Observation of impurity-induced scale-free localization in a disordered non-Hermitian electrical circuit
Hao Wang, Jin Liu, Tao Liu, Wenbo Ju
Observation of impurity-induced scale-free localization in a disordered non-Hermitian electrical circuit
One of unique features of non-Hermitian systems is the extreme sensitive to their boundary conditions, e.g., the emergence of non-Hermitian skin effect (NHSE) under the open boundary conditions, where most of bulk states become localized at the boundaries. In the presence of impurities, the scale-free localization can appear, which is qualitatively distinct from the NHSE. Here, we experimentally design a disordered non-Hermitian electrical circuits in the presence of a single non-Hermitian impurity and the nonreciprocal hopping. We observe the anomalous scale-free accumulation of eigenstates, opposite to the bulk hopping direction. The experimental results open the door to further explore the anomalous skin effects in non-Hermitian electrical circuits.
non-Hermitian / scale-free localization / electrical circuit / non-Hermitian skin effect
[1] |
Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Adv. Phys. 69(3), 249 (2020)
CrossRef
ADS
Google scholar
|
[2] |
T. E. Lee, Anomalous edge state in a non-Hermitian lattice, Phys. Rev. Lett. 116(13), 133903 (2016)
CrossRef
ADS
Google scholar
|
[3] |
D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and F. Nori, Edge modes, degeneracies, and topological numbers in non-Hermitian systems, Phys. Rev. Lett. 118(4), 040401 (2017)
CrossRef
ADS
Google scholar
|
[4] |
Y. Xu, S. T. Wang, and L. M. Duan, Weyl exceptional rings in a three-dimensional dissipative cold atomic gas, Phys. Rev. Lett. 118(4), 045701 (2017)
CrossRef
ADS
Google scholar
|
[5] |
Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Hi-gashikawa, and M. Ueda, Topological phases of non-Hermitian systems, Phys. Rev. X 8(3), 031079 (2018)
CrossRef
ADS
Google scholar
|
[6] |
R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, Non-Hermitian physics and PT symmetry, Nat. Phys. 14(1), 11 (2018)
CrossRef
ADS
Google scholar
|
[7] |
S. Yao and Z. Wang, Edge states and topological invariants of non-Hermitian systems, Phys. Rev. Lett. 121(8), 086803 (2018)
CrossRef
ADS
Google scholar
|
[8] |
K. Zhang, Z. Yang, and C. Fang, Correspondence between winding numbers and skin modes in non-Hermitian systems, Phys. Rev. Lett. 125(12), 126402 (2020)
CrossRef
ADS
Google scholar
|
[9] |
K. Yokomizo and S. Murakami, Non-Bloch band theory of non-Hermitian systems, Phys. Rev. Lett. 123(6), 066404 (2019)
CrossRef
ADS
Google scholar
|
[10] |
S. Yao, F. Song, and Z. Wang, Non-Hermitian Chern bands, Phys. Rev. Lett. 121(13), 136802 (2018)
CrossRef
ADS
Google scholar
|
[11] |
F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz, Biorthogonal bulk‒boundary correspondence in non-Hermitian systems, Phys. Rev. Lett. 121(2), 026808 (2018)
CrossRef
ADS
Google scholar
|
[12] |
T. Liu, Y. R. Zhang, Q. Ai, Z. Gong, K. Kawabata, M. Ueda, and F. Nori, Second-order topological phases in non-Hermitian systems, Phys. Rev. Lett. 122(7), 076801 (2019)
CrossRef
ADS
Google scholar
|
[13] |
F. Song, S. Yao, and Z. Wang, Non-Hermitian skin effect and chiral damping in open quantum systems, Phys. Rev. Lett. 123(17), 170401 (2019)
CrossRef
ADS
Google scholar
|
[14] |
Y. T. Zhang, S. Jiang, Q. Li, and Q. F. Sun, An analytical solution for quantum scattering through a PT-symmetric delta potential, Front. Phys. 16(4), 43503 (2021)
