Raman spectroscopy and pressure-induced structural phase transition in UTe2

Urszula D. Wdowik, Michal Vališka, Andrej Cabala, Fedir Borodavka, Erika Samolová, Dominik Legut

PDF(2435 KB)
PDF(2435 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (1) : 014204. DOI: 10.15302/frontphys.2025.014204
RESEARCH ARTICLE

Raman spectroscopy and pressure-induced structural phase transition in UTe2

Author information +
History +

Abstract

Results of the Raman scattering experiments, heat capacity measurements, ab initio simulations of the Raman spectra and pressure-induced phase transition in UTe2 single crystal are reported. Assignment of symmetries to particular Raman-active phonons follows directly from a comparative analysis of the measured and calculated Raman spectra. Theoretically determined lattice contribution to the specific heat of UTe2 allows for better description of its heat capacity measured over the temperatures ranging from 30 to 400 K. The orthorhombic-to-tetragonal phase transition pressure of 3.8 GPa is predicted at room temperature in very good agreement with the recent experimental studies. The phase transition remains almost phonon-independent with the transition pressure weakly temperature-dependent below 500 K. The strong local Coulomb correlations between U-5f electrons and spin−orbit interaction are shown to be important for realistic theoretical description of phonons and pressure-induced phase transition in UTe2.

Graphical abstract

Keywords

Raman spectroscopy / heat capacity / phase transition / ab initio simulations

Cite this article

Download citation ▾
Urszula D. Wdowik, Michal Vališka, Andrej Cabala, Fedir Borodavka, Erika Samolová, Dominik Legut. Raman spectroscopy and pressure-induced structural phase transition in UTe2. Front. Phys., 2025, 20(1): 014204 https://doi.org/10.15302/frontphys.2025.014204

References

[1]
D. Aoki, J. P. Brison, J. Flouquet, K. Ishida, G. Knebel, Y. Tokunaga, and Y. Yanase, Unconventional superconductivity in UTe2, J. Phys.: Condens. Matter 34(24), 243002 (2022)
CrossRef ADS arXiv Google scholar
[2]
J. Ishizuka, S. Sumita, A. Daido, and Y. Yanase, Insulator-metal transition and topological superconductivity in UTe2 from a first-principles calculation, Phys. Rev. Lett. 123(21), 217001 (2019)
CrossRef ADS arXiv Google scholar
[3]
Y. Xu, Y. Sheng, and Y. Yang, Quasi-two-dimensional fermi surfaces and unitary spin-triplet pairing in the heavy fermion superconductor UTe2, Phys. Rev. Lett. 123(21), 217002 (2019)
CrossRef ADS arXiv Google scholar
[4]
A. B. Shick and W. E. Pickett, Spin−orbit coupling induced degeneracy in the anisotropic unconventional superconductor UTe2, Phys. Rev. B 100(13), 134502 (2019)
CrossRef ADS arXiv Google scholar
[5]
A. B. Shick, S. Fujimori, and W. E. Pickett, UTe2: A nearly insulating half-filled j = 5/2 5 f3 heavy-fermion metal, Phys. Rev. B 103(12), 125136 (2021)
CrossRef ADS arXiv Google scholar
[6]
C. Broyles, Z. Rehfuss, H. Siddiquee, J. A. Zhu, K. Zheng, M. Nikolo, D. Graf, J. Singleton, and S. Ran, Revealing a 3D Fermi surface pocket and electron−hole tunneling in UTe2 with quantum oscillations, Phys. Rev. Lett. 131(3), 036501 (2023)
CrossRef ADS arXiv Google scholar
[7]
S. Ran, C. Eckberg, Q. P. Ding, Y. Furukawa, T. Metz, S. R. Saha, I. L. Liu, M. Zic, H. Kim, J. Paglione, and N. P. Butch, Nearly ferromagnetic spin-triplet superconductivity, Science 365(6454), 684 (2019)
CrossRef ADS arXiv Google scholar
[8]
D. Aoki, A. Nakamura, F. Honda, D. X. Li, Y. Homma, Y. Shimizu, Y. J. Sato, G. Knebel, J. P. Brison, A. Pourret, D. Braithwaite, G. Lapertot, Q. Niu, M. Vališka, H. Harima, and J. Flouquet, Unconventional superconductivity in heavy fermion UTe2, J. Phys. Soc. Jpn. 88(4), 043702 (2019)
CrossRef ADS arXiv Google scholar
[9]
S. Sundar, S. Gheidi, K. Akintola, A. M. Côté, S. R. Dunsiger, S. Ran, N. P. Butch, S. R. Saha, J. Paglione, and J. E. Sonier, Coexistence of ferromagnetic fluctuations and superconductivity in the actinide superconductor UTe2, Phys. Rev. B 100(14), 140502 (2019)
CrossRef ADS arXiv Google scholar
[10]
D.AokiK. IshidaJ.Flouquet, Review of U-based ferromagnetic superconductors: Comparison between UGe2, URhGe, and UCoGe, J. Phys. Soc. Jpn. 88(2), 022001 (2019)
[11]
S. S. Saxena, P. Agarwal, K. Ahilan, F. M. Grosche, R. K. W. Haselwimmer, M. J. Steiner, E. Pugh, I. R. Walker, S. R. Julian, P. Monthoux, G. G. Lonzarich, A. Huxley, I. Sheikin, D. Braithwaite, and J. Flouquet, Superconductivity on the border of itinerant-electron ferromagnetism in UGe2, Nature 406(6796), 587 (2000)
CrossRef ADS Google scholar
[12]
D. Aoki, A. Huxley, E. Ressouche, D. Braithwaite, J. Flouquet, J. P. Brison, E. Lhotel, and C. Paulsen, Coexistence of superconductivity and ferromagnetism in URhGe, Nature 413(6856), 613 (2001)
CrossRef ADS Google scholar
[13]
N. T. Huy, A. Gasparini, D. E. de Nijs, Y. Huang, J. C. Klaasse, T. Gortenmulder, A. de Visser, A. Hamann, T. Görlach, and H. Löhneysen, Superconductivity on the border of weak itinerant ferromagnetism in UCoGe, Phys. Rev. Lett. 99(6), 067006 (2007)
CrossRef ADS arXiv Google scholar
[14]
M. R. Norman, The challenge of unconventional superconductivity, Science 332(6026), 196 (2011)
CrossRef ADS arXiv Google scholar
[15]
G. R. Stewart, Unconventional superconductivity, Adv. Phys. 66(2), 75 (2017)
CrossRef ADS arXiv Google scholar
[16]
D. S. Wei, D. Saykin, O. Y. Miller, S. Ran, S. R. Saha, D. F. Agterberg, J. Schmalian, N. P. Butch, J. Paglione, and A. Kapitulnik, Interplay between magnetism and superconductivity in UTe2, Phys. Rev. B 105(2), 024521 (2022)
CrossRef ADS arXiv Google scholar
[17]
D. Braithwaite, M. Vališka, G. Knebel, G. Lapertot, J. P. Brison, A. Pourret, M. E. Zhitomirsky, J. Flouquet, F. Honda, and D. Aoki, Multiple superconducting phases in a nearly ferromagnetic system, Commun. Phys. 2(1), 147 (2019)
CrossRef ADS arXiv Google scholar
[18]
F. Honda, S. Kobayashi, N. Kawamura, S. I. Kawaguchi, T. Koizumi, Y. J. Sato, Y. Homma, N. Ishimatsu, J. Gouchi, Y. Uwatoko, H. Harima, J. Flouquet, and D. Aoki, Pressure-induced structural phase transition and new superconducting phase in UTe2, J. Phys. Soc. Jpn. 92(4), 044702 (2023)
CrossRef ADS arXiv Google scholar
[19]
K. Kinjo, H. Fujibayashi, H. Matsumura, F. Hori, S. Kitagawa, K. Ishida, Y. Tokunaga, H. Sakai, S. Kambe, A. Nakamura, Y. Shimizu, Y. Homma, D. Li, F. Honda, and D. Aoki, Superconducting spin reorientation in spin-triplet multiple superconducting phases of UTe2, Sci. Adv. 9(30), 2736 (2023)
CrossRef ADS arXiv Google scholar
[20]
G. Knebel, M. Kimata, M. Vališka, F. Honda, D. X. Li, D. Braithwaite, G. Lapertot, W. Knafo, A. Pourret, Y. J. Sato, Y. Shimizu, T. Kihara, J. P. Brison, J. Flouquet, and D. Aoki, Anisotropy of the upper critical field in the heavy-fermion superconductor UTe2 under pressure, J. Phys. Soc. Jpn. 89(5), 053707 (2020)
CrossRef ADS arXiv Google scholar
[21]
D. Aoki, M. Kimata, Y. J. Sato, G. Knebel, F. Honda, A. Nakamura, D. Li, Y. Homma, Y. Shimizu, W. Knafo, D. Braithwaite, M. Vališka, A. Pourret, J. P. Brison, and J. Flouquet, Field-induced superconductivity near the superconducting critical pressure in UTe2, J. Phys. Soc. Jpn. 90(7), 074705 (2021)
CrossRef ADS arXiv Google scholar
[22]
D. Li, A. Nakamura, F. Honda, Y. J. Sato, Y. Homma, Y. Shimizu, J. Ishizuka, Y. Yanase, G. Knebel, J. Flouquet, and D. Aoki, Magnetic properties under pressure in novel spin-triplet superconductor UTe2, J. Phys. Soc. Jpn. 90(7), 073703 (2021)
CrossRef ADS arXiv Google scholar
[23]
S. Ran, I. L. Liu, S. R. Saha, P. Saraf, J. Paglione, and N. P. Butch, Comparison of two different synthesis methods of single crystals of superconducting uranium ditelluride, J. Vis. Exp. 173, e62563 (2021)
CrossRef ADS Google scholar
[24]
G. Knebel, W. Knafo, A. Pourret, Q. Niu, M. Vališka, D. Braithwaite, G. Lapertot, M. Nardone, A. Zitouni, S. Mishra, I. Sheikin, G. Seyfarth, J. P. Brison, D. Aoki, and J. Flouquet, Field-reentrant superconductivity close to a metamagnetic transition in the heavy-fermion superconductor UTe2, J. Phys. Soc. Jpn. 88(6), 063707 (2019)
CrossRef ADS arXiv Google scholar
[25]
A. Miyake, Y. Shimizu, Y. J. Sato, D. Li, A. Nakamura, Y. Homma, F. Honda, J. Flouquet, M. Tokunaga, and D. Aoki, Metamagnetic Transition in heavy fermion superconductor UTe2, J. Phys. Soc. Jpn. 88(6), 063706 (2019)
CrossRef ADS arXiv Google scholar
[26]
W. Knafo, M. Vališka, D. Braithwaite, G. Lapertot, G. Knebel, A. Pourret, J. P. Brison, J. Flouquet, and D. Aoki, Magnetic-field-induced phenomena in the paramagnetic superconductor UTe2, J. Phys. Soc. Jpn. 88(6), 063705 (2019)
