Observation of impurity-induced scale-free localization in a disordered non-Hermitian electrical circuit

Hao Wang, Jin Liu, Tao Liu, Wenbo Ju

PDF(8343 KB)
PDF(8343 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (1) : 014203. DOI: 10.15302/frontphys.2025.014203
RESEARCH ARTICLE

Observation of impurity-induced scale-free localization in a disordered non-Hermitian electrical circuit

Author information +
History +

Abstract

One of unique features of non-Hermitian systems is the extreme sensitive to their boundary conditions, e.g., the emergence of non-Hermitian skin effect (NHSE) under the open boundary conditions, where most of bulk states become localized at the boundaries. In the presence of impurities, the scale-free localization can appear, which is qualitatively distinct from the NHSE. Here, we experimentally design a disordered non-Hermitian electrical circuits in the presence of a single non-Hermitian impurity and the nonreciprocal hopping. We observe the anomalous scale-free accumulation of eigenstates, opposite to the bulk hopping direction. The experimental results open the door to further explore the anomalous skin effects in non-Hermitian electrical circuits.

Graphical abstract

Keywords

non-Hermitian / scale-free localization / electrical circuit / non-Hermitian skin effect

Cite this article

Download citation ▾
Hao Wang, Jin Liu, Tao Liu, Wenbo Ju. Observation of impurity-induced scale-free localization in a disordered non-Hermitian electrical circuit. Front. Phys., 2025, 20(1): 014203 https://doi.org/10.15302/frontphys.2025.014203

References

[1]
Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Adv. Phys. 69(3), 249 (2020)
CrossRef ADS Google scholar
[2]
T. E. Lee, Anomalous edge state in a non-Hermitian lattice, Phys. Rev. Lett. 116(13), 133903 (2016)
CrossRef ADS Google scholar
[3]
D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and F. Nori, Edge modes, degeneracies, and topological numbers in non-Hermitian systems, Phys. Rev. Lett. 118(4), 040401 (2017)
CrossRef ADS Google scholar
[4]
Y. Xu, S. T. Wang, and L. M. Duan, Weyl exceptional rings in a three-dimensional dissipative cold atomic gas, Phys. Rev. Lett. 118(4), 045701 (2017)
CrossRef ADS Google scholar
[5]
Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Hi-gashikawa, and M. Ueda, Topological phases of non-Hermitian systems, Phys. Rev. X 8(3), 031079 (2018)
CrossRef ADS Google scholar
[6]
R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, Non-Hermitian physics and PT symmetry, Nat. Phys. 14(1), 11 (2018)
CrossRef ADS Google scholar
[7]
S. Yao and Z. Wang, Edge states and topological invariants of non-Hermitian systems, Phys. Rev. Lett. 121(8), 086803 (2018)
CrossRef ADS Google scholar
[8]
K. Zhang, Z. Yang, and C. Fang, Correspondence between winding numbers and skin modes in non-Hermitian systems, Phys. Rev. Lett. 125(12), 126402 (2020)
CrossRef ADS Google scholar
[9]
K. Yokomizo and S. Murakami, Non-Bloch band theory of non-Hermitian systems, Phys. Rev. Lett. 123(6), 066404 (2019)
CrossRef ADS Google scholar
[10]
S. Yao, F. Song, and Z. Wang, Non-Hermitian Chern bands, Phys. Rev. Lett. 121(13), 136802 (2018)
CrossRef ADS Google scholar
[11]
F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz, Biorthogonal bulk‒boundary correspondence in non-Hermitian systems, Phys. Rev. Lett. 121(2), 026808 (2018)
CrossRef ADS Google scholar
[12]
T. Liu, Y. R. Zhang, Q. Ai, Z. Gong, K. Kawabata, M. Ueda, and F. Nori, Second-order topological phases in non-Hermitian systems, Phys. Rev. Lett. 122(7), 076801 (2019)
CrossRef ADS Google scholar
[13]
F. Song, S. Yao, and Z. Wang, Non-Hermitian skin effect and chiral damping in open quantum systems, Phys. Rev. Lett. 123(17), 170401 (2019)
CrossRef ADS Google scholar
[14]
Y. T. Zhang, S. Jiang, Q. Li, and Q. F. Sun, An analytical solution for quantum scattering through a PT-symmetric delta potential, Front. Phys. 16(4), 43503 (2021)
CrossRef ADS Google scholar
[15]
J. Y. Lee, J. Ahn, H. Zhou, and A. Vishwanath, Topological correspondence between Hermitian and non-Hermitian systems: Anomalous dynamics, Phys. Rev. Lett. 123(20), 206404 (2019)
CrossRef ADS Google scholar
[16]
K. Kawabata, T. Bessho, and M. Sato, Classification of exceptional points and non-Hermitian topological semimetals, Phys. Rev. Lett. 123(6), 066405 (2019)
CrossRef ADS Google scholar
[17]
G. Sun, J. C. Tang, and S. P. Kou, Biorthogonal quantum criticality in non-Hermitian many-body systems, Front. Phys. 17(3), 33502 (2022)
CrossRef ADS Google scholar
[18]
Z. Y. Ge, Y. R. Zhang, T. Liu, S. W. Li, H. Fan, and F. Nori, Topological band theory for non-Hermitian systems from the Dirac equation, Phys. Rev. B 100(5), 054105 (2019)
CrossRef ADS Google scholar
[19]
H. Zhou and J. Y. Lee, Periodic table for topological bands with non-Hermitian symmetries, Phys. Rev. B 99(23), 235112 (2019)
CrossRef ADS Google scholar
[20]
H. Zhao, X. Qiao, T. Wu, B. Midya, S. Longhi, and L. Feng, Non-Hermitian topological light steering, Science 365(6458), 1163 (2019)
CrossRef ADS Google scholar
[21]
K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Symmetry and topology in non-Hermitian physics, Phys. Rev. X 9(4), 041015 (2019)
CrossRef ADS Google scholar
[22]
D. S. Borgnia, A. J. Kruchkov, and R. J. Slager, Non-Hermitian boundary modes and topology, Phys. Rev. Lett. 124(5), 056802 (2020)
CrossRef ADS Google scholar
[23]
T. Liu, J. J. He, T. Yoshida, Z. L. Xiang, and F. Nori, Non-Hermitian topological Mott insulators in one-dimensional fermionic superlattices, Phys. Rev. B 102(23), 235151 (2020)
CrossRef ADS Google scholar
[24]
L. Li, C. H. Lee, S. Mu, and J. Gong, Critical non-Hermitian skin effect, Nat. Commun. 11(1), 5491 (2020)
CrossRef ADS Google scholar
[25]
K. Yokomizo and S. Murakami, Scaling rule for the critical non-Hermitian skin effect, Phys. Rev. B 104(16), 165117 (2021)
CrossRef ADS Google scholar
[26]
N. Okuma, K. Kawabata, K. Shiozaki, and M. Sato, Topological origin of non-Hermitian skin effects, Phys. Rev. Lett. 124(8), 086801 (2020)
CrossRef ADS Google scholar
[27]
Y. Y. Zou, Y. Zhou, L. M. Chen, and P. Ye, Detecting bulk and edge exceptional points in non-Hermitian systems through generalized Petermann factors, Front. Phys. 19(2), 23201 (2024)
CrossRef ADS Google scholar
[28]
A. Fan and S. D. Liang, Complex energy plane and topological invariant in non-Hermitian systems, Front. Phys. 17(3), 33501 (2022)
CrossRef ADS Google scholar
[29]
Y. Yi and Z. Yang, Non-Hermitian skin modes induced by on-site dissipations and chiral tunneling effect, Phys. Rev. Lett. 125(18), 186802 (2020)
CrossRef ADS Google scholar
[30]
T. Liu, J. J. He, Z. Yang, and F. Nori, Higher-order Weyl-exceptional-ring semimetals, Phys. Rev. Lett. 127(19), 196801 (2021)
CrossRef ADS Google scholar
[31]
L. Li, C. H. Lee, and J. Gong, Impurity induced scale-free localization, Commun. Phys. 4(1), 42 (2021)
CrossRef ADS Google scholar
[32]
E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93(1), 015005 (2021)
CrossRef ADS Google scholar
[33]
Y. Li, C. Liang, C. Wang, C. Lu, and Y. C. Liu, Gain-loss-induced hybrid skin-topological effect, Phys. Rev. Lett. 128(22), 223903 (2022)
CrossRef ADS Google scholar
[34]
K. Zhang, Z. Yang, and C. Fang, Universal non-Hermitian skin effect in two and higher dimensions, Nat. Commun. 13(1), 2496 (2022)
CrossRef ADS Google scholar
[35]
R. Lin, T. Tai, L. Li, and C. H. Lee, Topological non-Hermitian skin effect, Front. Phys. 18(5), 53605 (2023)
CrossRef ADS Google scholar
[36]
Z. Ren, D. Liu, E. Zhao, C. He, K. K. Pak, J. Li, and G. B. Jo, Chiral control of quantum states in non-Hermitian spin–orbit-coupled fermions, Nat. Phys. 18(4), 385 (2022)
CrossRef ADS Google scholar
[37]
K. Kawabata, T. Numasawa, and S. Ryu, Entanglement phase transition induced by the non-Hermitian skin effect, Phys. Rev. X 13(2), 021007 (2023)
CrossRef ADS Google scholar
[38]
K. Zhang, C. Fang, and Z. Yang, Dynamical degeneracy splitting and directional invisibility in non-Hermitian systems, Phys. Rev. Lett. 131(3), 036402 (2023)
CrossRef ADS Google scholar
[39]
C. A. Li, B. Trauzettel, T. Neupert, and S. B. Zhang, Enhancement of second-order non-Hermitian skin effect by magnetic fields, Phys. Rev. Lett. 131(11), 116601 (2023)
CrossRef ADS Google scholar
[40]
J.LiuZ. F. CaiT.LiuZ.Yang, Reentrant non-Hermitian skin effect in coupled non-Hermitian and Hermitian chains with correlated disorder, arXiv: 2023)
arXiv
[41]
Z. F. Cai, T. Liu, and Z. Yang, Non-Hermitian skin effect in periodically driven dissipative ultracold atoms, Phys. Rev. A 109(6), 063329 (2024)
CrossRef ADS Google scholar
[42]
X. Li, J. Liu, and T. Liu, Localization‒delocalization transitions in non-Hermitian Aharonov‒Bohm cages, Front. Phys. 19(3), 33211 (2024)
CrossRef ADS Google scholar
[43]
Y. M. Hu, H. Y. Wang, Z. Wang, and F. Song, Geometric origin of non-Bloch PT symmetry breaking, Phys. Rev. Lett. 132(5), 050402 (2024)
CrossRef ADS Google scholar
[44]
H. Y. Wang, F. Song, and Z. Wang, Amoeba formulation of non-Bloch band theory in arbitrary dimensions, Phys. Rev. X 14(2), 021011 (2024)
CrossRef ADS Google scholar
[45]
X. D. Xie, Z. Y. Xue, and D. B. Zhang, Variational quantum algorithms for scanning the complex spectrum of non-Hermitian systems, Front. Phys. 19(4), 41202 (2024)
CrossRef ADS Google scholar
[46]
H.ZhangZ. GuoY.LiY.YangY.Chen H.Chen, A universal non-Hermitian platform for bound state in the continuum enhanced wireless power transfer, Front. Phys. 19(4), 43209 (2024)
[47]
F. Koch and J. C. Budich, Quantum non-Hermitian topological sensors, Phys. Rev. Res. 4(1), 013113 (2022)
CrossRef ADS Google scholar
[48]
J. C. Budich and E. J. Bergholtz, Non-Hermitian topological sensors, Phys. Rev. Lett. 125(18), 180403 (2020)
CrossRef ADS Google scholar
[49]
A. McDonald and A. A. Clerk, Exponentially-enhanced quantum sensing with non-Hermitian lattice dynamics, Nat. Commun. 11(1), 5382 (2020)
CrossRef ADS Google scholar
[50]
C. X. Guo, X. Wang, H. Hu, and S. Chen, Accumulation of scale-free localized states induced by local non-hermiticity, Phys. Rev. B 107(13), 134121 (2023)
CrossRef ADS Google scholar
[51]
B. Li, H. R. Wang, F. Song, and Z. Wang, Scale-free localization and PT symmetry breaking from local non-hermiticity, Phys. Rev. B 108(16), L161409 (2023)
CrossRef ADS Google scholar
[52]
Y. Wang, J. Lin, and P. Xu, Transmission-reflection decoupling of non-Hermitian photonic doping epsilon-near-zero media, Front. Phys. 19(3), 33206 (2024)
CrossRef ADS Google scholar
[53]
Y. Fu and Y. Zhang, Hybrid scale-free skin effect in non-Hermitian systems: A transfer matrix approach, Phys. Rev. B 108(20), 205423 (2023)
CrossRef ADS Google scholar
[54]
X. Xie, G. Liang, F. Ma, Y. Du, Y. Peng, E. Li, H. Chen, L. Li, F. Gao, and H. Xue, Observation of scale-free localized states induced by non-Hermitian defects, Phys. Rev. B 109(14), L140102 (2024)
CrossRef ADS Google scholar
[55]
P. Molignini, O. Arandes, and E. J. Bergholtz, Anomalous skin effects in disordered systems with a single non-Hermitian impurity, Phys. Rev. Res. 5(3), 033058 (2023)
CrossRef ADS Google scholar
[56]
W. Zhang, D. Zou, Q. Pei, W. He, J. Bao, H. Sun, and X. Zhang, Experimental observation of higher-order topological Anderson insulators, Phys. Rev. Lett. 126(14), 146802 (2021)
CrossRef ADS Google scholar
[57]
W. Zhang, H. Wang, H. Sun, and X. Zhang, Non-abelian inverse Anderson transitions, Phys. Rev. Lett. 130(20), 206401 (2023)
CrossRef ADS Google scholar
[58]
S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, and R. Thomale, Topolectrical-circuit realization of topological corner modes, Nat. Phys. 14(9), 925 (2018)
CrossRef ADS Google scholar
[59]
F. Zangeneh-Nejad and R. Fleury, Nonlinear second-order topological insulators, Phys. Rev. Lett. 123(5), 053902 (2019)
CrossRef ADS Google scholar
[60]
M. Serra-Garcia, R. Süsstrunk, and S. D. Huber, Observation of quadrupole transitions and edge mode topology in an LC circuit network, Phys. Rev. B 99(2), 020304 (2019)
CrossRef ADS Google scholar
[61]
W. Zhang, F. Di, X. Zheng, H. Sun, and X. Zhang, Hyperbolic band topology with non-trivial second Chern numbers, Nat. Commun. 14(1), 1083 (2023)
CrossRef ADS Google scholar
[62]
W. Zhang, H. Yuan, N. Sun, H. Sun, and X. Zhang, Observation of novel topological states in hyperbolic lattices, Nat. Commun. 13(1), 2937 (2022)
CrossRef ADS Google scholar
[63]
T. Hofmann, T. Helbig, C. H. Lee, M. Greiter, and R. Thomale, Chiral voltage propagation and calibration in a topolectrical Chern circuit, Phys. Rev. Lett. 122(24), 247702 (2019)
CrossRef ADS Google scholar
[64]
C. H. Lee, S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, and R. Thomale, Topolectrical circuits, Commun. Phys. 1(1), 39 (2018)
CrossRef ADS Google scholar
[65]
T. Helbig, T. Hofmann, C. H. Lee, R. Thomale, S. Imhof, L. W. Molenkamp, and T. Kiessling, Band structure engineering and reconstruction in electric circuit networks, Phys. Rev. B 99(16), 161114 (2019)
CrossRef ADS Google scholar
[66]
Z. Q. Zhang, B. L. Wu, J. Song, and H. Jiang, Topological Anderson insulator in electric circuits, Phys. Rev. B 100(18), 184202 (2019)
CrossRef ADS Google scholar
[67]
Y. Wang, H. M. Price, B. Zhang, and Y. D. Chong, Circuit implementation of a four-dimensional topological insulator, Nat. Commun. 11(1), 2356 (2020)
CrossRef ADS Google scholar
[68]
J. Bao, D. Zou, W. Zhang, W. He, H. Sun, and X. Zhang, Topoelectrical circuit octupole insulator with topologically protected corner states, Phys. Rev. B 100(20), 201406 (2019)
CrossRef ADS Google scholar
[69]
Y. Lu, N. Jia, L. Su, C. Owens, G. Juzeliūnas, D. I. Schuster, and J. Simon, Probing the Berry curvature and Fermi arcs of a Weyl circuit, Phys. Rev. B 99(2), 020302 (2019)
CrossRef ADS Google scholar
[70]
T. Helbig, T. Hofmann, S. Imhof, M. Abdelghany, T. Kiessling, L. W. Molenkamp, C. H. Lee, A. Szameit, M. Greiter, and R. Thomale, Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits, Nat. Phys. 16(7), 747 (2020)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

T.L. acknowledges the support from the Fundamental Research Funds for the Central Universities (Grant No. 2023ZYGXZR020), the Introduced Innovative Team Project of Guangdong Pearl River Talents Program (Grant No. 2021ZT09Z109), and the Startup Grant of South China University of Technology (Grant No. 20210012). W.B.J was supported by the National Natural Science Foundation of China (NSFC) (Grant No. U21A2093).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(8343 KB)

Accesses

Citations

Detail

Sections
Recommended

/