CrossRef
ADS
Google scholar
|
[15] |
J. Y. Lee, J. Ahn, H. Zhou, and A. Vishwanath, Topological correspondence between Hermitian and non-Hermitian systems: Anomalous dynamics, Phys. Rev. Lett. 123(20), 206404 (2019)
CrossRef
ADS
Google scholar
|
[16] |
K. Kawabata, T. Bessho, and M. Sato, Classification of exceptional points and non-Hermitian topological semimetals, Phys. Rev. Lett. 123(6), 066405 (2019)
CrossRef
ADS
Google scholar
|
[17] |
G. Sun, J. C. Tang, and S. P. Kou, Biorthogonal quantum criticality in non-Hermitian many-body systems, Front. Phys. 17(3), 33502 (2022)
CrossRef
ADS
Google scholar
|
[18] |
Z. Y. Ge, Y. R. Zhang, T. Liu, S. W. Li, H. Fan, and F. Nori, Topological band theory for non-Hermitian systems from the Dirac equation, Phys. Rev. B 100(5), 054105 (2019)
CrossRef
ADS
Google scholar
|
[19] |
H. Zhou and J. Y. Lee, Periodic table for topological bands with non-Hermitian symmetries, Phys. Rev. B 99(23), 235112 (2019)
CrossRef
ADS
Google scholar
|
[20] |
H. Zhao, X. Qiao, T. Wu, B. Midya, S. Longhi, and L. Feng, Non-Hermitian topological light steering, Science 365(6458), 1163 (2019)
CrossRef
ADS
Google scholar
|
[21] |
K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Symmetry and topology in non-Hermitian physics, Phys. Rev. X 9(4), 041015 (2019)
CrossRef
ADS
Google scholar
|
[22] |
D. S. Borgnia, A. J. Kruchkov, and R. J. Slager, Non-Hermitian boundary modes and topology, Phys. Rev. Lett. 124(5), 056802 (2020)
CrossRef
ADS
Google scholar
|
[23] |
T. Liu, J. J. He, T. Yoshida, Z. L. Xiang, and F. Nori, Non-Hermitian topological Mott insulators in one-dimensional fermionic superlattices, Phys. Rev. B 102(23), 235151 (2020)
CrossRef
ADS
Google scholar
|
[24] |
L. Li, C. H. Lee, S. Mu, and J. Gong, Critical non-Hermitian skin effect, Nat. Commun. 11(1), 5491 (2020)
CrossRef
ADS
Google scholar
|
[25] |
K. Yokomizo and S. Murakami, Scaling rule for the critical non-Hermitian skin effect, Phys. Rev. B 104(16), 165117 (2021)
CrossRef
ADS
Google scholar
|
[26] |
N. Okuma, K. Kawabata, K. Shiozaki, and M. Sato, Topological origin of non-Hermitian skin effects, Phys. Rev. Lett. 124(8), 086801 (2020)
CrossRef
ADS
Google scholar
|
[27] |
Y. Y. Zou, Y. Zhou, L. M. Chen, and P. Ye, Detecting bulk and edge exceptional points in non-Hermitian systems through generalized Petermann factors, Front. Phys. 19(2), 23201 (2024)
CrossRef
ADS
Google scholar
|
[28] |
A. Fan and S. D. Liang, Complex energy plane and topological invariant in non-Hermitian systems, Front. Phys. 17(3), 33501 (2022)
CrossRef
ADS
Google scholar
|
[29] |
Y. Yi and Z. Yang, Non-Hermitian skin modes induced by on-site dissipations and chiral tunneling effect, Phys. Rev. Lett. 125(18), 186802 (2020)
CrossRef
ADS
Google scholar
|
[30] |
T. Liu, J. J. He, Z. Yang, and F. Nori, Higher-order Weyl-exceptional-ring semimetals, Phys. Rev. Lett. 127(19), 196801 (2021)
CrossRef
ADS
Google scholar
|
[31] |
L. Li, C. H. Lee, and J. Gong, Impurity induced scale-free localization, Commun. Phys. 4(1), 42 (2021)
CrossRef
ADS
Google scholar
|
[32] |
E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93(1), 015005 (2021)
CrossRef
ADS
Google scholar
|
[33] |
Y. Li, C. Liang, C. Wang, C. Lu, and Y. C. Liu, Gain-loss-induced hybrid skin-topological effect, Phys. Rev. Lett. 128(22), 223903 (2022)
CrossRef
ADS
Google scholar
|
[34] |
K. Zhang, Z. Yang, and C. Fang, Universal non-Hermitian skin effect in two and higher dimensions, Nat. Commun. 13(1), 2496 (2022)