CrossRef ADS arXiv Google scholar
[27]
Q. Niu, G. Knebel, D. Braithwaite, D. Aoki, G. Lapertot, M. Vališka, G. Seyfarth, W. Knafo, T. Helm, J. P. Brison, J. Flouquet, and A. Pourret, Evidence of Fermi surface reconstruction at the metamagnetic transition of the strongly correlated superconductor UTe2, Phys. Rev. Res. 2(3), 033179 (2020)
CrossRef ADS arXiv Google scholar
[28]
W. Knafo, M. Nardone, M. Vališka, A. Zitouni, G. Lapertot, D. Aoki, G. Knebel, and D. Braithwaite, Comparison of two superconducting phases induced by a magnetic field in UTe2, Commun. Phys. 4(1), 40 (2021)
CrossRef ADS arXiv Google scholar
[29]
T. Helm, M. Kimata, K. Sudo, A. Miyata, J. Stirnat, T. F¨orster, J. Hornung, M. König, I. Sheikin, A. Pourret, G. Lapertot, D. Aoki, G. Knebel, J. Wosnitza, and J. P. Brison, Field-induced compensation of magnetic exchange as the possible origin of reentrant superconductivity in UTe2, Nat. Commun. 15(1), 37 (2024)
CrossRef ADS arXiv Google scholar
[30]
S.K. LewinC. E. FrankS.RanJ.PaglioneN.P. Butch, A review of UTe2 at high magnetic fields, Rep. Prog. Phys. 86(11), 114501 (2023)
[31]
S. Ran, I. Liu, Y. S. Eo, D. J. Campbell, P. M. Neves, W. T. Fuhrman, S. R. Saha, C. Eckberg, H. Kim, D. Graf, F. Balakirev, J. Singleton, J. Paglione, and N. P. Butch, Extreme magnetic field-boosted superconductivity, Nat. Phys. 15(12), 1250 (2019)
CrossRef ADS arXiv Google scholar
[32]
M. Vališka, W. Knafo, G. Knebel, G. Lapertot, D. Aoki, and D. Braithwaite, Magnetic reshuffling and feedback on superconductivity in UTe2 under pressure, Phys. Rev. B 104, 214507 (2021)
CrossRef ADS arXiv Google scholar
[33]
S. M. Thomas, F. B. Santos, M. H. Christensen, T. Asaba, F. Ronning, J. D. Thompson, E. D. Bauer, R. M. Fernandes, G. Fabbris, and P. F. S. Rosa, Evidence for a pressure-induced antiferromagnetic quantum critical point in intermediate-valence UTe2, Sci. Adv. 6(42), eabc8709 (2020)
CrossRef ADS arXiv Google scholar
[34]
S. Ran, S. R. Saha, I. Liu, D. Graf, J. Paglione, and N. P. Butch, Expansion of the high field-boosted superconductivity in UTe2 under pressure, npj Quantum Mater. 6, 75 (2021)
CrossRef ADS arXiv Google scholar
[35]
L. Q. Huston, D. Y. Popov, A. Weiland, M. M. Bordelon, P. F. S. Rosa, R. L. Rowland, B. L. Scott, G. Shen, C. Park, E. K. Moss, S. M. Thomas, J. D. Thompson, B. T. Sturtevant, and E. D. Bauer, Metastable phase of UTe2 formed under high pressure above 5 GPa, Phys. Rev. Mater. 6(11), 114801 (2022)
CrossRef ADS arXiv Google scholar
[36]
K. Hu, Y. Zhao, Y. Geng, J. Yu, and Y. Gu, Pressure induced phase transition in heavy fermion metal UTe2: A first-principles study, Phys. Lett. A 451, 128401 (2022)
CrossRef ADS Google scholar
[37]
H. Sakai, P. Opletal, Y. Tokiwa, E. Yamamoto, Y. Tokunaga, S. Kambe, and Y. Haga, Single crystal growth of superconducting UTe2 by molten salt flux method, Phys. Rev. Mater. 6(7), 073401 (2022)
CrossRef ADS Google scholar
[38]
P. F. S. Rosa, A. Weiland, S. S. Fender, B. L. Scott, F. Ronning, J. D. Thompson, E. D. Bauer, and S. M. Thomas, Single thermodynamic transition at 2 K in superconducting UTe2 single crystals, Commun. Mater. 3(1), 33 (2022)
CrossRef ADS arXiv Google scholar
[39]
L.PalatinusG. Chapuis, SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions, J. Appl. Cryst. 40(4), 786 (2007)
[40]
V. Petríček, L. Palatinus, J. Plášil, and M. Dušek, Jana2020 – a new version of the crystallographic computing system Jana, Z. Kristall. 238, 271 (2023)
CrossRef ADS Google scholar
[41]
G.KresseJ. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
[42]
G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef ADS Google scholar
[43]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[44]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)], Phys. Rev. Lett. 78(7), 1396 (1997)
CrossRef ADS Google scholar
[45]
P.GiannozziS. BaroniN.BoniniM.CalandraR.Car C.CavazzoniD. CeresoliG.L. ChiarottiM.CococcioniI.Dabo A.Dal CorsoS. de GironcoliS.FabrisG.FratesiR.Gebauer U.GerstmannC. GougoussisA.KokaljM.LazzeriL.Martin-SamosN.MarzariF.MauriR.MazzarelloS.PaoliniA.PasquarelloL.Paulatto C.SbracciaS. ScandoloG.SclauzeroA.P. SeitsonenA.Smogunov P.UmariR. M. Wentzcovitch, Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21(39), 395502 (2009)
[46]
P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. Jr DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H. Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H. V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, Advanced capabilities for materials modelling with Quantum ESPRESSO, J. Phys.: Condens. Matter 29(46), 465901 (2017)
CrossRef ADS arXiv Google scholar
[47]
K. Parlinski, Z. Q. Li, and Y. Kawazoe, First-principles determination of the soft mode in cubic ZrO2, Phys. Rev. Lett. 78(21), 4063 (1997)
CrossRef ADS Google scholar
[48]
A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015)
CrossRef ADS Google scholar
[49]
G.Grimvall, Thermophysical Properties of Materials, Elsevier Science, 1999
[50]
V. L. Moruzzi, J. F. Janak, and K. Schwarz, Calculated thermal properties of metals, Phys. Rev. B 37(2), 790 (1988)
CrossRef ADS Google scholar
[51]
X. G. Lu, M. Selleby, and B. Sundman, Calculations of thermophysical properties of cubic carbides and nitrides using the Debye–Grüneisen model, Acta Mater. 55(4), 1215 (2007)
CrossRef ADS Google scholar
[52]
C. Wolverton and A. Zunger, First-principles theory of short-range order, electronic excitations, and spin polarization in Ni-V and Pd-V alloys, Phys. Rev. B 52(12), 8813 (1995)
CrossRef ADS Google scholar
[53]
T.JarlborgE. G. MoroniG.Grimvall, α-γ transition in Ce from temperature-dependent band-structure calculations, Phys. Rev. B 55(3), 1288 (1997)
[54]
L. H. Li, W. L. Wang, L. Hu, and B. B. Wei, First-principle calculations of structural, elastic and thermodynamic properties of Fe–B compounds, Intermetallics 46, 211 (2014)
CrossRef ADS Google scholar
[55]
D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, and D. Raabe, Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one, Acta Mater. 100, 90 (2015)
CrossRef ADS Google scholar
[56]
X. Zhang, B. Grabowski, C. F. F. Körmann, and J. Neugebauer, Accurate electronic free energies of the 3d, 4d, and 5d transition metals at high temperatures, Phys. Rev. B 95(16), 165126 (2017)
CrossRef ADS Google scholar
[57]
M.Cardona, Light Scattering in Solids I, Springer-Verlag, Berlin Heidelberg, 1983
[58]
P. Umari, A. Pasquarello, and A. DalCorso, Raman scattering intensities in α-quartz: A first-principles investigation, Phys. Rev. B 63(9), 094305 (2001)
CrossRef ADS Google scholar
[59]
P. Umari, X. Gonze, and A. Pasquarello, Concentration of small ring structures in vitreous silica from a first-principles analysis of the Raman spectrum, Phys. Rev. Lett. 90(2), 027401 (2003)
CrossRef ADS Google scholar
[60]
M. Gajdoš K. Hummer, G. Kresse, J. Furthmüller , F. Bechstedt., Linear optical properties in the projector-augmented wave methodology, Phys. Rev. B 73, 045112 (2006)
CrossRef ADS Google scholar
[61]
H.P. BeckW. Dausch, Die verfeinerung der kristallstruktur von UTe2/refinement of the crystal structure of UTe2, Zeitschrift für Naturforschung B 43, 1547 (1988)
[62]
V. Hutanu, H. Deng, S. Ran, W. T. Fuhrman, H. Thomad, and N. P. Butch, Low-temperature crystal structure of the unconventional spin-triplet superconductor UTe2 from single-crystal neutron diffraction, Acta Crystallogr. B 76(1), 137 (2020)
CrossRef ADS Google scholar
[63]
Y. Haga, P. Opletal, Y. Tokiwa, E. Yamamoto, Y. Tokunaga, S. Kambe, and H. Sakai, Effect of uranium deficiency on normal and superconducting properties in unconventional superconductor UTe2, J. Phys.: Condens. Matter 34(17), 175601 (2022)
CrossRef ADS arXiv Google scholar
[64]
L. Miao, S. Liu, Y. Xu, E. C. Kotta, C. J. Kang, S. Ran, J. Paglione, G. Kotliar, N. P. Butch, J. D. Denlinger, and L. A. Wray, Low energy band structure and symmetries of UTe2 from angle-resolved photoemission spectroscopy, Phys. Rev. Lett. 124(7), 076401 (2020)
CrossRef ADS arXiv Google scholar
[65]
R. Loudon, The Raman effect in crystals, Adv. Phys. 50(7), 813 (2001)
CrossRef ADS Google scholar
[66]
A. Weiland, S. M. Thomas, and P. F. S. Rosa, Investigating the limits of superconductivity in UTe2, J. Phys. Mater. 5(4), 044001 (2022)
CrossRef ADS Google scholar
[67]
R. Vollmer, A. Faißt, C. Pfleiderer, H. Löhneysen, E. D. Bauer, P. C. Ho, V. Zapf, and M. B. Maple, Low-temperature specific heat of the heavy-fermion superconductor PrOs4Sb12, Phys. Rev. Lett. 90, 057001 (2003)
CrossRef ADS Google scholar
[68]
J. R. Neilson, A. Llobet, A. V. Stier, L. Wu, J. Wen, J. Tao, Y. Zhu, Z. B. Tesanovic, N. P. Armitage, and T. M. McQueen, Mixed-valence-driven heavy-fermion behavior and superconductivity in KNi2Se2, Phys. Rev. B 86, 054512 (2012)
CrossRef ADS arXiv Google scholar
[69]
K. Stöwe, Contributions to the crystal chemistry of uranium tellurides, J. Solid State Chem. 127(2), 202 (1996)
CrossRef ADS Google scholar
[70]
F. Wilhelm, J. P. Sanchez, D. Braithwaite, G. Knebel, G. Lapertot, and A. Rogalev, Investigating the electronic states of UTe2 using X-ray spectroscopy, Commun. Phys. 6(1), 96 (2023)
CrossRef ADS Google scholar

Declarations

The authors declare no competing interests and no conflicts.

Data availability statement

All data that support the findings of this study are included within the article.

Acknowledgements

The Czech Science Foundation (GACR) project No. 22-22322S, the e-INFRA CZ (ID:90254) and QM4ST (CZ.02.01.01/00/22_008/0004572) projects supported by the Ministry of Education, Youth and Sports of the Czech Republic are acknowledged. The Interdisciplinary Center for Mathematical and Computational Modeling (ICM), Warsaw University, Poland are acknowledged for providing the computer facilities. Crystal growth, X-ray characterization and heat capacity measurements were performed in MGML (mgml.eu), which is supported within the program of Czech Research Infrastructures (Project No. LM2023065).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(2435 KB)

Accesses

Citations

Detail

Sections
Recommended

/