Rehabilitation of the Perdew–Burke–Ernzerhof generalized gradient approximation for layered materials, Phys. Rev. B 95(8), 081105 (2017)
CrossRef ADS Google scholar
[57]
P. Bandyopadhyay, Priya, and M. Sadhukhan, A simple fragment-based method for van der waals corrections over density functional theory, Phys. Chem. Chem. Phys. 24(14), 8508 (2022)
CrossRef ADS Google scholar
[58]
D. L. John, L. C. Castro, and D. L. Pulfrey, Quantum capacitance in nanoscale device modeling, J. Appl. Phys. 96(9), 5180 (2004)
CrossRef ADS Google scholar
[59]
E.PaekA. J. PakG.S. Hwang, A computational study of the interfacial structure and capacitance of graphene in [BMIM][PF6] ionic liquid, J. Electrochem. Soc. 160(1), A1 (2013)
[60]
P. Hirunsit, M. Liangruksa, and P. Khanchaitit, Electronic structures and quantum capacitance of monolayer and multilayer graphenes influenced by Al, B, N and P doping, and monovacancy: Theoretical study, Carbon 108, 7 (2016)
CrossRef ADS Google scholar
[61]
Z. Zhang, X. H. Li, R. Z. Zhang, H. L. Cui, and H. T. Yan, First-principles calculations of the electronic, optical properties and quantum capacitance of Mn doped Sc2CO2 monolayer under biaxial strain, J. Energy Storage 71, 108222 (2023)
CrossRef ADS Google scholar
[62]
Y. Zhang, B. Sa, J. Zhou, and Z. Sun, Two-dimensional (Zr0.5Hf0.5)2CO2: A promising visible light water-splitting photocatalyst with efficiently carrier separation, Comput. Mater. Sci. 186, 110013 (2021)
CrossRef ADS Google scholar
[63]
X. H. Li, X. H. Cui, R. Z. Zhang, and H. L. Cui, The effect of biaxial strain on the electronic properties, quantum capacitance and diffusion of Li adsorption on Sc2CO2 MXene, J. Energy Storage 74, 109159 (2023)
CrossRef ADS Google scholar
[64]
H. M. Hu and G. Ouyang, Interface-induced transition from Schottky-to-Ohmic contact in Sc2CO2-based multiferroic heterojunctions, Phys. Chem. Chem. Phys. 23(2), 827 (2021)
CrossRef ADS Google scholar
[65]
H. Zhang, X. H. Li, R. Z. Zhang, H. L. Cui, Electronic structures, optical properties, and quantum capacitance of 2D Janus ZrMCO2 (M = Sc, Ta, W) MXenes for supercapacitor electrodes, Ceram. Int. 50(11), 18932 (2024)
CrossRef ADS Google scholar
[66]
X. C. Ma, Y. Dai, L. Yu, and B. B. Huang, Energy transfer in plasmonic photocatalytic composites, Light Sci. Appl. 5(2), e16017 (2016)
CrossRef ADS Google scholar

Declarations

The authors declare no competing interests and no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.15302/frontphys.2025.014211.

RIGHTS & PERMISSIONS

2024 Higher Education Press
PDF(2802 KB)

Accesses

Citations

Detail

Sections
Recommended

/