CrossRef
ADS
Google scholar
|
[35] |
R. Lin, T. Tai, L. Li, and C. H. Lee, Topological non-Hermitian skin effect, Front. Phys. 18(5), 53605 (2023)
CrossRef
ADS
Google scholar
|
[36] |
Z. Ren, D. Liu, E. Zhao, C. He, K. K. Pak, J. Li, and G. B. Jo, Chiral control of quantum states in non-Hermitian spin–orbit-coupled fermions, Nat. Phys. 18(4), 385 (2022)
CrossRef
ADS
Google scholar
|
[37] |
K. Kawabata, T. Numasawa, and S. Ryu, Entanglement phase transition induced by the non-Hermitian skin effect, Phys. Rev. X 13(2), 021007 (2023)
CrossRef
ADS
Google scholar
|
[38] |
K. Zhang, C. Fang, and Z. Yang, Dynamical degeneracy splitting and directional invisibility in non-Hermitian systems, Phys. Rev. Lett. 131(3), 036402 (2023)
CrossRef
ADS
Google scholar
|
[39] |
C. A. Li, B. Trauzettel, T. Neupert, and S. B. Zhang, Enhancement of second-order non-Hermitian skin effect by magnetic fields, Phys. Rev. Lett. 131(11), 116601 (2023)
CrossRef
ADS
Google scholar
|
[40] |
J.LiuZ. F. CaiT.LiuZ.Yang, Reentrant non-Hermitian skin effect in coupled non-Hermitian and Hermitian chains with correlated disorder, arXiv: 2023)
arXiv
|
[41] |
Z. F. Cai, T. Liu, and Z. Yang, Non-Hermitian skin effect in periodically driven dissipative ultracold atoms, Phys. Rev. A 109(6), 063329 (2024)
CrossRef
ADS
Google scholar
|
[42] |
X. Li, J. Liu, and T. Liu, Localization‒delocalization transitions in non-Hermitian Aharonov‒Bohm cages, Front. Phys. 19(3), 33211 (2024)
CrossRef
ADS
Google scholar
|
[43] |
Y. M. Hu, H. Y. Wang, Z. Wang, and F. Song, Geometric origin of non-Bloch PT symmetry breaking, Phys. Rev. Lett. 132(5), 050402 (2024)
CrossRef
ADS
Google scholar
|
[44] |
H. Y. Wang, F. Song, and Z. Wang, Amoeba formulation of non-Bloch band theory in arbitrary dimensions, Phys. Rev. X 14(2), 021011 (2024)
CrossRef
ADS
Google scholar
|
[45] |
X. D. Xie, Z. Y. Xue, and D. B. Zhang, Variational quantum algorithms for scanning the complex spectrum of non-Hermitian systems, Front. Phys. 19(4), 41202 (2024)
CrossRef
ADS
Google scholar
|
[46] |
H.ZhangZ. GuoY.LiY.YangY.Chen H.Chen, A universal non-Hermitian platform for bound state in the continuum enhanced wireless power transfer, Front. Phys. 19(4), 43209 (2024)
|
[47] |
F. Koch and J. C. Budich, Quantum non-Hermitian topological sensors, Phys. Rev. Res. 4(1), 013113 (2022)
CrossRef
ADS
Google scholar
|
[48] |
J. C. Budich and E. J. Bergholtz, Non-Hermitian topological sensors, Phys. Rev. Lett. 125(18), 180403 (2020)
CrossRef
ADS
Google scholar
|
[49] |
A. McDonald and A. A. Clerk, Exponentially-enhanced quantum sensing with non-Hermitian lattice dynamics, Nat. Commun. 11(1), 5382 (2020)
CrossRef
ADS
Google scholar
|
[50] |
C. X. Guo, X. Wang, H. Hu, and S. Chen, Accumulation of scale-free localized states induced by local non-hermiticity, Phys. Rev. B 107(13), 134121 (2023)
CrossRef
ADS
Google scholar
|
[51] |
B. Li, H. R. Wang, F. Song, and Z. Wang, Scale-free localization and PT symmetry breaking from local non-hermiticity, Phys. Rev. B 108(16), L161409 (2023)
CrossRef
ADS
Google scholar
|
[52] |
Y. Wang, J. Lin, and P. Xu, Transmission-reflection decoupling of non-Hermitian photonic doping epsilon-near-zero media, Front. Phys. 19(3), 33206 (2024)
CrossRef
ADS
Google scholar
|
[53] |
Y. Fu and Y. Zhang, Hybrid scale-free skin effect in non-Hermitian systems: A transfer matrix approach, Phys. Rev. B 108(20), 205423 (2023)
