Coexistence of short- and long-term memory in NbOx-based memristor for a nonlinear reservoir computing system

Heeseong Jang, Jungang Heo, Jihee Park, Hyesung Na, Sungjun Kim

PDF(3892 KB)
PDF(3892 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (1) : 014208. DOI: 10.15302/frontphys.2025.014208
RESEARCH ARTICLE

Coexistence of short- and long-term memory in NbOx-based memristor for a nonlinear reservoir computing system

Author information +
History +

Abstract

In this study, TiN/NbOx/Pt memristor devices with short-term memory (STM) and self-rectifying characteristics are used for reservoir computing. The STM characteristics of the device are detected using direct current sweep and pulse transients. The self-rectifying characteristics of the device can be explained by the work function differences between the TiN and Pt electrodes. Furthermore, neural network simulations were conducted for pattern recognition accuracy when the conductance was used as the synaptic weight. The emulation of synaptic memory and forgetfulness by short-term memory effects are demonstrated using paired-pulse facilitation and excitatory postsynaptic potential. The efficient training reservoir computing consisted of all 16 states (4-bit) in the memristor device as a physical reservoir and the artificial neural network simulation as a read-out layer and yielded a pattern recognition accuracy of 92.34% for the modified National Institute of Standards and Technology dataset. Finally, it is found that STM and long-term memory in the device coexist by adjusting the intensity of pulse stimulation.

Graphical abstract

Keywords

memristor / resistive switching / neural network / reservoir computing

Cite this article

Download citation ▾
Heeseong Jang, Jungang Heo, Jihee Park, Hyesung Na, Sungjun Kim. Coexistence of short- and long-term memory in NbOx-based memristor for a nonlinear reservoir computing system. Front. Phys., 2025, 20(1): 014208 https://doi.org/10.15302/frontphys.2025.014208

References

[1]
X. Zou, S. Xu, X. Chen, L. Yan, and Y. Han, Breaking the von Neumann bottleneck: Architecture-level processing-in-memory technology, Sci. China Inf. Sci. 64(6), 160404 (2021)
CrossRef ADS Google scholar
[2]
H. T. Zhang, P. Panda, J. Lin, Y. Kalcheim, K. Wang, J. W. Freeland, D. D. Fong, S. Priya, I. K. Schuller, S. K. R. S. Sankaranarayanan, K. Roy, and S. Ramanathan, Organismic materials for beyond von Neumann machines, Appl. Phys. Rev. 7(1), 011309 (2020)
CrossRef ADS Google scholar
[3]
H. H. Radamson, H. Zhu, Z. Wu, X. He, H. Lin, J. Liu, J. Xiang, Z. Kong, W. Xiong, J. Li, H. Cui, J. Gao, H. Yang, Y. Du, B. Xu, B. Li, X. Zhao, J. Yu, Y. Dong, and G. Wang, State of the art and future perspectives in advanced CMOS technology, Nanomaterials 10(8), 1555 (2020)
CrossRef ADS Google scholar
[4]
S. W. Sun and P. G. Y. Tsui, Limitation of CMOS supply-voltage scaling by MOSFET threshold-voltage variation, IEEE J. Solid-State Circuits 30(8), 947 (1995)
CrossRef ADS Google scholar
[5]
D. Liu, H. Yu, and Y. Chai, Low‐power computing with neuromorphic engineering, Adv. Intell. Syst. 3(2), 2000150 (2021)
CrossRef ADS Google scholar
[6]
W. Banerjee, Challenges and applications of emerging nonvolatile memory devices, Electronics 9(6), 1029 (2020)
CrossRef ADS Google scholar
[7]
Y.ZhuH. MaoY.ZhuX.WangC.Fu S.KeC.Wan Q.Wan, CMOS-compatible neuromorphic devices for neuromorphic perception and computing: A review, Int. J. Extreme Manuf. 5(4), 042010 (2023)
[8]
M. Rao, H. Tang, J. Wu, W. Song, M. Zhang, W. Yin, Y. Zhuo, F. Kiani, B. Chen, X. Jiang, H. Liu, H. Y. Chen, R. Midya, F. Ye, H. Jiang, Z. Wang, M. Wu, M. Hu, H. Wang, Q. Xia, N. Ge, J. Li, and J. J. Yang, Thousands of conductance levels in memristors integrated on CMOS, Nature 615(7954), 823 (2023)
CrossRef ADS Google scholar
[9]
X. Zhang, J. Lu, Z. Wang, R. Wang, J. Wei, T. Shi, C. Dou, Z. Wu, J. Zhu, D. Shang, G. Xing, M. Chan, Q. Liu, and M. Liu, Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks, Sci. Bull. (Beijing) 66(16), 1624 (2021)
CrossRef ADS Google scholar
[10]
A. Mehonic, A. Sebastian, B. Rajendran, O. Simeone, E. Vasilaki, and A. J. Kenyon, Memristors — From in-memory computing, deep learning acceleration, and spiking neural networks to the future of neuromorphic and bio-inspired computing, Adv. Intell. Syst. 2(11), 2000085 (2020)
CrossRef ADS Google scholar
[11]
D. Marković, A. Mizrahi, D. Querlioz, and J. Grollier, Physics for neuromorphic computing, Nat. Rev. Phys. 2(9), 499 (2020)
CrossRef ADS Google scholar
[12]
A. Gumyusenge, A. Melianas, S. T. Keene, and A. Salleo, Materials strategies for organic neuromorphic devices, Annu. Rev. Mater. Res. 51(1), 47 (2021)
CrossRef ADS Google scholar
[13]
Q. Wang, G. Niu, W. Ren, R. Wang, X. Chen, X. Li, Z. G. Ye, Y. H. Xie, S. Song, and Z. Song, Phase change random access memory for neuro-inspired computing, Adv. Electron. Mater. 7(6), 2001241 (2021)
CrossRef ADS Google scholar
[14]
D. Takashima and I. Kunishima, High-density chain ferroelectric random access memory (Chain FRAM), IEEE J. Solid-State Circuits 33(5), 787 (1998)
CrossRef ADS Google scholar
[15]
S. Tehrani, J. M. Slaughter, E. Chen, M. Durlam, J. Shi, and M. Deherrera, Progress and outlook for MRAM technology, IEEE Trans. Magn. 35(5), 2814 (1999)
CrossRef ADS Google scholar
[16]
Y. Chen, ReRAM: History, status, and future, IEEE Trans. Electron Dev. 67(4), 1420 (2020)
CrossRef ADS Google scholar
[17]
H. Wang and X. Yan, Overview of resistive random access memory (RRAM): Materials, filament mechanisms, performance optimization, and prospects, Phys. Stat. Sol. 13(9), 1900073 (2019)
CrossRef ADS Google scholar
[18]
K. M. Kim, D. S. Jeong, and C. S. Hwang, Nanofilamentary resistive switching in binary oxide system: A review on the present status and outlook, Nanotechnology 22(25), 254002 (2011)
CrossRef ADS Google scholar
[19]
W.C. WeiC. J. JhangY.R. ChenC.X. XueS.H. Sie J.L. LeeH. W. KuoC.C. LuM.F. ChangK.T. Tang, A relaxed quantization training method for hardware limitations of resistive random access memory (ReRAM)-based computing-in-memory, IEEE J. Exploratory Solid-State Comput. Devices & Circuits 6(1), 45 (2020)
[20]
F. Zahoor, T. Z. Azni Zulkifli, and F. A. Khanday, Resistive random access memory (RRAM): An overview of materials, switching mechanism, performance, multilevel cell (Mlc) storage, modeling, and applications, Nanoscale Res. Lett. 15(1), 1 (2020)
CrossRef ADS Google scholar
[21]
H. Ji, Y. Lee, J. Heo, and S. Kim, Improved resistive and synaptic switching performances in bilayer ZrOx/HfOx devices, J. Alloys Compd. 962, 171096 (2023)
CrossRef ADS Google scholar
[22]
H. Cho and S. Kim, Short-term memory dynamics of TiN/Ti/TiO2/SiOx/Si resistive random access memory, Nanomaterials 10(9), 1821 (2020)
CrossRef ADS Google scholar
[23]
S.R. LeeY. B. KimM.ChangK.M. KimC.B. Lee J.H. HurG. S. ParkD.LeeM.J. LeeC.J. Kim U.I. ChungI. K. YooK.Kim, Multi-level switching of triple-layered TaOx RRAM with excellent reliability for storage class memory, Digest of Technical Papers - Symposium on VLSI Technology 2012, pp 71–72
[24]
J. Park, M. Kwak, K. Moon, J. Woo, D. Lee, and H. Hwang, TiOx-based RRAM synapse with 64-levels of conductance and symmetric conductance change by adopting a hybrid pulse scheme for neuromorphic computing, IEEE Electron Device Lett. 37(12), 1559 (2016)
CrossRef ADS Google scholar
[25]
C. Wang, H. Wu, B. Gao, W. Wu, L. Dai, X. Li, and H. Qian, Ultrafast RESET analysis of HfOx-based RRAM by sub-nanosecond pulses, Adv. Electr. Mater. 3(12), 1700263 (2017)
CrossRef ADS Google scholar
[26]
S.T. KimJ. Cho, Improvement of multi-level resistive switching characteristics in solution-processed AlOx-based non-volatile resistive memory using microwave irradiation, Semicond. Sci. Technol. 33, 015009 (2018)
[27]
L. Gao, P. Y. Chen, and S. Yu, NbOx-based oscillation neuron for neuromorphic computing, Appl. Phys. Lett. 111(10), 103503 (2017)
CrossRef ADS Google scholar
[28]
M. Herzig, M. Weiher, A. Ascoli, R. Tetzlaff, T. Mikolajick, and S. Slesazeck, Multiple slopes in the negative differential resistance region of NbOx-based threshold switches, J. Phys. D: Appl. Phys. 52, 325104 (2019)
CrossRef ADS Google scholar
[29]
Z. Zhou, M. Yang, Z. Fu, H. Wang, X. Ma, and H. Gao, Electrode-induced polarity conversion in Nb2O5/NbOx resistive switching devices, Appl. Phys. Lett. 117(24), 243502 (2020)
CrossRef ADS Google scholar
[30]
S. Kumar, N. Davila, Z. Wang, X. Huang, J. P. Strachan, D. Vine, A. L. David Kilcoyne, Y. Nishi, and R. S. Williams, Spatially uniform resistance switching of low current, high endurance titanium–niobium–oxide memristors, Nanoscale 9(5), 1793 (2017)
CrossRef ADS Google scholar
[31]
A. C. Kozen, Z. R. Robinson, E. R. Glaser, M. Twigg, T. J. Larrabee, H. Cho, S. M. Prokes, and L. B. Ruppalt, In situ hydrogen plasma exposure for varying the stoichiometry of atomic layer deposited niobium oxide films for use in neuromorphic computing applications, ACS Appl. Mater. Interfaces 12(14), 16639 (2020)
CrossRef ADS Google scholar
[32]
A. K. McAllister, L. C. Katz, and D. C. Lo, Neurotrophins and synaptic plasticity, Annu. Rev. Neurosci. 22(1), 295 (1999)
CrossRef ADS Google scholar
[33]
J. J. Kim, E. Y. Song, J. J. Kim, E. Y. Song, and T. A. Kosten, Stress effects in the hippocampus: Synaptic plasticity and memory, Stress 9(1), 1 (2006)
CrossRef ADS Google scholar
[34]
M. Di Filippo, B. Picconi, M. Tantucci, V. Ghiglieri, V. Bagetta, C. Sgobio, A. Tozzi, L. Parnetti, and P. Calabresi, Short-term and long-term plasticity at corticostriatal synapses: Implications for learning and memory, Behav. Brain Res. 199(1), 108 (2009)
CrossRef ADS Google scholar
[35]
O. Kwon, J. Shin, D. Chung, and S. Kim, Energy efficient short-term memory characteristics in Ag/SnOx/TiN RRAM for neuromorphic system, Ceram. Int. 48(20), 30482 (2022)
CrossRef ADS Google scholar
[36]
E.CoviY. H. LinW.WangT.StecconiV.Milo A.BricalliE. AmbrosiG.PedrettiT.-Y. TsengD.Ielmini, A Volatile RRAM Synapse for Neuromorphic Computing, IEEE, 2019
[37]
C. Y. Lin, J. Chen, P. H. Chen, T. C. Chang, Y. Wu, J. K. Eshraghian, J. Moon, S. Yoo, Y. H. Wang, W. C. Chen, Z. Y. Wang, H. C. Huang, Y. Li, X. Miao, W. D. Lu, and S. M. Sze, Adaptive synaptic memory via lithium ion modulation in RRAM devices, Small 16(42), 2003964 (2020)
CrossRef ADS Google scholar
[38]
J. Woo, K. Moon, J. Song, M. Kwak, J. Park, and H. Hwang, Optimized programming scheme enabling linear potentiation in filamentary HfO2 RRAM synapse for neuromorphic systems, IEEE Trans. Electron Dev. 63(12), 5064 (2016)
CrossRef ADS Google scholar
[39]
N. He, F. Ye, J. Liu, T. Sun, X. Wang, W. Hou, W. Shao, X. Wan, Y. Tong, F. Xu, and Y. Sheng, Multifunctional Ag–In–Zn–S/Cs3Cu2Cl5-based memristors with coexistence of non-volatile memory and volatile threshold switching behaviors for neuroinspired computing, Adv. Electron. Mater. 9(3), 2201038 (2023)
CrossRef ADS Google scholar
[40]
N. He, F. Ye, J. Liu, T. Sun, X. Wang, W. Hou, W. Shao, X. Wan, Y. Tong, F. Xu, and Y. Sheng, Multifunctional Ag−In−Zn−S/Cs3Cu2Cl5-based memristors with coexistence of non-volatile memory and volatile threshold switching behaviors for neuroinspired computing, Adv. Electr. Mater. 9(3), 2201038 (2023)
CrossRef ADS Google scholar
[41]
B. Qu, H. Du, T. Wan, X. Lin, A. Younis, and D. Chu, Synaptic plasticity and learning behavior in transparent tungsten oxide-based memristors, Mater. Des. 129, 173 (2017)
CrossRef ADS Google scholar
[42]
S. Ramaraj, J. Seo, and Intensive-visible-light-responsive ANbO2N (A = Sr, Ba) synthesized from layered perovskite A5Nb4O15 for enhanced photoelectrochemical water splitting, J. Energy Chem. 68, 529 (2022)
CrossRef ADS Google scholar
[43]
H. So, J. K. Lee, and S. Kim, Short-term memory characteristics in n-type-ZnO/p-type-NiO heterojunction synaptic devices for reservoir computing, Appl. Surf. Sci. 625, 157153 (2023)
CrossRef ADS Google scholar
[44]
S. Bagdzevicius, K. Maas, M. Boudard, and M. Burriel, Interface-type resistive switching in perovskite materials, J. Electroceramics 39, 157 (2022)
CrossRef ADS Google scholar
[45]
S. Kunwar, Z. Jernigan, Z. Hughes, C. Somodi, M. D. Saccone, F. Caravelli, P. Roy, D. Zhang, H. Wang, Q. Jia, J. L. MacManus-Driscoll, G. Kenyon, A. Sornborger, W. Nie, and A. Chen, An interface-type memristive device for artificial synapse and neuromorphic computing, Adv. Intell. Syst. 5(8), 2370032 (2023)
CrossRef ADS Google scholar
[46]
A. Calzolari and A. Catellani, Controlling the TiN electrode work function at the atomistic level: A first principles investigation, IEEE Access 8, 156308 (2020)
CrossRef ADS Google scholar
[47]
G. N. Derry and J. Z. Zhang, Work function of Pt(111), Phys. Rev. B 39(3), 1940 (1989)
CrossRef ADS Google scholar
[48]
Z. Zhou, M. Yang, Z. Fu, H. Wang, X. Ma, and H. Gao, Electrode-induced polarity conversion in Nb2O5/NbOx resistive switching devices, Appl. Phys. Lett. 117(24), 243502 (2020)
CrossRef ADS Google scholar
[49]
H. Ryu and S. Kim, Self-rectifying resistive switching and short-term memory characteristics in Pt/HfO2/TaOx/TiN artificial synaptic device, Nanomaterials 10(11), 2159 (2020)
CrossRef ADS Google scholar
[50]
J. Kim, Y. Park, J. K. Lee, and S. Kim, Preliminary investigation on the implementation of an artificial synapse using TaOx-based memristor with thermally oxidized active layer, J. Chem. Phys. 159(21), 214711 (2023)
CrossRef ADS Google scholar
[51]
M. Ismail, M. Rasheed, C. Mahata, M. Kang, and S. Kim, Nano-crystalline ZnO memristor for neuromorphic computing: Resistive switching and conductance modulation, J. Alloys Compound. 960, 170846 (2023)
CrossRef ADS Google scholar
[52]
A. Basbaum, R. Buckner, D. Clapham, P. De Camilli, B. Everitt, M. Kennedy, L. Nadel, D. O’leary, C. Stern, P. Tam, R. W. Tsien, and R. Yuste, Reviews and comment from nature journals, Nat. Rev. Neurosci. 2, 751 (2001)
CrossRef ADS Google scholar
[53]
J. Kim, D. Kim, K. K. Min, M. Kraatz, T. Han, and S. Kim, Effect of Al concentration on ferroelectric properties in HfAlOx-based ferroelectric tunnel junction devices for neuroinspired applications, Adv. Intell. Syst. 5(8), 2370036 (2023)
CrossRef ADS Google scholar
[54]
C. Du, F. Cai, M. A. Zidan, W. Ma, S. H. Lee, and W. D. Lu, Reservoir computing using dynamic memristors for temporal information processing, Nat. Commun. 8, 2204 (2017)
CrossRef ADS Google scholar
[55]
M. Ismail, M. Rasheed, C. Mahata, M. Kang, and S. Kim, Mimicking biological synapses with A-HfSiOx-based memristor: Implications for artificial intelligence and memory applications, Nano Convergence 10, 33 (2023)
CrossRef ADS Google scholar
[56]
S. Deswal, A. Kumar, and A. Kumar, NbOx based memristor as artificial synapse emulating short term plasticity, AIP Adv. 9(9), 095022 (2019)
CrossRef ADS Google scholar
[57]
J. Xu, Y. Zhu, Y. Liu, H. Wang, Z. Zou, H. Ma, X. Wu, and R. Xiong, Improved performance of NbOx resistive switching memory by in-situ N doping, Nanomaterials (Basel) 12(6), 1029 (2022)
CrossRef ADS Google scholar
[58]
S. Deswal, A. Jain, H. Borkar, A. Kumar, and A. Kumar, Conduction and switching mechanism in Nb2O5 thin films based resistive switches, Europhys. Lett. 116(1), 17003 (2016)
CrossRef ADS Google scholar
[59]
J. Xu, H. Wang, Y. Zhu, Y. Liu, Z. Zou, G. Li, and R. Xiong, Tunable digital-to-analog switching in Nb2O5-based resistance switching devices by oxygen vacancy engineering, Appl. Surf. Sci. 579, 152114 (2022)
CrossRef ADS Google scholar
[60]
J. Xu, Z. Dong, Y. Liu, Y. Zhu, H. Wang, J. Cheng, C. Zheng, and R. Xiong, Conversion from memory to threshold resistance switching behavior by modulating compliance current, Appl. Phys. Lett. 123(20), 203501 (2023)
CrossRef ADS Google scholar
[61]
J. N. Huang, T. Wang, H. M. Huang, and X. Guo, Adaptive SRM neuron based on NbOx memristive device for neuromorphic computing, Chip (Wurzbg.) 1(2), 100015 (2022)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author contributions

Heesung Jang: Formal analysis; Investigation – performed the experiments; Resources; Writing – original draft. Jungang Heo, Jihee Park, Hyesung Na: Investigation – data/evidence collection; Computation; Formal analysis. Sungjun Kim: Conceptualization; Writing – review & editing; Resources; Project administration; Funding acquisition.

Data availability

The data that support the findings of this study are available within the article and its supplementary material and from the corresponding authors upon reasonable request.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.15302/frontphys.2025.014208.

Acknowledgements

This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (RS-2024-00356939 and RS-2024-00405691).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(3892 KB)

Accesses

Citations

Detail

Sections
Recommended

/