
Characterizing non-Hermitian topological monomodes via fractional mode charges in acoustic systems
Taotao Zheng, Wenbin Lv, Yuxiang Zhou, Chudong Xu, Ming-Hui Lu
Front. Phys. ›› 2025, Vol. 20 ›› Issue (1) : 014202.
Characterizing non-Hermitian topological monomodes via fractional mode charges in acoustic systems
Non-Hermitian properties play an important role in topological acoustic systems, which can not only change the band topology but may also lead to novel applications such as non-Hermitian skin effect (NHSE). However, non-Hermitian systems, which are more closely related to real-world systems due to inevitable losses or gains, present challenges to topological classifications and boundary correspondence. Here, we demonstrate a topological monomodes based on one-dimensional (1D) Su−Schrieffer−Heeger (SSH) chains subject to non-Hermitian loss influences, which is achieved through tuning and introducing loss in the coupled acoustic cavity system. Moreover, we have extended this phenomenon from low-dimensional to high-dimensional systems. Theoretical and simulation results indicate that monomode can still be observed in non-Hermitian acoustic high-dimensional models, challenging the notion that topological states can only occur in pairs. More importantly, we have simulated the acoustic topological monomodes under non-Hermitian high-dimensional systems using acoustic local density of states (LDOS). Theoretical and simulation results demonstrate that local density of states can be used to calculate fractional charge modes and characterize topological monomodes in non-Hermitian acoustic systems. Our findings may have significant implications for the characterization of topology in non-Hermitian acoustic systems. This discovery offers a new perspective and approach to the study of non-Hermitian acoustic topology.
topological monomodes / non-Hermitian system / local density of states
Fig.1 (a) Schematic of a 1D SSH chain of coupled acoustic system with t2/t1 = 1.33. The localization of edge modes is clearly evident, indicating the presence of well-defined eigenstates in the system. (b) Same as (a) but with an additional loss at the blue dot positioned near the left edge, one of the edge modes vanishes, revealing a monomode pattern. (c) The edge state emerges in the bandgap. (d) Same as (c) but with an additional loss. (e) The simulated mode charge of each cavity in the 1D acoustic structure is represented by filled circles in the frequency domain ranging from 1800 to 2700 Hz. The size of each circle corresponds to the simulated mode density of the resonator in that frequency band. (f) Same as (e) but with an additional loss. (g) The LDOS spectrum of site 1 and site 12 shows distinct features for different types of states in Fig.1(a). (h) Same as (g) but in Fig.1(b). The edge state appears as a single peak, the bulk states exhibits outward diffusion. |
Fig.2 (a) The 2D SSH chain of coupled acoustic system with t2/t1 = 1.33. The localization of corner modes is clearly evident, indicating the presence of well-defined eigenstates in the system. (b) Same as (a) but breaking the C4 symmetry of the system to C2 symmetry, additional losses are shown by the blue dots. (c) Similar to (a), but breaking the C2 symmetry of the system to monomode pattern, further losses are demonstrated by the blue dots. (d) The simulated mode charge of each cavity in Fig.2(a) is represented by filled circles in the frequency domain ranging from 1800 to 2700 Hz. The size of each circle corresponds to the simulated mode density of the resonator in that frequency band. (e) Same as (d) but in Fig.2(b). (f) The LDOS spectrum of site 1 and site 8 shows distinct features for different types of states in Fig.2(a). (g) Same as (f) but in Fig.2(b). The corner state appears as a single peak, and the bulk states manifest as two peaks within the bandgap. |
Fig.3 (a) Robust topological monomodes in Fig.2(b) with disorder introduced into structure. (b) Same as (a). (c) The simulated mode charge of each cavity in (b) is represented by filled circles in the frequency domain ranging from 1800 to 2700 Hz. The size of each circle corresponds to the simulated mode density of the resonator in that frequency band. (d) The LDOS spectrum of site 1 and site 8 shows distinct features for different types of states in the system, accompanied by fluctuations induced by added disturbances. (e) Same as (d). |
Fig.4 (a) The 3D acoustic structure of coupled acoustic system. The localization of corner modes is clearly evident, indicating the presence of well-defined eigenstates in the system. (b) Same as (a) but additional losses are shown by the blue dots. (c) The simulated mode charge of each cavity in layer 1 is represented by filled circles in the frequency domain ranging from 1800 to 2700 Hz. The size of each circle corresponds to the simulated mode density of the resonator in that frequency band. (d) The LDOS spectrum of site 1 and site 8 shows distinct features for different types of states in Fig.4(a). (e) Same as (d) in Fig.4(b). |
[1] |
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef
ADS
arXiv
Google scholar
|
[2] |
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef
ADS
arXiv
Google scholar
|
[3] |
A. Bansil, H. Lin, and T. Das, Colloquium: Topological band theory, Rev. Mod. Phys. 88(2), 021004 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[4] |
X. G. Wen, Colloquium: Zoo of quantum-topological phases of matter, Rev. Mod. Phys. 89(4), 041004 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[5] |
Z. Guo,Y. Wang,S. Ke,X. Su,J. Ren, H. Chen, 1D photonic topological insulators composed of split ring resonators: A mini review, Adv. Phys. Res. 3(6), 2300125 (2024)
|
[6] |
J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys. 75(7), 076501 (2012)
CrossRef
ADS
arXiv
Google scholar
|
[7] |
C. W. J. Beenakker, Search for Majorana fermions in superconductors, Annu. Rev. Condens. Matter Phys. 4(1), 113 (2013)
CrossRef
ADS
arXiv
Google scholar
|
[8] |
M. Sato and Y. Ando, Topological superconductors: A review, Rep. Prog. Phys. 80(7), 076501 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[9] |
M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch, Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices, Phys. Rev. Lett. 111(18), 185301 (2013)
CrossRef
ADS
arXiv
Google scholar
|
[10] |
M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, and N. Goldman, Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms, Nat. Phys. 11(2), 162 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[11] |
G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Experimental realization of the topological Haldane model with ultracold fermions, Nature 515(7526), 237 (2014)
CrossRef
ADS
arXiv
Google scholar
|
[12] |
N. Goldman, G. Juzeliūnas, P. Öhberg, and I. B. Spielman, Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys. 77(12), 126401 (2014)
CrossRef
ADS
arXiv
Google scholar
|
[13] |
N. Goldman, J. C. Budich, and P. Zoller, Topological quantum matter with ultracold gases in optical lattices, Nat. Phys. 12(7), 639 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[14] |
N. R. Cooper, J. Dalibard, and I. B. Spielman, Topological bands for ultracold atoms, Rev. Mod. Phys. 91(1), 015005 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[15] |
B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314(5806), 1757 (2006)
CrossRef
ADS
Google scholar
|
[16] |
M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells, Science 318, 766 (2007)
CrossRef
ADS
arXiv
Google scholar
|
[17] |
Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda, Topological phases of non-Hermitian systems, Phys. Rev. X 8(3), 031079 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[18] |
K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Symmetry and topology in non-Hermitian physics, Phys. Rev. X 9(4), 041015 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[19] |
H. Zhou and J. Y. Lee, Periodic table for topological bands with non-Hermitian symmetries, Phys. Rev. B 99(23), 235112 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[20] |
T. E. Lee, Anomalous edge state in a non-Hermitian lattice, Phys. Rev. Lett. 116(13), 133903 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[21] |
D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and F. Nori, Edge modes, degeneracies, and topological numbers in non-Hermitian systems, Phys. Rev. Lett. 118(4), 040401 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[22] |
V. M. Martinez Alvarez, J. E. Barrios Vargas, and L. E. F. Foa Torres, Non-Hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points, Phys. Rev. B 97(12), 121401 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[23] |
Y. Xiong, Why does bulk boundary correspondence fail in some non-Hermitian topological models, J. Phys. Commun. 2(3), 035043 (2018)
CrossRef
ADS
Google scholar
|
[24] |
S. Yao and Z. Wang, Edge states and topological invariants of non-Hermitian systems, Phys. Rev. Lett. 121(8), 086803 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[25] |
F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz, Biorthogonal bulk-boundary correspondence in non-Hermitian systems, Phys. Rev. Lett. 121(2), 026808 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[26] |
C. H. Lee and R. Thomale, Anatomy of skin modes and topology in non-Hermitian systems, Phys. Rev. B 99(20), 201103 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[27] |
K. Y. Bliokh, D. Leykam, M. Lein, and F. Nori, Topological non-Hermitian origin of surface Maxwell waves, Nat. Commun. 10(1), 580 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[28] |
K. Y. Bliokh and F. Nori, Klein-Gordon representation of acoustic waves and topological origin of surface acoustic modes, Phys. Rev. Lett. 123(5), 054301 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[29] |
A. Ghatak and T. Das, New topological invariants in non-Hermitian systems, J. Phys.: Condens. Matter 31(26), 263001 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[30] |
M. Wang, L. Ye, J. Christensen, and Z. Liu, Valley physics in non-Hermitian artificial acoustic boron nitride, Phys. Rev. Lett. 120(24), 246601 (2018)
CrossRef
ADS
Google scholar
|
[31] |
J. Liu, Z. Li, Z. G. Chen, W. Tang, A. Chen, B. Liang, G. Ma, and J. C. Cheng, Experimental realization of Weyl exceptional rings in a synthetic three-dimensional non-Hermitian phononic crystal, Phys. Rev. Lett. 129(8), 084301 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[32] |
H. Gao, H. Xue, Q. Wang, Z. Gu, T. Liu, J. Zhu, and B. Zhang, Observation of topological edge states induced solely by non-Hermiticity in an acoustic crystal, Phys. Rev. B 101(18), 180303 (2020)
CrossRef
ADS
Google scholar
|
[33] |
H. Gao, H. Xue, Z. Gu, T. Liu, J. Zhu, and B. Zhang, Non-Hermitian route to higher-order topology in an acoustic crystal, Nat. Commun. 12(1), 1888 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[34] |
K. Esaki, M. Sato, K. Hasebe, and M. Kohmoto, Edge states and topological phases in non-Hermitian systems, Phys. Rev. B 84(20), 205128 (2011)
CrossRef
ADS
arXiv
Google scholar
|
[35] |
L. Herviou, J. H. Bardarson, and N. Regnault, Defining a bulk-edge correspondence for non-Hermitian Hamiltonians via singular-value decomposition, Phys. Rev. A 99(5), 052118 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[36] |
N. Okuma and M. Sato, Non-Hermitian topological phenomena: A review, Annu. Rev. Condens. Matter Phys. 14(1), 83 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[37] |
R. Lin, T. Tai, L. Li, and C. H. Lee, Topological non-Hermitian skin effect, Front. Phys. 18(5), 53605 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[38] |
M. J. Liao, M. S. Wei, Z. Lin, J. Xu, and Y. Yang, Non-Hermitian skin effect induced by on-site gain and loss in the optically coupled cavity array, Results Phys. 57, 107372 (2024)
CrossRef
ADS
Google scholar
|
[39] |
W. Cherifi,J. Carlström,M. Bourennane,E. J. Bergholtz, Non-Hermitian boundary state distillation with lossy waveguides, 2023)
arXiv
|
[40] |
B. Xie, H. X. Wang, X. Zhang, P. Zhan, J. H. Jiang, M. Lu, and Y. Chen, Higher-order band topology, Nat. Rev. Phys. 3(7), 520 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[41] |
X. Zhang, H. X. Wang, Z. K. Lin, Y. Tian, B. Xie, M. H. Lu, Y. F. Chen, and J. H. Jiang, Second-order topology and multidimensional topological transitions in sonic crystals, Nat. Phys. 15(6), 582 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[42] |
T. Li, P. Zhu, W. A. Benalcazar, and T. L. Hughes, Fractional disclination charge in two-dimensional Cn-symmetric topological crystalline insulators, Phys. Rev. B 101(11), 115115 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[43] |
C. W. Peterson, T. Li, W. Jiang, T. L. Hughes, and G. Bahl, Trapped fractional charges at bulk defects in topological insulators, Nature 589(7842), 376 (2021)
CrossRef
ADS
Google scholar
|
[44] |
Y. Liu, S. Leung, F. F. Li, Z. K. Lin, X. Tao, Y. Poo, and J. H. Jiang, Bulk-disclination correspondence in topological crystalline insulators, Nature 589(7842), 381 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[45] |
H. X. Wang, L. Liang, B. Jiang, J. Hu, X. Lu, and J. H. Jiang, Higher-order topological phases in tunable C3 symmetric photonic crystals, Photon. Res. 9(9), 1854 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[46] |
S. Wu, B. Jiang, Y. Liu, and J. H. Jiang, All-dielectric photonic crystal with unconventional higher-order topology, Photon. Res. 9(5), 668 (2021)
CrossRef
ADS
Google scholar
|
[47] |
T. Zheng, H. Ge, Z. Long, C. Xu, and M. H. Lu, Fractional mode charge of higher-order topological acoustic transport, Appl. Phys. Lett. 122(18), 183101 (2023)
CrossRef
ADS
Google scholar
|
[48] |
H. Ge, Z. W. Long, X. Y. Xu, J. G. Hua, Y. Liu, B. Y. Xie, J. H. Jiang, M. H. Lu, and Y. F. Chen, Direct measurement of acoustic spectral density and fractional topological charge, Phys. Rev. Appl. 19(3), 034073 (2023)
CrossRef
ADS
Google scholar
|
[49] |
W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quantized electric multipole insulators, Science 357(6346), 61 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[50] |
W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators, Phys. Rev. B 96(24), 245115 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[51] |
V. M. Martinez Alvarez and M. D. Coutinho-Filho, Edge states in trimer lattices, Phys. Rev. A 99(1), 013833 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[52] |
J. R. Li, C. Jiang, H. Su, D. Qi, L. L. Zhang, and W. J. Gong, Parity-dependent skin effects and topological properties in the multilayer nonreciprocal Su−Schrieffer−Heeger structures, Front. Phys. 19(3), 33204 (2024)
CrossRef
ADS
Google scholar
|
[53] |
T. Hofmann, T. Helbig, F. Schindler, N. Salgo, M. Brzezińska, M. Greiter, T. Kiessling, D. Wolf, A. Vollhardt, A. Kabaši, C. H. Lee, A. Bilušić, R. Thomale, and T. Neupert, Reciprocal skin effect and its realization in a topolectrical circuit, Phys. Rev. Res. 2(2), 023265 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[54] |
E. Slootman,W. Cherifi,L. Eek, R. Arouca,E. J. Bergholtz,M. Bourennane,C. M. Smith, Topological monomodes in non-Hermitian systems, 2023)
arXiv
|
/
〈 |
|
〉 |