Predicting superconducting temperatures with new hierarchical neural network AI model

Shaomeng Xu, Pu Chen, Mingyang Qin, Kui Jin, X.-D. Xiang

PDF(2465 KB)
PDF(2465 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (1) : 014205. DOI: 10.15302/frontphys.2025.014205
RESEARCH ARTICLE

Predicting superconducting temperatures with new hierarchical neural network AI model

Author information +
History +

Abstract

Superconducting critical temperature is the most attractive material property due to its impact on the applications of electricity transmission, railway transportation, strong magnetic fields for nuclear fusion and medical imaging, quantum computing, etc. The ability to predict its value is a constant pursuit for condensed matter physicists. We developed a new hierarchical neural network (HNN) AI algorithm to resolve the contradiction between the large number of descriptors and the small number of datasets always faced by neural network AI approaches to materials science. With this new HNN-based AI model, a much-increased number of 909 universal descriptors for inorganic compounds, and a dramatically cleaned database for conventional superconductors, we achieved high prediction accuracy with a test R2 score of 95.6%. The newly developed HNN model accurately predicted Tc of 45 new high-entropy alloy superconductors with a mean absolute percent error below 6% compared to the experimental data. This demonstrated a significant potential for predicting other properties of inorganic materials.

Graphical abstract

Keywords

conventional superconducting critical temperature / hierarchical neural network / universal descriptors / artificial intelligence

Cite this article

Download citation ▾
Shaomeng Xu, Pu Chen, Mingyang Qin, Kui Jin, X.-D. Xiang. Predicting superconducting temperatures with new hierarchical neural network AI model. Front. Phys., 2025, 20(1): 014205 https://doi.org/10.15302/frontphys.2025.014205

References

[1]
J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Microscopic theory of superconductivity, Phys. Rev. 106(1), 162 (1957)
CrossRef ADS Google scholar
[2]
A. Karakozov, E. Maksimov, and S. Mashkov, Effect of the frequency dependence of the electron−phonon interaction spectral function on the thermodynamic properties of superconductors, Zh Eksp Teor Fiz 68, 1937 (1975)
[3]
Y. Wang and A. Chubukov, Quantum-critical pairing in electron-doped cuprates, Phys. Rev. B 88(2), 024516 (2013)
CrossRef ADS Google scholar
[4]
O. Dolgov, I. I. Mazin, A. A. Golubov, S. Y. Savrasov, and E. G. Maksimov, Critical temperature and enhanced isotope effect in the presence of paramagnons in phonon-mediated superconductors, Phys. Rev. Lett. 95(25), 257003 (2005)
CrossRef ADS Google scholar
[5]
J. Wang, Functional determinant approach investigations of heavy impurity physics, AAPPS Bulletin 33(1), 20 (2023)
CrossRef ADS Google scholar
[6]
M.V. Sadovskii, Limits of Eliashberg theory and bounds for superconducting transition temperature, arXiv: 2021)
[7]
Z. Wang, G. Chaudhary, Q. Chen, and K. Levin, Quantum geometric contributions to the BKT transition: Beyond mean field theory, Phys. Rev. B 102(18), 184504 (2020)
CrossRef ADS Google scholar
[8]
I.ChávezP.SalasM.A. SolísM.de Llano, A Boson−Fermion theory that goes beyond the BCS approximations for superconductors, Physica A 607, 128167 (2022)
[9]
G. Webb, F. Marsiglio, and J. Hirsch, Superconductivity in the elements, alloys and simple compounds, Physica C 514, 17 (2015)
CrossRef ADS Google scholar
[10]
S. R. Xie, Y. Quan, A. C. Hire, B. Deng, J. M. DeStefano, I. Salinas, U. S. Shah, L. Fanfarillo, J. Lim, J. Kim, G. R. Stewart, J. J. Hamlin, P. J. Hirschfeld, and R. G. Hennig, Machine learning of superconducting critical temperature from Eliashberg theory, npj Comput. Mater. 8, 14 (2022)
CrossRef ADS Google scholar
[11]
T. Konno, H. Kurokawa, F. Nabeshima, Y. Sakishita, R. Ogawa, I. Hosako, and A. Maeda, Deep learning model for finding new superconductors, Phys. Rev. B 103(1), 014509 (2021)
CrossRef ADS Google scholar
[12]
B. Roter, N. Ninkovic, and S. V. Dordevic, Clustering superconductors using unsupervised machine learning, Physica C 598, 1354078 (2022)
CrossRef ADS Google scholar
[13]
C. Zhong, J. Zhang, X. Lu, K. Zhang, J. Liu, K. Hu, J. Chen, and X. Lin, Deep generative model for inverse design of high-temperature superconductor compositions with predicted Tc> 77 K, ACS Appl. Mater. Interfaces 15(25), 30029 (2023)
CrossRef ADS Google scholar
[14]
C. Zhong, J. Zhang, Y. Wang, Y. Long, P. Zhu, J. Liu, K. Hu, J. Chen, and X. Lin, High-performance diffusion model for inverse design of high Tc superconductors with effective doping and accurate stoichiometry, InfoMat 6(5), e12519 (2024)
CrossRef ADS Google scholar
[15]
T. O. Owolabi, K. O. Akande, and S. O. Olatunji, Estimation of superconducting transition temperature Tc for superconductors of the doped MgB2 system from the crystal lattice parameters using support vector regression, J. Supercond. Nov. Magn. 28(1), 75 (2015)
CrossRef ADS Google scholar
[16]
K. Choudhary and K. Garrity, Designing high-Tc superconductors with BCS-inspired screening, density functional theory, and deep-learning, npj Comput. Mater. 8, 244 (2022)
CrossRef ADS Google scholar
[17]
J. Zhang, Z. Zhu, X. D. Xiang, K. Zhang, S. Huang, C. Zhong, H. J. Qiu, K. Hu, and X. Lin, Machine learning prediction of superconducting critical temperature through the structural descriptor, J. Phys. Chem. C 126(20), 8922 (2022)
CrossRef ADS Google scholar
[18]
H. Tran and T. N. Vu, Machine-learning approach for discovery of conventional superconductors, Phys. Rev. Mater. 7(5), 054805 (2023)
CrossRef ADS Google scholar
[19]
V. Stanev, C. Oses, A. G. Kusne, E. Rodriguez, J. Paglione, S. Curtarolo, and I. Takeuchi, Machine learning modeling of superconducting critical temperature, npj Comput. Mater. 4, 29 (2018)
CrossRef ADS Google scholar
[20]
K. Hamidieh, A data-driven statistical model for predicting the critical temperature of a superconductor, Comput. Mater. Sci 154, 346 (2018)
CrossRef ADS Google scholar
[21]
P. J. García-Nieto, E. Garcia-Gonzalo, J. P. Paredes-Sanchez, and Prediction of the critical temperature of a superconductor by using the WOA/MARS, Lasso and Elastic-net machine learning techniques, Neural Comput. Appl. 33(24), 17131 (2021)
CrossRef ADS Google scholar
[22]
J. Zhang, K. Zhang, S. Xu, Y. Li, C. Zhong, M. Zhao, H. J. Qiu, M. Qin, X. D. Xiang, K. Hu, and X. Lin, An integrated machine learning model for accurate and robust prediction of superconducting critical temperature, J. Energy Chem. 78, 232 (2023)
CrossRef ADS Google scholar
[23]
L.WardA. AgrawalA.ChoudharyC.Wolverton, A general-purpose machine learning framework for predicting properties of inorganic materials, npj Comput. Mater. 2, 16028 (2016)
[24]
Materials Information Station, URL: supercon.nims.go.jp/index_en.html (accessed 20th October, 2021)
[25]
I. A. Gheyas and L. S. Smith, Feature subset selection in large dimensionality domains, Pattern Recognit. 43(1), 5 (2010)
CrossRef ADS Google scholar
[26]
L. Ward, R. Liu, A. Krishna, V. I. Hegde, A. Agrawal, A. Choudhary, and C. Wolverton, Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations, Phys. Rev. B 96(2), 024104 (2017)
CrossRef ADS Google scholar
[27]
D. Miracle, D. V. Louzguine-Luzgin, L. V. Louzguina-Luzgina, and A. Inoue, An assessment of binary metallic glasses: correlations between structure, glass forming ability and stability, Int. Mater. Rev. 55(4), 218 (2010)
CrossRef ADS Google scholar
[28]
D.R. Lide, CRC Handbook of Chemistry and Physics, Vol. 85, CRC Press, 2004
[29]
F.R. De Boer, ., Cohesion in Metals. Transition Metal Alloys, Netherlands: N. p., 1988
[30]
J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT Press, 1992
[31]
Z. Michalewicz and M. Schoenauer, Evolutionary algorithms for constrained parameter optimization problems, Evol. Comput. 4(1), 1 (1996)
CrossRef ADS Google scholar
[32]
S. Gu, R. Cheng, and Y. Jin, Feature selection for high-dimensional classification using a competitive swarm optimizer, Soft Comput. 22(3), 811 (2018)
CrossRef ADS Google scholar
[33]
Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE 86(11), 2278 (1998)
CrossRef ADS Google scholar
[34]
T.ChenC. Guestrin, XGBoost: A scalable tree boosting system, arXiv: 2016)
arXiv
[35]
J. Kitagawa, S. Hamamoto, and N. Ishizu, Cutting edge of high-entropy alloy superconductors from the perspective of materials research, Metals (Basel) 10(8), 1078 (2020)
CrossRef ADS Google scholar

Declarations

The authors declare no competing interests and no conflicts.

Data & code availability

The code and cleaning data used to generate the results in this work can be downloaded from github.com/Dingfei1361/Conventional-SC-HNN-including-dataset/tree/main. The code can be successfully run once the Jupyter Notebook (Version 5.5.0) with the PyTorch package (Version 1.9.0+cu111) is set up.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.15302/frontphys.2025.014204.

Acknowledgements

The authors acknowledge the funding support from the National Key R&D Program of China (Grant No. 2022YFB3807700), the Shenzhen Fundamental Research Funding (Nos. JCYJ20220818100612027 and JCYJ20220818100613028), and the Major Science and Technology Infrastructure Project of Shenzhen Material Genome Big-Science Facilities Platform.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(2465 KB)

Accesses

Citations

Detail

Sections
Recommended

/