Coexistence of short- and long-term memory in NbOx-based memristor for a nonlinear reservoir computing system
Heeseong Jang, Jungang Heo, Jihee Park, Hyesung Na, Sungjun Kim
Coexistence of short- and long-term memory in NbOx-based memristor for a nonlinear reservoir computing system
In this study, TiN/NbOx/Pt memristor devices with short-term memory (STM) and self-rectifying characteristics are used for reservoir computing. The STM characteristics of the device are detected using direct current sweep and pulse transients. The self-rectifying characteristics of the device can be explained by the work function differences between the TiN and Pt electrodes. Furthermore, neural network simulations were conducted for pattern recognition accuracy when the conductance was used as the synaptic weight. The emulation of synaptic memory and forgetfulness by short-term memory effects are demonstrated using paired-pulse facilitation and excitatory postsynaptic potential. The efficient training reservoir computing consisted of all 16 states (4-bit) in the memristor device as a physical reservoir and the artificial neural network simulation as a read-out layer and yielded a pattern recognition accuracy of 92.34% for the modified National Institute of Standards and Technology dataset. Finally, it is found that STM and long-term memory in the device coexist by adjusting the intensity of pulse stimulation.
memristor / resistive switching / neural network / reservoir computing
[1] |
X. Zou, S. Xu, X. Chen, L. Yan, and Y. Han, Breaking the von Neumann bottleneck: Architecture-level processing-in-memory technology, Sci. China Inf. Sci. 64(6), 160404 (2021)
CrossRef
ADS
Google scholar
|
[2] |
H. T. Zhang, P. Panda, J. Lin, Y. Kalcheim, K. Wang, J. W. Freeland, D. D. Fong, S. Priya, I. K. Schuller, S. K. R. S. Sankaranarayanan, K. Roy, and S. Ramanathan, Organismic materials for beyond von Neumann machines, Appl. Phys. Rev. 7(1), 011309 (2020)
CrossRef
ADS
Google scholar
|
[3] |
H. H. Radamson, H. Zhu, Z. Wu, X. He, H. Lin, J. Liu, J. Xiang, Z. Kong, W. Xiong, J. Li, H. Cui, J. Gao, H. Yang, Y. Du, B. Xu, B. Li, X. Zhao, J. Yu, Y. Dong, and G. Wang, State of the art and future perspectives in advanced CMOS technology, Nanomaterials 10(8), 1555 (2020)
CrossRef
ADS
Google scholar
|
[4] |
S. W. Sun and P. G. Y. Tsui, Limitation of CMOS supply-voltage scaling by MOSFET threshold-voltage variation, IEEE J. Solid-State Circuits 30(8), 947 (1995)
CrossRef
ADS
Google scholar
|
[5] |
D. Liu, H. Yu, and Y. Chai, Low‐power computing with neuromorphic engineering, Adv. Intell. Syst. 3(2), 2000150 (2021)
CrossRef
ADS
Google scholar
|
[6] |
W. Banerjee, Challenges and applications of emerging nonvolatile memory devices, Electronics 9(6), 1029 (2020)
CrossRef
ADS
Google scholar
|
[7] |
Y.ZhuH. MaoY.ZhuX.WangC.Fu S.KeC.Wan Q.Wan, CMOS-compatible neuromorphic devices for neuromorphic perception and computing: A review, Int. J. Extreme Manuf. 5(4), 042010 (2023)
|
[8] |
M. Rao, H. Tang, J. Wu, W. Song, M. Zhang, W. Yin, Y. Zhuo, F. Kiani, B. Chen, X. Jiang, H. Liu, H. Y. Chen, R. Midya, F. Ye, H. Jiang, Z. Wang, M. Wu, M. Hu, H. Wang, Q. Xia, N. Ge, J. Li, and J. J. Yang, Thousands of conductance levels in memristors integrated on CMOS, Nature 615(7954), 823 (2023)
CrossRef
ADS
Google scholar
|
[9] |
X. Zhang, J. Lu, Z. Wang, R. Wang, J. Wei, T. Shi, C. Dou, Z. Wu, J. Zhu, D. Shang, G. Xing, M. Chan, Q. Liu, and M. Liu, Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks, Sci. Bull. (Beijing) 66(16), 1624 (2021)
CrossRef
ADS
Google scholar
|
[10] |
A. Mehonic, A. Sebastian, B. Rajendran, O. Simeone, E. Vasilaki, and A. J. Kenyon, Memristors — From in-memory computing, deep learning acceleration, and spiking neural networks to the future of neuromorphic and bio-inspired computing, Adv. Intell. Syst. 2(11), 2000085 (2020)
CrossRef
ADS
Google scholar
|
[11] |
D. Marković, A. Mizrahi, D. Querlioz, and J. Grollier, Physics for neuromorphic computing, Nat. Rev. Phys. 2(9), 499 (2020)
CrossRef
ADS
Google scholar
|
[12] |
A. Gumyusenge, A. Melianas, S. T. Keene, and A. Salleo, Materials strategies for organic neuromorphic devices, Annu. Rev. Mater. Res. 51(1), 47 (2021)
CrossRef
ADS
Google scholar
|
[13] |
Q. Wang, G. Niu, W. Ren, R. Wang, X. Chen, X. Li, Z. G. Ye, Y. H. Xie, S. Song, and Z. Song, Phase change random access memory for neuro-inspired computing, Adv. Electron. Mater. 7(6), 2001241 (2021)
CrossRef
ADS
Google scholar
|
[14] |
D. Takashima and I. Kunishima, High-density chain ferroelectric random access memory (Chain FRAM), IEEE J. Solid-State Circuits 33(5), 787 (1998)
CrossRef
ADS
Google scholar
|
[15] |
S. Tehrani, J. M. Slaughter, E. Chen, M. Durlam, J. Shi, and M. Deherrera, Progress and outlook for MRAM technology, IEEE Trans. Magn. 35(5), 2814 (1999)
CrossRef
ADS
Google scholar
|
[16] |
Y. Chen, ReRAM: History, status, and future, IEEE Trans. Electron Dev. 67(4), 1420 (2020)
CrossRef
ADS
Google scholar
|
[17] |
H. Wang and X. Yan, Overview of resistive random access memory (RRAM): Materials, filament mechanisms, performance optimization, and prospects, Phys. Stat. Sol. 13(9), 1900073 (2019)
CrossRef
ADS
Google scholar
|
[18] |
K. M. Kim, D. S. Jeong, and C. S. Hwang, Nanofilamentary resistive switching in binary oxide system: A review on the present status and outlook, Nanotechnology 22(25), 254002 (2011)
CrossRef
ADS
Google scholar
|
[19] |
W.C. WeiC. J. JhangY.R. ChenC.X. XueS.H. Sie J.L. LeeH. W. KuoC.C. LuM.F. ChangK.T. Tang, A relaxed quantization training method for hardware limitations of resistive random access memory (ReRAM)-based computing-in-memory, IEEE J. Exploratory Solid-State Comput. Devices & Circuits 6(1), 45 (2020)
|
[20] |
F. Zahoor, T. Z. Azni Zulkifli, and F. A. Khanday, Resistive random access memory (RRAM): An overview of materials, switching mechanism, performance, multilevel cell (Mlc) storage, modeling, and applications, Nanoscale Res. Lett. 15(1), 1 (2020)
CrossRef
ADS
Google scholar
|
[21] |
H. Ji, Y. Lee, J. Heo, and S. Kim, Improved resistive and synaptic switching performances in bilayer ZrOx/HfOx devices, J. Alloys Compd. 962, 171096 (2023)
CrossRef
ADS
Google scholar
|
[22] |
H. Cho and S. Kim, Short-term memory dynamics of TiN/Ti/TiO2/SiOx/Si resistive random access memory, Nanomaterials 10(9), 1821 (2020)
CrossRef
ADS
Google scholar
|
[23] |
S.R. LeeY. B. KimM.ChangK.M. KimC.B. Lee J.H. HurG. S. ParkD.LeeM.J. LeeC.J. Kim U.I. ChungI. K. YooK.Kim, Multi-level switching of triple-layered TaOx RRAM with excellent reliability for storage class memory, Digest of Technical Papers - Symposium on VLSI Technology 2012, pp 71–72
|
[24] |
J. Park, M. Kwak, K. Moon, J. Woo, D. Lee, and H. Hwang, TiOx-based RRAM synapse with 64-levels of conductance and symmetric conductance change by adopting a hybrid pulse scheme for neuromorphic computing, IEEE Electron Device Lett. 37(12), 1559 (2016)
CrossRef
ADS
Google scholar
|
[25] |
C. Wang, H. Wu, B. Gao, W. Wu, L. Dai, X. Li, and H. Qian, Ultrafast RESET analysis of HfOx-based RRAM by sub-nanosecond pulses, Adv. Electr. Mater. 3(12), 1700263 (2017)
CrossRef
ADS
Google scholar
|
[26] |
S.T. KimJ. Cho, Improvement of multi-level resistive switching characteristics in solution-processed AlOx-based non-volatile resistive memory using microwave irradiation, Semicond. Sci. Technol. 33, 015009 (2018)
|
[27] |
L. Gao, P. Y. Chen, and S. Yu, NbOx-based oscillation neuron for neuromorphic computing, Appl. Phys. Lett. 111(10), 103503 (2017)
CrossRef
ADS
Google scholar
|
[28] |
M. Herzig, M. Weiher, A. Ascoli, R. Tetzlaff, T. Mikolajick, and S. Slesazeck, Multiple slopes in the negative differential resistance region of NbOx-based threshold switches, J. Phys. D: Appl. Phys. 52, 325104 (2019)
CrossRef
ADS
Google scholar
|
[29] |
Z. Zhou, M. Yang, Z. Fu, H. Wang, X. Ma, and H. Gao, Electrode-induced polarity conversion in Nb2O5/NbOx resistive switching devices, Appl. Phys. Lett. 117(24), 243502 (2020)
CrossRef
ADS
Google scholar
|
[30] |
S. Kumar, N. Davila, Z. Wang, X. Huang, J. P. Strachan, D. Vine, A. L. David Kilcoyne, Y. Nishi, and R. S. Williams, Spatially uniform resistance switching of low current, high endurance titanium–niobium–oxide memristors, Nanoscale 9(5), 1793 (2017)
CrossRef
ADS
Google scholar
|
[31] |
A. C. Kozen, Z. R. Robinson, E. R. Glaser, M. Twigg, T. J. Larrabee, H. Cho, S. M. Prokes, and L. B. Ruppalt, In situ hydrogen plasma exposure for varying the stoichiometry of atomic layer deposited niobium oxide films for use in neuromorphic computing applications, ACS Appl. Mater. Interfaces 12(14), 16639 (2020)
CrossRef
ADS
Google scholar
|
[32] |
A. K. McAllister, L. C. Katz, and D. C. Lo, Neurotrophins and synaptic plasticity, Annu. Rev. Neurosci. 22(1), 295 (1999)
CrossRef
ADS
Google scholar
|
[33] |
J. J. Kim, E. Y. Song, J. J. Kim, E. Y. Song, and T. A. Kosten, Stress effects in the hippocampus: Synaptic plasticity and memory, Stress 9(1), 1 (2006)
CrossRef
ADS
Google scholar
|
[34] |
M. Di Filippo, B. Picconi, M. Tantucci, V. Ghiglieri, V. Bagetta, C. Sgobio, A. Tozzi, L. Parnetti, and P. Calabresi, Short-term and long-term plasticity at corticostriatal synapses: Implications for learning and memory, Behav. Brain Res. 199(1), 108 (2009)
CrossRef
ADS
Google scholar
|
[35] |
O. Kwon, J. Shin, D. Chung, and S. Kim, Energy efficient short-term memory characteristics in Ag/SnOx/TiN RRAM for neuromorphic system, Ceram. Int. 48(20), 30482 (2022)
CrossRef
ADS
Google scholar
|
[36] |
E.CoviY. H. LinW.WangT.StecconiV.Milo A.BricalliE. AmbrosiG.PedrettiT.-Y. TsengD.Ielmini, A Volatile RRAM Synapse for Neuromorphic Computing, IEEE, 2019
|
[37] |
C. Y. Lin, J. Chen, P. H. Chen, T. C. Chang, Y. Wu, J. K. Eshraghian, J. Moon, S. Yoo, Y. H. Wang, W. C. Chen, Z. Y. Wang, H. C. Huang, Y. Li, X. Miao, W. D. Lu, and S. M. Sze, Adaptive synaptic memory via lithium ion modulation in RRAM devices, Small 16(42), 2003964 (2020)
CrossRef
ADS
Google scholar
|
[38] |
J. Woo, K. Moon, J. Song, M. Kwak, J. Park, and H. Hwang, Optimized programming scheme enabling linear potentiation in filamentary HfO2 RRAM synapse for neuromorphic systems, IEEE Trans. Electron Dev. 63(12), 5064 (2016)
CrossRef
ADS
Google scholar
|
[39] |
N. He, F. Ye, J. Liu, T. Sun, X. Wang, W. Hou, W. Shao, X. Wan, Y. Tong, F. Xu, and Y. Sheng, Multifunctional Ag–In–Zn–S/Cs3Cu2Cl5-based memristors with coexistence of non-volatile memory and volatile threshold switching behaviors for neuroinspired computing, Adv. Electron. Mater. 9(3), 2201038 (2023)
CrossRef
ADS
Google scholar
|
[40] |
N. He, F. Ye, J. Liu, T. Sun, X. Wang, W. Hou, W. Shao, X. Wan, Y. Tong, F. Xu, and Y. Sheng, Multifunctional Ag−In−Zn−S/Cs3Cu2Cl5-based memristors with coexistence of non-volatile memory and volatile threshold switching behaviors for neuroinspired computing, Adv. Electr. Mater. 9(3), 2201038 (2023)
CrossRef
ADS
Google scholar
|
[41] |
B. Qu, H. Du, T. Wan, X. Lin, A. Younis, and D. Chu, Synaptic plasticity and learning behavior in transparent tungsten oxide-based memristors, Mater. Des. 129, 173 (2017)
CrossRef
ADS
Google scholar
|
[42] |
S. Ramaraj, J. Seo, and Intensive-visible-light-responsive ANbO2N (A = Sr, Ba) synthesized from layered perovskite A5Nb4O15 for enhanced photoelectrochemical water splitting, J. Energy Chem. 68, 529 (2022)
CrossRef
ADS
Google scholar
|
[43] |
H. So, J. K. Lee, and S. Kim, Short-term memory characteristics in n-type-ZnO/p-type-NiO heterojunction synaptic devices for reservoir computing, Appl. Surf. Sci. 625, 157153 (2023)
CrossRef
ADS
Google scholar
|
[44] |
S. Bagdzevicius, K. Maas, M. Boudard, and M. Burriel, Interface-type resistive switching in perovskite materials, J. Electroceramics 39, 157 (2022)
CrossRef
ADS
Google scholar
|
[45] |
S. Kunwar, Z. Jernigan, Z. Hughes, C. Somodi, M. D. Saccone, F. Caravelli, P. Roy, D. Zhang, H. Wang, Q. Jia, J. L. MacManus-Driscoll, G. Kenyon, A. Sornborger, W. Nie, and A. Chen, An interface-type memristive device for artificial synapse and neuromorphic computing, Adv. Intell. Syst. 5(8), 2370032 (2023)
CrossRef
ADS
Google scholar
|
[46] |
A. Calzolari and A. Catellani, Controlling the TiN electrode work function at the atomistic level: A first principles investigation, IEEE Access 8, 156308 (2020)
CrossRef
ADS
Google scholar
|
[47] |
G. N. Derry and J. Z. Zhang, Work function of Pt(111), Phys. Rev. B 39(3), 1940 (1989)
CrossRef
ADS
Google scholar
|
[48] |
Z. Zhou, M. Yang, Z. Fu, H. Wang, X. Ma, and H. Gao, Electrode-induced polarity conversion in Nb2O5/NbOx resistive switching devices, Appl. Phys. Lett. 117(24), 243502 (2020)
CrossRef
ADS
Google scholar
|
[49] |
H. Ryu and S. Kim, Self-rectifying resistive switching and short-term memory characteristics in Pt/HfO2/TaOx/TiN artificial synaptic device, Nanomaterials 10(11), 2159 (2020)
CrossRef
ADS
Google scholar
|
[50] |
J. Kim, Y. Park, J. K. Lee, and S. Kim, Preliminary investigation on the implementation of an artificial synapse using TaOx-based memristor with thermally oxidized active layer, J. Chem. Phys. 159(21), 214711 (2023)
CrossRef
ADS
Google scholar
|
[51] |
M. Ismail, M. Rasheed, C. Mahata, M. Kang, and S. Kim, Nano-crystalline ZnO memristor for neuromorphic computing: Resistive switching and conductance modulation, J. Alloys Compound. 960, 170846 (2023)
CrossRef
ADS
Google scholar
|
[52] |
A. Basbaum, R. Buckner, D. Clapham, P. De Camilli, B. Everitt, M. Kennedy, L. Nadel, D. O’leary, C. Stern, P. Tam, R. W. Tsien, and R. Yuste, Reviews and comment from nature journals, Nat. Rev. Neurosci. 2, 751 (2001)
CrossRef
ADS
Google scholar
|
[53] |
J. Kim, D. Kim, K. K. Min, M. Kraatz, T. Han, and S. Kim, Effect of Al concentration on ferroelectric properties in HfAlOx-based ferroelectric tunnel junction devices for neuroinspired applications, Adv. Intell. Syst. 5(8), 2370036 (2023)
CrossRef
ADS
Google scholar
|
[54] |
C. Du, F. Cai, M. A. Zidan, W. Ma, S. H. Lee, and W. D. Lu, Reservoir computing using dynamic memristors for temporal information processing, Nat. Commun. 8, 2204 (2017)
CrossRef
ADS
Google scholar
|
[55] |
M. Ismail, M. Rasheed, C. Mahata, M. Kang, and S. Kim, Mimicking biological synapses with A-HfSiOx-based memristor: Implications for artificial intelligence and memory applications, Nano Convergence 10, 33 (2023)
CrossRef
ADS
Google scholar
|
[56] |
S. Deswal, A. Kumar, and A. Kumar, NbOx based memristor as artificial synapse emulating short term plasticity, AIP Adv. 9(9), 095022 (2019)
CrossRef
ADS
Google scholar
|
[57] |
J. Xu, Y. Zhu, Y. Liu, H. Wang, Z. Zou, H. Ma, X. Wu, and R. Xiong, Improved performance of NbOx resistive switching memory by in-situ N doping, Nanomaterials (Basel) 12(6), 1029 (2022)
CrossRef
ADS
Google scholar
|
[58] |
S. Deswal, A. Jain, H. Borkar, A. Kumar, and A. Kumar, Conduction and switching mechanism in Nb2O5 thin films based resistive switches, Europhys. Lett. 116(1), 17003 (2016)
CrossRef
ADS
Google scholar
|
[59] |
J. Xu, H. Wang, Y. Zhu, Y. Liu, Z. Zou, G. Li, and R. Xiong, Tunable digital-to-analog switching in Nb2O5-based resistance switching devices by oxygen vacancy engineering, Appl. Surf. Sci. 579, 152114 (2022)
CrossRef
ADS
Google scholar
|
[60] |
J. Xu, Z. Dong, Y. Liu, Y. Zhu, H. Wang, J. Cheng, C. Zheng, and R. Xiong, Conversion from memory to threshold resistance switching behavior by modulating compliance current, Appl. Phys. Lett. 123(20), 203501 (2023)
CrossRef
ADS
Google scholar
|
[61] |
J. N. Huang, T. Wang, H. M. Huang, and X. Guo, Adaptive SRM neuron based on NbOx memristive device for neuromorphic computing, Chip (Wurzbg.) 1(2), 100015 (2022)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |