Characterizing non-Hermitian topological monomodes via fractional mode charges in acoustic systems

Taotao Zheng, Wenbin Lv, Yuxiang Zhou, Chudong Xu, Ming-Hui Lu

PDF(5545 KB)
PDF(5545 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (1) : 014202. DOI: 10.15302/frontphys.2025.014202
RESEARCH ARTICLE

Characterizing non-Hermitian topological monomodes via fractional mode charges in acoustic systems

Author information +
History +

Abstract

Non-Hermitian properties play an important role in topological acoustic systems, which can not only change the band topology but may also lead to novel applications such as non-Hermitian skin effect (NHSE). However, non-Hermitian systems, which are more closely related to real-world systems due to inevitable losses or gains, present challenges to topological classifications and boundary correspondence. Here, we demonstrate a topological monomodes based on one-dimensional (1D) Su−Schrieffer−Heeger (SSH) chains subject to non-Hermitian loss influences, which is achieved through tuning and introducing loss in the coupled acoustic cavity system. Moreover, we have extended this phenomenon from low-dimensional to high-dimensional systems. Theoretical and simulation results indicate that monomode can still be observed in non-Hermitian acoustic high-dimensional models, challenging the notion that topological states can only occur in pairs. More importantly, we have simulated the acoustic topological monomodes under non-Hermitian high-dimensional systems using acoustic local density of states (LDOS). Theoretical and simulation results demonstrate that local density of states can be used to calculate fractional charge modes and characterize topological monomodes in non-Hermitian acoustic systems. Our findings may have significant implications for the characterization of topology in non-Hermitian acoustic systems. This discovery offers a new perspective and approach to the study of non-Hermitian acoustic topology.

Graphical abstract

Keywords

topological monomodes / non-Hermitian system / local density of states

Cite this article

Download citation ▾
Taotao Zheng, Wenbin Lv, Yuxiang Zhou, Chudong Xu, Ming-Hui Lu. Characterizing non-Hermitian topological monomodes via fractional mode charges in acoustic systems. Front. Phys., 2025, 20(1): 014202 https://doi.org/10.15302/frontphys.2025.014202

References

[1]
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef ADS arXiv Google scholar
[2]
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef ADS arXiv Google scholar
[3]
A. Bansil, H. Lin, and T. Das, Colloquium: Topological band theory, Rev. Mod. Phys. 88(2), 021004 (2016)
CrossRef ADS arXiv Google scholar
[4]
X. G. Wen, Colloquium: Zoo of quantum-topological phases of matter, Rev. Mod. Phys. 89(4), 041004 (2017)
CrossRef ADS arXiv Google scholar
[5]
Z.GuoY. WangS.KeX.SuJ.Ren H.Chen, 1D photonic topological insulators composed of split ring resonators: A mini review, Adv. Phys. Res. 3(6), 2300125 (2024)
[6]
J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys. 75(7), 076501 (2012)
CrossRef ADS arXiv Google scholar
[7]
C. W. J. Beenakker, Search for Majorana fermions in superconductors, Annu. Rev. Condens. Matter Phys. 4(1), 113 (2013)
CrossRef ADS arXiv Google scholar
[8]
M. Sato and Y. Ando, Topological superconductors: A review, Rep. Prog. Phys. 80(7), 076501 (2017)
CrossRef ADS arXiv Google scholar
[9]
M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices, Phys. Rev. Lett. 111(18), 185301 (2013)
CrossRef ADS arXiv Google scholar
[10]
M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, and N. Goldman, Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms, Nat. Phys. 11(2), 162 (2015)
CrossRef ADS arXiv Google scholar
[11]
G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Experimental realization of the topological Haldane model with ultracold fermions, Nature 515(7526), 237 (2014)
CrossRef ADS arXiv Google scholar
[12]
N. Goldman, G. Juzeliūnas, P. Öhberg, and I. B. Spielman, Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys. 77(12), 126401 (2014)
CrossRef ADS arXiv Google scholar
[13]
N. Goldman, J. C. Budich, and P. Zoller, Topological quantum matter with ultracold gases in optical lattices, Nat. Phys. 12(7), 639 (2016)
CrossRef ADS arXiv Google scholar
[14]
N. R. Cooper, J. Dalibard, and I. B. Spielman, Topological bands for ultracold atoms, Rev. Mod. Phys. 91(1), 015005 (2019)
CrossRef ADS arXiv Google scholar
[15]
B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314(5806), 1757 (2006)
CrossRef ADS Google scholar
[16]
M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells, Science 318, 766 (2007)
CrossRef ADS arXiv Google scholar
[17]
Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda, Topological phases of non-Hermitian systems, Phys. Rev. X 8(3), 031079 (2018)
CrossRef ADS arXiv Google scholar
[18]
K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Symmetry and topology in non-Hermitian physics, Phys. Rev. X 9(4), 041015 (2019)
CrossRef ADS arXiv Google scholar
[19]
H. Zhou and J. Y. Lee, Periodic table for topological bands with non-Hermitian symmetries, Phys. Rev. B 99(23), 235112 (2019)
CrossRef ADS arXiv Google scholar
[20]
T. E. Lee, Anomalous edge state in a non-Hermitian lattice, Phys. Rev. Lett. 116(13), 133903 (2016)
CrossRef ADS arXiv Google scholar
[21]
D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and F. Nori, Edge modes, degeneracies, and topological numbers in non-Hermitian systems, Phys. Rev. Lett. 118(4), 040401 (2017)
CrossRef ADS arXiv Google scholar
[22]
V. M. Martinez Alvarez, J. E. Barrios Vargas, and L. E. F. Foa Torres, Non-Hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points, Phys. Rev. B 97(12), 121401 (2018)
CrossRef ADS arXiv Google scholar
[23]
Y. Xiong, Why does bulk boundary correspondence fail in some non-Hermitian topological models, J. Phys. Commun. 2(3), 035043 (2018)
CrossRef ADS Google scholar
[24]
S. Yao and Z. Wang, Edge states and topological invariants of non-Hermitian systems, Phys. Rev. Lett. 121(8), 086803 (2018)
CrossRef ADS arXiv Google scholar
[25]
F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz, Biorthogonal bulk-boundary correspondence in non-Hermitian systems, Phys. Rev. Lett. 121(2), 026808 (2018)
CrossRef ADS arXiv Google scholar
[26]
C. H. Lee and R. Thomale, Anatomy of skin modes and topology in non-Hermitian systems, Phys. Rev. B 99(20), 201103 (2019)
CrossRef ADS arXiv Google scholar
[27]
K. Y. Bliokh, D. Leykam, M. Lein, and F. Nori, Topological non-Hermitian origin of surface Maxwell waves, Nat. Commun. 10(1), 580 (2019)
CrossRef ADS arXiv Google scholar
[28]
K. Y. Bliokh and F. Nori, Klein-Gordon representation of acoustic waves and topological origin of surface acoustic modes, Phys. Rev. Lett. 123(5), 054301 (2019)
CrossRef ADS arXiv Google scholar
[29]
A. Ghatak and T. Das, New topological invariants in non-Hermitian systems, J. Phys.: Condens. Matter 31(26), 263001 (2019)
CrossRef ADS arXiv Google scholar
[30]
M. Wang, L. Ye, J. Christensen, and Z. Liu, Valley physics in non-Hermitian artificial acoustic boron nitride, Phys. Rev. Lett. 120(24), 246601 (2018)
CrossRef ADS Google scholar
[31]
J. Liu, Z. Li, Z. G. Chen, W. Tang, A. Chen, B. Liang, G. Ma, and J. C. Cheng, Experimental realization of Weyl exceptional rings in a synthetic three-dimensional non-Hermitian phononic crystal, Phys. Rev. Lett. 129(8), 084301 (2022)
CrossRef ADS arXiv Google scholar
[32]
H. Gao, H. Xue, Q. Wang, Z. Gu, T. Liu, J. Zhu, and B. Zhang, Observation of topological edge states induced solely by non-Hermiticity in an acoustic crystal, Phys. Rev. B 101(18), 180303 (2020)
CrossRef ADS Google scholar
[33]
H. Gao, H. Xue, Z. Gu, T. Liu, J. Zhu, and B. Zhang, Non-Hermitian route to higher-order topology in an acoustic crystal, Nat. Commun. 12(1), 1888 (2021)
CrossRef ADS arXiv Google scholar
[34]
K. Esaki, M. Sato, K. Hasebe, and M. Kohmoto, Edge states and topological phases in non-Hermitian systems, Phys. Rev. B 84(20), 205128 (2011)
CrossRef ADS arXiv Google scholar
[35]
L. Herviou, J. H. Bardarson, and N. Regnault, Defining a bulk-edge correspondence for non-Hermitian Hamiltonians via singular-value decomposition, Phys. Rev. A 99(5), 052118 (2019)
CrossRef ADS arXiv Google scholar
[36]
N. Okuma and M. Sato, Non-Hermitian topological phenomena: A review, Annu. Rev. Condens. Matter Phys. 14(1), 83 (2023)
CrossRef ADS arXiv Google scholar
[37]
R. Lin, T. Tai, L. Li, and C. H. Lee, Topological non-Hermitian skin effect, Front. Phys. 18(5), 53605 (2023)
CrossRef ADS arXiv Google scholar
[38]
M. J. Liao, M. S. Wei, Z. Lin, J. Xu, and Y. Yang, Non-Hermitian skin effect induced by on-site gain and loss in the optically coupled cavity array, Results Phys. 57, 107372 (2024)
CrossRef ADS Google scholar
[39]
W.CherifiJ. CarlströmM.BourennaneE.J. Bergholtz, Non-Hermitian boundary state distillation with lossy waveguides, 2023)
arXiv
[40]
B. Xie, H. X. Wang, X. Zhang, P. Zhan, J. H. Jiang, M. Lu, and Y. Chen, Higher-order band topology, Nat. Rev. Phys. 3(7), 520 (2021)
CrossRef ADS arXiv Google scholar
[41]
X. Zhang, H. X. Wang, Z. K. Lin, Y. Tian, B. Xie, M. H. Lu, Y. F. Chen, and J. H. Jiang, Second-order topology and multidimensional topological transitions in sonic crystals, Nat. Phys. 15(6), 582 (2019)
CrossRef ADS arXiv Google scholar
[42]
T. Li, P. Zhu, W. A. Benalcazar, and T. L. Hughes, Fractional disclination charge in two-dimensional Cn-symmetric topological crystalline insulators, Phys. Rev. B 101(11), 115115 (2020)
CrossRef ADS arXiv Google scholar
[43]
C. W. Peterson, T. Li, W. Jiang, T. L. Hughes, and G. Bahl, Trapped fractional charges at bulk defects in topological insulators, Nature 589(7842), 376 (2021)
CrossRef ADS Google scholar
[44]
Y. Liu, S. Leung, F. F. Li, Z. K. Lin, X. Tao, Y. Poo, and J. H. Jiang, Bulk-disclination correspondence in topological crystalline insulators, Nature 589(7842), 381 (2021)
CrossRef ADS arXiv Google scholar
[45]
H. X. Wang, L. Liang, B. Jiang, J. Hu, X. Lu, and J. H. Jiang, Higher-order topological phases in tunable C3 symmetric photonic crystals, Photon. Res. 9(9), 1854 (2021)
CrossRef ADS arXiv Google scholar
[46]
S. Wu, B. Jiang, Y. Liu, and J. H. Jiang, All-dielectric photonic crystal with unconventional higher-order topology, Photon. Res. 9(5), 668 (2021)
CrossRef ADS Google scholar
[47]
T. Zheng, H. Ge, Z. Long, C. Xu, and M. H. Lu, Fractional mode charge of higher-order topological acoustic transport, Appl. Phys. Lett. 122(18), 183101 (2023)
CrossRef ADS Google scholar
[48]
H. Ge, Z. W. Long, X. Y. Xu, J. G. Hua, Y. Liu, B. Y. Xie, J. H. Jiang, M. H. Lu, and Y. F. Chen, Direct measurement of acoustic spectral density and fractional topological charge, Phys. Rev. Appl. 19(3), 034073 (2023)
CrossRef ADS Google scholar
[49]
W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quantized electric multipole insulators, Science 357(6346), 61 (2017)
CrossRef ADS arXiv Google scholar
[50]
W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators, Phys. Rev. B 96(24), 245115 (2017)
CrossRef ADS arXiv Google scholar
[51]
V. M. Martinez Alvarez and M. D. Coutinho-Filho, Edge states in trimer lattices, Phys. Rev. A 99(1), 013833 (2019)
CrossRef ADS arXiv Google scholar
[52]
J. R. Li, C. Jiang, H. Su, D. Qi, L. L. Zhang, and W. J. Gong, Parity-dependent skin effects and topological properties in the multilayer nonreciprocal Su−Schrieffer−Heeger structures, Front. Phys. 19(3), 33204 (2024)
CrossRef ADS Google scholar
[53]
T. Hofmann, T. Helbig, F. Schindler, N. Salgo, M. Brzezińska, M. Greiter, T. Kiessling, D. Wolf, A. Vollhardt, A. Kabaši, C. H. Lee, A. Bilušić, R. Thomale, and T. Neupert, Reciprocal skin effect and its realization in a topolectrical circuit, Phys. Rev. Res. 2(2), 023265 (2020)
CrossRef ADS arXiv Google scholar
[54]
E.SlootmanW. CherifiL.EekR.AroucaE.J. BergholtzM.BourennaneC.M. Smith, Topological monomodes in non-Hermitian systems, 2023)
arXiv

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgements

The authors would like to acknowledge the support of the Natural Science Foundation of Guangdong, China (No. 2020A1515010634).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5545 KB)

Accesses

Citations

Detail

Sections
Recommended

/