CrossRef
ADS
Google scholar
|
[54] |
X. Xie, G. Liang, F. Ma, Y. Du, Y. Peng, E. Li, H. Chen, L. Li, F. Gao, and H. Xue, Observation of scale-free localized states induced by non-Hermitian defects, Phys. Rev. B 109(14), L140102 (2024)
CrossRef
ADS
Google scholar
|
[55] |
P. Molignini, O. Arandes, and E. J. Bergholtz, Anomalous skin effects in disordered systems with a single non-Hermitian impurity, Phys. Rev. Res. 5(3), 033058 (2023)
CrossRef
ADS
Google scholar
|
[56] |
W. Zhang, D. Zou, Q. Pei, W. He, J. Bao, H. Sun, and X. Zhang, Experimental observation of higher-order topological Anderson insulators, Phys. Rev. Lett. 126(14), 146802 (2021)
CrossRef
ADS
Google scholar
|
[57] |
W. Zhang, H. Wang, H. Sun, and X. Zhang, Non-abelian inverse Anderson transitions, Phys. Rev. Lett. 130(20), 206401 (2023)
CrossRef
ADS
Google scholar
|
[58] |
S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, and R. Thomale, Topolectrical-circuit realization of topological corner modes, Nat. Phys. 14(9), 925 (2018)
CrossRef
ADS
Google scholar
|
[59] |
F. Zangeneh-Nejad and R. Fleury, Nonlinear second-order topological insulators, Phys. Rev. Lett. 123(5), 053902 (2019)
CrossRef
ADS
Google scholar
|
[60] |
M. Serra-Garcia, R. Süsstrunk, and S. D. Huber, Observation of quadrupole transitions and edge mode topology in an LC circuit network, Phys. Rev. B 99(2), 020304 (2019)
CrossRef
ADS
Google scholar
|
[61] |
W. Zhang, F. Di, X. Zheng, H. Sun, and X. Zhang, Hyperbolic band topology with non-trivial second Chern numbers, Nat. Commun. 14(1), 1083 (2023)
CrossRef
ADS
Google scholar
|
[62] |
W. Zhang, H. Yuan, N. Sun, H. Sun, and X. Zhang, Observation of novel topological states in hyperbolic lattices, Nat. Commun. 13(1), 2937 (2022)
CrossRef
ADS
Google scholar
|
[63] |
T. Hofmann, T. Helbig, C. H. Lee, M. Greiter, and R. Thomale, Chiral voltage propagation and calibration in a topolectrical Chern circuit, Phys. Rev. Lett. 122(24), 247702 (2019)
CrossRef
ADS
Google scholar
|
[64] |
C. H. Lee, S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, and R. Thomale, Topolectrical circuits, Commun. Phys. 1(1), 39 (2018)
CrossRef
ADS
Google scholar
|
[65] |
T. Helbig, T. Hofmann, C. H. Lee, R. Thomale, S. Imhof, L. W. Molenkamp, and T. Kiessling, Band structure engineering and reconstruction in electric circuit networks, Phys. Rev. B 99(16), 161114 (2019)
CrossRef
ADS
Google scholar
|
[66] |
Z. Q. Zhang, B. L. Wu, J. Song, and H. Jiang, Topological Anderson insulator in electric circuits, Phys. Rev. B 100(18), 184202 (2019)
CrossRef
ADS
Google scholar
|
[67] |
Y. Wang, H. M. Price, B. Zhang, and Y. D. Chong, Circuit implementation of a four-dimensional topological insulator, Nat. Commun. 11(1), 2356 (2020)
CrossRef
ADS
Google scholar
|
[68] |
J. Bao, D. Zou, W. Zhang, W. He, H. Sun, and X. Zhang, Topoelectrical circuit octupole insulator with topologically protected corner states, Phys. Rev. B 100(20), 201406 (2019)
CrossRef
ADS
Google scholar
|
[69] |
Y. Lu, N. Jia, L. Su, C. Owens, G. Juzeliūnas, D. I. Schuster, and J. Simon, Probing the Berry curvature and Fermi arcs of a Weyl circuit, Phys. Rev. B 99(2), 020302 (2019)
CrossRef
ADS
Google scholar
|
[70] |
T. Helbig, T. Hofmann, S. Imhof, M. Abdelghany, T. Kiessling, L. W. Molenkamp, C. H. Lee, A. Szameit, M. Greiter, and R. Thomale, Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits, Nat. Phys. 16(7), 747 (2020)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |