Technique for studying the coalescence of eigenstates and eigenvalues in non-Hermitian systems
Seyed Mohammad Hosseiny, Hossein Rangani Jahromi, Babak Farajollahi, Mahdi Amniat-Talab
Technique for studying the coalescence of eigenstates and eigenvalues in non-Hermitian systems
In our study, we explore high-order exceptional points (EPs), which are crucial for enhancing the sensitivity of open physical systems to external changes. We utilize the Hilbert−Schmidt speed (HSS), a measure of quantum statistical speed, to accurately identify EPs in non-Hermitian systems. These points are characterized by the simultaneous coalescence of eigenvalues and their associated eigenstates. One of the main benefits of using HSS is that it eliminates the need to diagonalize the evolved density matrix, simplifying the identification process. Our method is shown to be effective even in complex, multi-dimensional and interacting Hamiltonian systems. In certain cases, a generalized evolved state may be employed over the conventional normalized state. This necessitates the use of a metric operator to define the inner product between states, thereby introducing additional complexity. Our research confirms that HSS is a reliable and practical tool for detecting EPs, even in these demanding situations.
non-Hermitian physics / exceptional points / Hilbert−Schmidt speed / quantum statistical speed
[1] |
C. Y. Ju, A. Miranowicz, G. Y. Chen, and F. Nori, Non−Hermitian Hamiltonians and no−go theorems in quantum information, Phys. Rev. A 100, 062118 (2019)
CrossRef
ADS
Google scholar
|
[2] |
M.A. NielsenI.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2010
|
[3] |
C. M. Bender, S. Boettcher, and P. N. Meisinger, PT-symmetric quantum mechanics, J. Math. Phys. 40(5), 2201 (1999)
CrossRef
ADS
Google scholar
|
[4] |
C. M. Bender and G. V. Dunne, Large-order perturbation theory for a non-Hermitian PT-symmetric Hamiltonian, J. Math. Phys. 40(10), 4616 (1999)
CrossRef
ADS
Google scholar
|
[5] |
C. M. Bender, M. Berry, and A. Mandilara, Generalized PT-symmetry and real spectra, J. Phys. Math. Gen. 35(31), L467 (2002)
CrossRef
ADS
Google scholar
|
[6] |
C. M. Bender, D. C. Brody, and H. F. Jones, Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction, Phys. Rev. D 70(2), 025001 (2004)
CrossRef
ADS
Google scholar
|
[7] |
C. M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys. 70(6), 947 (2007)
CrossRef
ADS
Google scholar
|
[8] |
C.M. BenderPT symmetry, in: Time and Science, Vol. 3, Physical Sciences and Cosmology, World Scientific, 2023, pp 285
|
[9] |
B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Parity‒time-symmetric whispering-gallery microcavities, Nat. Phys. 10(5), 394 (2014)
CrossRef
ADS
Google scholar
|
[10] |
B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, What is and what is not electromagnetically induced transparency in whispering-gallery microcavities, Nat. Commun. 5(1), 5082 (2014)
CrossRef
ADS
Google scholar
|
[11] |
H. Jing, S. Özdemir, X. Y. Lü, J. Zhang, L. Yang, and F. Nori, PT-symmetric phonon laser, Phys. Rev. Lett. 113(5), 053604 (2014)
CrossRef
ADS
Google scholar
|
[12] |
H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X. Y. Lü, B. Peng, L. Yang, and F. Nori, Optomechanically-induced transparency in parity‒time-symmetric microresonators, Sci. Rep. 5(1), 9663 (2015)
CrossRef
ADS
Google scholar
|
[13] |
J. Zhang, B. Peng, Ş. K. Özdemir, Y. Liu, H. Jing, X. Lü, Y. Liu, L. Yang, and F. Nori, Giant nonlinearity via breaking parity‒time symmetry: A route to low-threshold phonon diodes, Phys. Rev. B 92(11), 115407 (2015)
CrossRef
ADS
Google scholar
|
[14] |
T. Gao, E. Estrecho, K. Bliokh, T. Liew, M. Fraser, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, Y. Yamamoto, F. Nori, Y. S. Kivshar, A. G. Truscott, R. G. Dall, and E. A. Ostrovskaya, Observation of non-Hermitian degeneracies in a chaotic exciton−polariton billiard, Nature 526(7574), 554 (2015)
CrossRef
ADS
Google scholar
|
[15] |
Z. P. Liu, J. Zhang, Ş. K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, and Y. Liu, Metrology with PT-symmetric cavities: Enhanced sensitivity near the PT-phase transition, Phys. Rev. Lett. 117(11), 110802 (2016)
CrossRef
ADS
Google scholar
|
[16] |
D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, F. Nori, and Edge modes, and topological numbers in non-Hermitian systems, Phys. Rev. Lett. 118(4), 040401 (2017)
CrossRef
ADS
Google scholar
|
[17] |
H. Jing, Ş. K. Özdemir, H. Lü, and F. Nori, High-order exceptional points in optomechanics, Sci. Rep. 7(1), 1 (2017)
CrossRef
ADS
Google scholar
|
[18] |
H. Lü, S. Özdemir, L. M. Kuang, F. Nori, and H. Jing, Exceptional points in random-defect phonon lasers, Phys. Rev. Appl. 8(4), 044020 (2017)
CrossRef
ADS
Google scholar
|
[19] |
F. Quijandría, U. Naether, S. K. Özdemir, F. Nori, and D. Zueco, PT-symmetric circuit QED, Phys. Rev. A 97(5), 053846 (2018)
CrossRef
ADS
Google scholar
|
[20] |
J. Zhang, B. Peng, Ş. K. Özdemir, K. Pichler, D. O. Krimer, G. Zhao, F. Nori, Y. Liu, S. Rotter, and L. Yang, A phonon laser operating at an exceptional point, Nat. Photonics 12(8), 479 (2018)
CrossRef
ADS
Google scholar
|
[21] |
K. Y. Bliokh, D. Leykam, M. Lein, and F. Nori, Topological non-Hermitian origin of surface Maxwell waves, Nat. Commun. 10(1), 580 (2019)
CrossRef
ADS
Google scholar
|
[22] |
T. Liu, Y. R. Zhang, Q. Ai, Z. Gong, K. Kawabata, M. Ueda, and F. Nori, Second-order topological phases in non-Hermitian systems, Phys. Rev. Lett. 122(7), 076801 (2019)
CrossRef
ADS
Google scholar
|
[23] |
Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, Parity‒time symmetry and exceptional points in photonics, Nat. Mater. 18(8), 783 (2019)
CrossRef
ADS
Google scholar
|
[24] |
Z. Y. Ge, Y. R. Zhang, T. Liu, S. W. Li, H. Fan, and F. Nori, Topological band theory for non-Hermitian systems from the Dirac equation, Phys. Rev. B 100(5), 054105 (2019)
CrossRef
ADS
Google scholar
|
[25] |
F. Minganti, A. Miranowicz, R. W. Chhajlany, and F. Nori, Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: The effects of quantum jumps, Phys. Rev. A 100(6), 062131 (2019)
CrossRef
ADS
Google scholar
|
[26] |
F. Minganti, A. Miranowicz, R. W. Chhajlany, I. I. Arkhipov, and F. Nori, Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians and Liouvillians via postselection of quantum trajectories, Phys. Rev. A 101(6), 062112 (2020)
CrossRef
ADS
Google scholar
|
[27] |
T. Liu, J. J. He, T. Yoshida, Z. L. Xiang, and F. Nori, Non-Hermitian topological Mott insulators in one-dimensional fermionic super-lattices, Phys. Rev. B 102(23), 235151 (2020)
CrossRef
ADS
Google scholar
|
[28] |
L. Bao, B. Qi, D. Dong, and F. Nori, Fundamental limits for reciprocal and nonreciprocal non-Hermitian quantum sensing, Phys. Rev. A 103(4), 042418 (2021)
CrossRef
ADS
Google scholar
|
[29] |
Z. Y. Zhou, Z. L. Xiang, J. You, and F. Nori, Work statistics in non-Hermitian evolutions with Hermitian endpoints, Phys. Rev. E 104(3), 034107 (2021)
CrossRef
ADS
Google scholar
|
[30] |
Y. L. Fang, J. L. Zhao, Y. Zhang, D. X. Chen, Q. C. Wu, Y. H. Zhou, C. P. Yang, and F. Nori, Experimental demonstration of coherence flow in PT- and anti-PT-symmetric systems, Commun. Phys. 4(1), 223 (2021)
CrossRef
ADS
Google scholar
|
[31] |
T. Liu, J. J. He, Z. Yang, and F. Nori, Higher-order Weyl-exceptional-ring semimetals, Phys. Rev. Lett. 127(19), 196801 (2021)
CrossRef
ADS
Google scholar
|
[32] |
H. Xu, D. G. Lai, Y. B. Qian, B. P. Hou, A. Miranowicz, and F. Nori, Optomechanical dynamics in the PT- and broken-PT-symmetric regimes, Phys. Rev. A 104(5), 053518 (2021)
CrossRef
ADS
Google scholar
|
[33] |
C. Y. Ju, A. Miranowicz, F. Minganti, C. T. Chan, G. Y. Chen, and F. Nori, Einstein’s quantum elevator: Hermitization of non-Hermitian Hamiltonians via a generalized Vielbein formalism, Phys. Rev. Res. 4(2), 023070 (2022)
CrossRef
ADS
Google scholar
|
[34] |
F. Minganti, D. Huybrechts, C. Elouard, F. Nori, and I. I. Arkhipov, Creating and controlling exceptional points of non-Hermitian Hamiltonians via homodyne Lindbladian invariance, Phys. Rev. A 106(4), 042210 (2022)
CrossRef
ADS
Google scholar
|
[35] |
W. Nie, T. Shi, Y. Liu, and F. Nori, Non-Hermitian waveguide cavity QED with tunable atomic mirrors, Phys. Rev. Lett. 131(10), 103602 (2023)
CrossRef
ADS
Google scholar
|
[36] |
C. Y. Ju, A. Miranowicz, Y. N. Chen, G. Y. Chen, and F. Nori, Emergent parallel transport and curvature in Hermitian and non-Hermitian quantum mechanics, Quantum 8, 1277 (2024)
CrossRef
ADS
Google scholar
|
[37] |
H. Eleuch and I. Rotter, Open quantum systems and Dicke superradiance, Eur. Phys. J. D 68(3), 74 (2014)
CrossRef
ADS
Google scholar
|
[38] |
H. Rangani Jahromi and R. Lo Franco, Searching for exceptional points and inspecting non-contractivity of trace distance in (anti-)PT-symmetric systems, Quantum Inform. Process. 21(4), 155 (2022)
CrossRef
ADS
Google scholar
|
[39] |
H.P. BreuerF. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, USA, 2002
|
[40] |
J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, An open-system quantum simulator with trapped ions, Nature 470(7335), 486 (2011)
CrossRef
ADS
Google scholar
|
[41] |
Z. Hu, R. Xia, and S. Kais, A quantum algorithm for evolving open quantum dynamics on quantum computing devices, Sci. Rep. 10(1), 3301 (2020)
CrossRef
ADS
Google scholar
|
[42] |
L. Del Re, B. Rost, A. Kemper, and J. Freericks, Driven-dissipative quantum mechanics on a lattice: Simulating a fermionic reservoir on a quantum computer, Phys. Rev. B 102(12), 125112 (2020)
CrossRef
ADS
Google scholar
|
[43] |
O. Viyuela, A. Rivas, S. Gasparinetti, A. Wallraff, S. Filipp, and M. A. Martín-Delgado, Observation of topological Uhlmann phases with superconducting qubits, npj Quantum Inf. 4, 10 (2018)
CrossRef
ADS
Google scholar
|
[44] |
A. Mostafazadeh, Pseudo-Hermiticity versus PT-symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. Math. Phys. 43(1), 205 (2002)
CrossRef
ADS
Google scholar
|
[45] |
L. Solombrino, Weak pseudo-Hermiticity and antilinear commutant, J. Math. Phys. 43(11), 5439 (2002)
CrossRef
ADS
Google scholar
|
[46] |
S. Nixon and J. Yang, All-real spectra in optical systems with arbitrary gain-and-loss distributions, Phys. Rev. A 93(3), 031802 (2016)
CrossRef
ADS
Google scholar
|
[47] |
A. Mostafazadeh, Time-dependent pseudo-Hermitian Hamiltonians and a hidden geometric aspect of quantum mechanics, Entropy (Basel) 22(4), 471 (2020)
CrossRef
ADS
Google scholar
|
[48] |
Y. Chu, Y. Liu, H. Liu, and J. Cai, Quantum sensing with a single-qubit pseudo-Hermitian system, Phys. Rev. Lett. 124(2), 020501 (2020)
CrossRef
ADS
Google scholar
|
[49] |
L. Jin, Unitary scattering protected by pseudo-Hermiticity, Chin. Phys. Lett. 39(3), 037302 (2022)
CrossRef
ADS
Google scholar
|
[50] |
C. M. Bender and P. D. Mannheim, No-ghost theorem for the fourth-order derivative Pais‒Uhlenbeck oscillator model, Phys. Rev. Lett. 100(11), 110402 (2008)
CrossRef
ADS
Google scholar
|
[51] |
C. M. Bender, D. W. Hook, P. N. Meisinger, and Q. Wang, Complex correspondence principle, Phys. Rev. Lett. 104(6), 061601 (2010)
CrossRef
ADS
Google scholar
|
[52] |
S. Bittner, B. Dietz, U. Günther, H. Harney, M. Miski-Oglu, A. Richter, and F. Schäfer, PT-symmetry and spontaneous symmetry breaking in a microwave billiard, Phys. Rev. Lett. 108(2), 024101 (2012)
CrossRef
ADS
Google scholar
|
[53] |
H. X. Cao, Z. H. Guo, and Z. L. Chen, CPT-frames for non-Hermitian Hamiltonians, Commum. Theor. Phys. 60(3), 328 (2013)
CrossRef
ADS
Google scholar
|
[54] |
C. M. Bender, Nonlinear eigenvalue problems and PT-symmetric quantum mechanics, J. Phys.: Conf. Ser. 873, 012002 (2017)
CrossRef
ADS
Google scholar
|
[55] |
L. Feng, R. El-Ganainy, and L. Ge, Non-Hermitian photonics based on parity‒time symmetry, Nat. Photonics 11(12), 752 (2017)
CrossRef
ADS
Google scholar
|
[56] |
E. Silva, A. Barbosa, and J. Ramos, Parity and time-reversal symmetry in the Hanbury Brown‒Twiss effect, Europhys. Lett. 117(1), 14001 (2017)
CrossRef
ADS
Google scholar
|
[57] |
S. Longhi, Parity‒time symmetry meets photonics: A new twist in non-Hermitian optics, Europhys. Lett. 120(6), 64001 (2017)
CrossRef
ADS
Google scholar
|
[58] |
R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, Non-Hermitian physics and PT-symmetry, Nat. Phys. 14(1), 11 (2018)
CrossRef
ADS
Google scholar
|
[59] |
L. Jin and Z. Song, Incident direction independent wave propagation and unidirectional lasing, Phys. Rev. Lett. 121(7), 073901 (2018)
CrossRef
ADS
Google scholar
|
[60] |
F. Klauck, L. Teuber, M. Ornigotti, M. Heinrich, S. Scheel, and A. Szameit, Observation of PT-symmetric quantum interference, Nat. Photonics 13(12), 883 (2019)
CrossRef
ADS
Google scholar
|
[61] |
J. Li, A. K. Harter, J. Liu, L. de Melo, Y. N. Joglekar, and L. Luo, Observation of parity‒time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms, Nat. Commun. 10(1), 855 (2019)
CrossRef
ADS
Google scholar
|
[62] |
L. Jin, H. Wu, B. B. Wei, and Z. Song, Hybrid exceptional point created from type-III Dirac point, Phys. Rev. B 101(4), 045130 (2020)
CrossRef
ADS
Google scholar
|
[63] |
Z. Bian, L. Xiao, K. Wang, X. Zhan, F. A. Onanga, F. Ruzicka, W. Yi, Y. N. Joglekar, and P. Xue, Conserved quantities in parity−time symmetric systems, Phys. Rev. Res. 2(2), 022039 (2020)
CrossRef
ADS
Google scholar
|
[64] |
I. I. Arkhipov, A. Miranowicz, O. Di Stefano, R. Stassi, S. Savasta, F. Nori, and Ş. K. Özdemir, Scully‒Lamb quantum laser model for parity‒time-symmetric whispering-gallery microcavities: Gain saturation effects and nonreciprocity, Phys. Rev. A 99(5), 053806 (2019)
CrossRef
ADS
Google scholar
|
[65] |
D. Huybrechts, F. Minganti, F. Nori, M. Wouters, and N. Shammah, Validity of mean-field theory in a dissipative critical system: Liouvillian gap, PT-symmetric antigap, and permutational symmetry in the XYZ model, Phys. Rev. B 101(21), 214302 (2020)
CrossRef
ADS
Google scholar
|
[66] |
I. I. Arkhipov, A. Miranowicz, F. Minganti, and F. Nori, Liouvillian exceptional points of any order in dissipative linear bosonic systems: Coherence functions and switching between PT- and anti-PT symmetries, Phys. Rev. A 102(3), 033715 (2020)
CrossRef
ADS
Google scholar
|
[67] |
H. Zhang, R. Huang, S. D. Zhang, Y. Li, C. W. Qiu, F. Nori, and H. Jing, Breaking anti-PT symmetry by spinning a resonator, Nano Lett. 20(10), 7594 (2020)
CrossRef
ADS
Google scholar
|
[68] |
G. Q. Zhang, Z. Chen, D. Xu, N. Shammah, M. Liao, T. F. Li, L. Tong, S. Y. Zhu, F. Nori, and J. You, Exceptional point and cross-relaxation effect in a hybrid quantum system, PRX Quantum 2(2), 020307 (2021)
CrossRef
ADS
Google scholar
|
[69] |
I. I. Arkhipov, F. Minganti, A. Miranowicz, and F. Nori, Generating high-order quantum exceptional points in synthetic dimensions, Phys. Rev. A 104(1), 012205 (2021)
CrossRef
ADS
Google scholar
|
[70] |
R. Huang, Ş. K. Özdemir, J. Q. Liao, F. Minganti, L. M. Kuang, F. Nori, and H. Jing, Exceptional photon blockade: Engineering photon blockade with chiral exceptional points, Laser Photonics Rev. 16(7), 2100430 (2022)
CrossRef
ADS
Google scholar
|
[71] |
D. X. Chen, Y. Zhang, J. L. Zhao, Q. C. Wu, Y. L. Fang, C. P. Yang, and F. Nori, Quantum state discrimination in a PT-symmetric system, Phys. Rev. A 106(2), 022438 (2022)
CrossRef
ADS
Google scholar
|
[72] |
Q. C. Wu, J. L. Zhao, Y. L. Fang, Y. Zhang, D. X. Chen, C. P. Yang, and F. Nori, Extension of Noether’s theorem in PT-symmetry systems and its experimental demonstration in an optical setup, Sci. China Phys. Mech. Astron. 66(4), 240312 (2023)
CrossRef
ADS
Google scholar
|
[73] |
L. Ge and H. E. Türeci, Antisymmetric PT-photonic structures with balanced positive- and negative-index materials, Phys. Rev. A 88(5), 053810 (2013)
CrossRef
ADS
Google scholar
|
[74] |
J. Wen, G. Qin, C. Zheng, S. Wei, X. Kong, T. Xin, and G. Long, Observation of information flow in the anti-PT-symmetric system with nuclear spins, npj Quantum Inf. 6, 28 (2020)
CrossRef
ADS
Google scholar
|
[75] |
C. Zheng, J. Tian, D. Li, J. Wen, S. Wei, and Y. Li, Efficient quantum simulation of an anti-P-pseudo-Hermitian two-level system, Entropy (Basel) 22(8), 812 (2020)
CrossRef
ADS
Google scholar
|
[76] |
C. Hang, G. Huang, and V. V. Konotop, PT-symmetry with a system of three-level atoms, Phys. Rev. Lett. 110, 083604 (2013)
CrossRef
ADS
Google scholar
|
[77] |
D. A. Antonosyan, A. S. Solntsev, and A. A. Sukhorukov, Parity‒time anti-symmetric parametric amplifier, Opt. Lett. 40, 4575 (2015)
CrossRef
ADS
Google scholar
|
[78] |
J. H. Wu, M. Artoni, and G. C. La Rocca, Parity‒time-antisymmetric atomic lattices without gain, Phys. Rev. A 91(3), 033811 (2015)
CrossRef
ADS
Google scholar
|
[79] |
P. Peng, W. Cao, C. Shen, W. Qu, J. Wen, L. Jiang, and Y. Xiao, Anti-parity‒time symmetry with flying atoms, Nat. Phys. 12(12), 1139 (2016)
CrossRef
ADS
Google scholar
|
[80] |
F. Yang, Y. C. Liu, and L. You, Anti-PT-symmetry in dissipatively coupled optical systems, Phys. Rev. A 96(5), 053845 (2017)
CrossRef
ADS
Google scholar
|
[81] |
Y. Choi, C. Hahn, J. W. Yoon, and S. H. Song, Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators, Nat. Commun. 9(1), 2182 (2018)
CrossRef
ADS
Google scholar
|
[82] |
V. V. Konotop and D. A. Zezyulin, Odd-time reversal PT-symmetry induced by an anti-PT-symmetric medium, Phys. Rev. Lett. 120(12), 123902 (2018)
CrossRef
ADS
Google scholar
|
[83] |
Y. L. Chuang and Ziauddin K. Lee, Realization of simultaneously parity‒time-symmetric and parity‒time-antisymmetric susceptibilities along the longitudinal direction in atomic systems with all optical controls, Opt. Express 26(17), 21969 (2018)
CrossRef
ADS
Google scholar
|
[84] |
Y. Li, Y. G. Peng, L. Han, M. A. Miri, W. Li, M. Xiao, X. F. Zhu, J. Zhao, A. Alù, S. Fan, and C. W. Qiu, Anti-parity‒time symmetry in diffusive systems, Science 364(6436), 170 (2019)
CrossRef
ADS
Google scholar
|
[85] |
Y. L. Fang, J. L. Zhao, D. X. Chen, Y. H. Zhou, Y. Zhang, Q. C. Wu, C. P. Yang, and F. Nori, Entanglement dynamics in anti-PT-symmetric systems, Phys. Rev. Res. 4(3), 033022 (2022)
CrossRef
ADS
Google scholar
|
[86] |
T. T. Wu, Ground state of a Bose system of hard spheres, Phys. Rev. 115(6), 1390 (1959)
CrossRef
ADS
Google scholar
|
[87] |
T. Hollowood, Solitons in affine Toda field theories, Nucl. Phys. B 384(3), 523 (1992)
CrossRef
ADS
Google scholar
|
[88] |
A. Mostafazadeh, Pseudo-Hermitian representation of quantum mechanics, Int. J. Geom. Methods Mod. Phys. 7(7), 1191 (2010)
CrossRef
ADS
Google scholar
|
[89] |
W. Pauli, On Dirac’s new method of field quantization, Rev. Mod. Phys. 15(3), 175 (1943)
CrossRef
ADS
Google scholar
|
[90] |
M. E. Fisher, Yang‒Lee edge singularity and ϕ3 field theory, Phys. Rev. Lett. 40(25), 1610 (1978)
CrossRef
ADS
Google scholar
|
[91] |
J. L. Cardy, Conformal invariance and the Yang‒Lee edge singularity in two dimensions, Phys. Rev. Lett. 54(13), 1354 (1985)
CrossRef
ADS
Google scholar
|
[92] |
P. Dorey, C. Dunning, and R. Tateo, The ODE/IM correspondence, J. Phys. A Math. Theor. 40(32), R205 (2007)
CrossRef
ADS
Google scholar
|
[93] |
C. M. Bender and S. Boettcher, Real spectra in non-Hermitian Hamiltonians having PT-symmetry, Phys. Rev. Lett. 80(24), 5243 (1998)
CrossRef
ADS
Google scholar
|
[94] |
C. M. Bender, D. C. Brody, and H. F. Jones, Complex extension of quantum mechanics, Phys. Rev. Lett. 89(27), 270401 (2002)
CrossRef
ADS
Google scholar
|
[95] |
C. M. Bender, P. N. Meisinger, and Q. Wang, Finite-dimensional PT-symmetric Hamiltonians, J. Phys. Math. Gen. 36(24), 6791 (2003)
CrossRef
ADS
Google scholar
|
[96] |
C. M. Bender, Introduction to PT-symmetric quantum theory, Contemp. Phys. 46(4), 277 (2005)
CrossRef
ADS
Google scholar
|
[97] |
A. Mostafazadeh, Pseudo-Hermiticity versus PT-symmetry (ii): A complete characterization of non-Hermitian Hamiltonians with a real spectrum, J. Math. Phys. 43(5), 2814 (2002)
CrossRef
ADS
Google scholar
|
[98] |
A. Mostafazadeh, Pseudo-Hermiticity versus PT-symmetry (iii): Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries, J. Math. Phys. 43(8), 3944 (2002)
CrossRef
ADS
Google scholar
|
[99] |
A. Mostafazadeh and A. Batal, Physical aspects of pseudo-Hermitian and PT-symmetric quantum mechanics, J. Phys. Math. Gen. 37(48), 11645 (2004)
CrossRef
ADS
Google scholar
|
[100] |
C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Observation of parity‒time symmetry in optics, Nat. Phys. 6(3), 192 (2010)
CrossRef
ADS
Google scholar
|
[101] |
C. M. Bender, B. K. Berntson, D. Parker, and E. Samuel, Observation of PT phase transition in a simple mechanical system, Am. J. Phys. 81(3), 173 (2013)
CrossRef
ADS
Google scholar
|
[102] |
R. Fleury, D. Sounas, and A. Alù, An invisible acoustic sensor based on parity‒time symmetry, Nat. Commun. 6(1), 5905 (2015)
CrossRef
ADS
Google scholar
|
[103] |
J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, Experimental study of active LRC circuits with PT-symmetries, Phys. Rev. A 84(4), 040101 (2011)
CrossRef
ADS
Google scholar
|
[104] |
H. C. Baker, Non-Hermitian dynamics of multiphoton ionization, Phys. Rev. Lett. 50(20), 1579 (1983)
CrossRef
ADS
Google scholar
|
[105] |
Z. Zhang, Y. Zhang, J. Sheng, L. Yang, M. A. Miri, D. N. Christodoulides, B. He, Y. Zhang, and M. Xiao, Observation of parity−time symmetry in optically induced atomic lattices, Phys. Rev. Lett. 117(12), 123601 (2016)
CrossRef
ADS
Google scholar
|
[106] |
Y. Wu, W. Liu, J. Geng, X. Song, X. Ye, C. K. Duan, X. Rong, and J. Du, Observation of parity‒time symmetry breaking in a single-spin system, Science 364(6443), 878 (2019)
CrossRef
ADS
Google scholar
|
[107] |
J. Rubinstein, P. Sternberg, and Q. Ma, Bifurcation diagram and pattern formation of phase slip centers in superconducting wires driven with electric currents, Phys. Rev. Lett. 99(16), 167003 (2007)
CrossRef
ADS
Google scholar
|
[108] |
Y. Chong, L. Ge, H. Cao, and A. D. Stone, Coherent perfect absorbers: Time-reversed lasers, Phys. Rev. Lett. 105(5), 053901 (2010)
CrossRef
ADS
Google scholar
|
[109] |
A. Szameit, M. C. Rechtsman, O. Bahat-Treidel, and M. Segev, PT-symmetry in honeycomb photonic lattices, Phys. Rev. A 84(2), 021806 (2011)
CrossRef
ADS
Google scholar
|
[110] |
C. Zheng, L. Hao, and G. L. Long, Observation of a fast evolution in a parity‒time-symmetric system, Philos. Trans. Royal Soc. A 371(1989), 20120053 (2013)
CrossRef
ADS
Google scholar
|
[111] |
X. Wang and J. H. Wu, Optical PT-symmetry and PT-antisymmetry in coherently driven atomic lattices, Opt. Express 24(4), 4289 (2016)
CrossRef
ADS
Google scholar
|
[112] |
Y. Jiang, Y. Mei, Y. Zuo, Y. Zhai, J. Li, J. Wen, and S. Du, Anti-parity‒time symmetric optical four-wave mixing in cold atoms, Phys. Rev. Lett. 123(19), 193604 (2019)
CrossRef
ADS
Google scholar
|
[113] |
N.Moiseyev, Non-Hermitian Quantum Mechanics, Cambridge University Press, 2011
|
[114] |
Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Adv. Phys. 69(3), 249 (2020)
CrossRef
ADS
Google scholar
|
[115] |
E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93(1), 015005 (2021)
CrossRef
ADS
Google scholar
|
[116] |
K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Symmetry and topology in non-Hermitian physics, Phys. Rev. X 9(4), 041015 (2019)
CrossRef
ADS
Google scholar
|
[117] |
A. Banerjee, R. Sarkar, S. Dey, and A. Narayan, Non-Hermitian topological phases: Principles and prospects, J. Phys.: Condens. Matter 35(33), 333001 (2023)
CrossRef
ADS
Google scholar
|
[118] |
W. Heiss, Exceptional points of non-Hermitian operators, J. Phys. Math. Gen. 37(6), 2455 (2004)
CrossRef
ADS
Google scholar
|
[119] |
L. Pan, S. Chen, and X. Cui, Interacting non-Hermitian ultracold atoms in a harmonic trap: Two-body exact solution and a high-order exceptional point, Phys. Rev. A 99(6), 063616 (2019)
CrossRef
ADS
Google scholar
|
[120] |
T.Kato, Perturbation Theory for Linear Operators, Vol. 132, Springer Science & Business Media, 2013
|
[121] |
W. Heiss, The physics of exceptional points, J. Phys. A Math. Theor. 45(44), 444016 (2012)
CrossRef
ADS
Google scholar
|
[122] |
J. D. Huerta-Morales, M. A. Quiroz-Juárez, Y. N. Joglekar, and R. J. León-Montiel, Generating high-order exceptional points in coupled electronic oscillators using complex synthetic gauge fields, Phys. Rev. A 107(4), 042219 (2023)
CrossRef
ADS
Google scholar
|
[123] |
A. Reja and A. Narayan, Characterizing exceptional points using neural networks, Europhys. Lett. 144(3), 36002 (2023)
CrossRef
ADS
Google scholar
|
[124] |
S. Zhang, X. Zhang, L. Jin, and Z. Song, High-order exceptional points in supersymmetric arrays, Phys. Rev. A 101(3), 033820 (2020)
CrossRef
ADS
Google scholar
|
[125] |
S. B. Lee, J. Yang, S. Moon, S. Y. Lee, J. B. Shim, S. W. Kim, J. H. Lee, and K. An, Observation of an exceptional point in a chaotic optical microcavity, Phys. Rev. Lett. 103(13), 134101 (2009)
CrossRef
ADS
Google scholar
|
[126] |
B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, and M. Soljačić, Spawning rings of exceptional points out of Dirac cones, Nature 525(7569), 354 (2015)
CrossRef
ADS
Google scholar
|
[127] |
K. G. Makris, R. El-Ganainy, D. Christodoulides, and Z. H. Musslimani, Beam dynamics in PT-symmetric optical lattices, Phys. Rev. Lett. 100(10), 103904 (2008)
CrossRef
ADS
Google scholar
|
[128] |
J. Wiersig, Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: Application to microcavity sensors for single-particle detection, Phys. Rev. Lett. 112(20), 203901 (2014)
CrossRef
ADS
Google scholar
|
[129] |
M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, Pump-induced exceptional points in lasers, Phys. Rev. Lett. 108(17), 173901 (2012)
CrossRef
ADS
Google scholar
|
[130] |
J. Doppler, A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter, Dynamically encircling an exceptional point for asymmetric mode switching, Nature 537(7618), 76 (2016)
CrossRef
ADS
Google scholar
|
[131] |
H. Xu, D. Mason, L. Jiang, and J. Harris, Topological energy transfer in an optomechanical system with exceptional points, Nature 537(7618), 80 (2016)
CrossRef
ADS
Google scholar
|
[132] |
Y. Choi, S. Kang, S. Lim, W. Kim, J. R. Kim, J. H. Lee, and K. An, Quasieigenstate coalescence in an atom-cavity quantum composite, Phys. Rev. Lett. 104(15), 153601 (2010)
CrossRef
ADS
Google scholar
|
[133] |
Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, Unidirectional invisibility induced by PT-symmetric periodic structures, Phys. Rev. Lett. 106(21), 213901 (2011)
CrossRef
ADS
Google scholar
|
[134] |
A. Guo, G. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. Siviloglou, and D. Christodoulides, Observation of PT-symmetry breaking in complex optical potentials, Phys. Rev. Lett. 103(9), 093902 (2009)
CrossRef
ADS
Google scholar
|
[135] |
M. Gessner and A. Smerzi, Statistical speed of quantum states: Generalized quantum Fisher information and Schatten speed, Phys. Rev. A 97(2), 022109 (2018)
CrossRef
ADS
Google scholar
|
[136] |
J. Liu, H. Yuan, X. M. Lu, and X. Wang, Quantum Fisher information matrix and multiparameter estimation, J. Phys. A Math. Theor. 53(2), 023001 (2020)
CrossRef
ADS
Google scholar
|
[137] |
R. Demkowicz-Dobrzański, W. Górecki, and M. Guţă, Multi-parameter estimation beyond quantum Fisher information, J. Phys. A Math. Theor. 53(36), 363001 (2020)
CrossRef
ADS
Google scholar
|
[138] |
D.PetzC. Ghinea, Introduction to quantum Fisher information, in: Quantum Probability and Related Topics, World Scientific, 2011, pp 261–281
|
[139] |
K. Yamaguchi and H. Tajima, Beyond i.i.d. in the resource theory of asymmetry: An information-spectrum approach for quantum Fisher information, Phys. Rev. Lett. 131(20), 200203 (2023)
CrossRef
ADS
Google scholar
|
[140] |
H. Rangani Jahromi and S. Haseli, Quantum memory and quantum correlations of Majorana qubits used for magnetometry, Quantum Inf. Comput. 20, 0935 (2020)
CrossRef
ADS
Google scholar
|
[141] |
H. Rangani Jahromi, Weak measurement effect on optimal estimation with lower and upper bound on relativistic metrology, Int. J. Mod. Phys. D 28(12), 1950162 (2019)
CrossRef
ADS
Google scholar
|
[142] |
J. X. Peng, B. Zhu, W. Zhang, and K. Zhang, Dissipative quantum Fisher information for a general Liouvillian parametrized process, Phys. Rev. A 109(1), 012432 (2024)
CrossRef
ADS
Google scholar
|
[143] |
J. L. Zhao, Y. Zhou, D. X. Chen, Q. Su, X. L. Zong, Q. C. Wu, M. Yang, and C. Yang, Quantum Fisher information power of quantum evolutions, J. Phys. A Math. Theor. 57(27), 275304 (2024)
CrossRef
ADS
Google scholar
|
[144] |
P. Cieśliński, P. Kurzynski, T. Sowinski, W. Kłobus, and W. Laskowski, Exploring many-body interactions through quantum Fisher information, Phys. Rev. A 110(1), 012407 (2024)
CrossRef
ADS
Google scholar
|
[145] |
H. R. Jahromi, K. Mahdavipour, M. Khazaei Shadfar, and R. Lo Franco, Witnessing non-Markovian effects of quantum processes through Hilbert‒Schmidt speed, Phys. Rev. A 102(2), 022221 (2020)
CrossRef
ADS
Google scholar
|
[146] |
H. R. Jahromi and R. L. Franco, Hilbert−Schmidt speed as an efficient figure of merit for quantum estimation of phase encoded into the initial state of open n-qubit systems, Sci. Rep. 11, 7128 (2021)
CrossRef
ADS
Google scholar
|
[147] |
S. M. Hosseiny, H. Rangani Jahromi, and M. Amniat-Talab, Monitoring variations of refractive index via Hilbert‒Schmidt speed and applying this phenomenon to improve quantum metrology, J. Phys. At. Mol. Opt. Phys. 56(17), 175402 (2023)
CrossRef
ADS
Google scholar
|
[148] |
K. Mahdavipour, M. Khazaei Shadfar, H. Rangani Jahromi, R. Morandotti, and R. Lo Franco, Memory effects in high-dimensional systems faithfully identified by Hilbert‒Schmidt speed-based witness, Entropy (Basel) 24(3), 395 (2022)
CrossRef
ADS
Google scholar
|
[149] |
N. E. Abouelkhir, A. Slaoui, H. El Hadfi, and R. Ahl Laamara, Estimating phase parameters of a three-level system interacting with two classical monochromatic fields in simultaneous and individual metrological strategies, J. Opt. Soc. Am. B 40(6), 1599 (2023)
CrossRef
ADS
Google scholar
|
[150] |
N. Nikdel Yousefi, A. Mortezapour, G. Naeimi, F. Nosrati, A. Pariz, and R. Lo Franco, Quantum enhancement of qutrit dynamics through driving field and photonic-band-gap crystal, Phys. Rev. A 105(4), 042212 (2022)
CrossRef
ADS
Google scholar
|
[151] |
H. R. Jahromi, Remote sensing and faithful quantum teleportation through non-localized qubits, Phys. Lett. A 424, 127850 (2022)
CrossRef
ADS
Google scholar
|
[152] |
X. S. Ma, J. H. Quan, Y. N. Lu, and M. T. Cheng, Quantum enhancement of qutrit dynamics of a three-level giant atom coupling to a one-dimensional waveguide, Results Phys. 56, 107252 (2024)
CrossRef
ADS
Google scholar
|
[153] |
S. M. Hosseiny, J. Seyed-Yazdi, and M. Norouzi, Faithful quantum teleportation through common and independent qubit-noise configurations and multi-parameter estimation in the output of teleported state, AVS Quantum Sci. 6(1), 014405 (2024)
CrossRef
ADS
Google scholar
|
[154] |
N. Ikken, A. Slaoui, R. Ahl Laamara, and L. B. Drissi, Bidirectional quantum teleportation of even and odd coherent states through the multipartite Glauber coherent state: Theory and implementation, Quantum Inform. Process 22(10), 391 (2023)
CrossRef
ADS
Google scholar
|
[155] |
S. M. Hosseiny, H. Rangani Jahromi, R. Radgohar, and M. Amniat-Talab, Estimating energy levels of a three-level atom in single and multi-parameter metrological schemes, Phys. Scr. 97(12), 125402 (2022)
CrossRef
ADS
Google scholar
|
[156] |
D. C. Brody, Biorthogonal quantum mechanics, J. Phys. A 47(3), 035305 (2014)
CrossRef
ADS
Google scholar
|
[157] |
E. Edvardsson and E. Ardonne, Sensitivity of non-Hermitian systems, Phys. Rev. B 106(11), 115107 (2022)
CrossRef
ADS
Google scholar
|
[158] |
K. Kawabata, Y. Ashida, and M. Ueda, Information retrieval and criticality in parity‒time-symmetric systems, Phys. Rev. Lett. 119(19), 190401 (2017)
CrossRef
ADS
Google scholar
|
[159] |
D. C. Brody and E. M. Graefe, Mixed-state evolution in the presence of gain and loss, Phys. Rev. Lett. 109(23), 230405 (2012)
CrossRef
ADS
Google scholar
|
[160] |
T. Ohlsson and S. Zhou, Density-matrix formalism for PT-symmetric non-Hermitian Hamiltonians with the Lindblad equation, Phys. Rev. A 103(2), 022218 (2021)
CrossRef
ADS
Google scholar
|
[161] |
N. Moiseyev, P. Certain, and F. Weinhold, Resonance properties of complex-rotated Hamiltonians, Mol. Phys. 36(6), 1613 (1978)
CrossRef
ADS
Google scholar
|
[162] |
N. Moiseyev and M. Lein, Non-Hermitian quantum mechanics for high-order harmonic generation spectra, J. Phys. Chem. A 107(37), 7181 (2003)
CrossRef
ADS
Google scholar
|
[163] |
A. Das and L. Greenwood, An alternative construction of the positive inner product in non-Hermitian quantum mechanics, Phys. Lett. B 678(5), 504 (2009)
CrossRef
ADS
Google scholar
|
[164] |
A. Mostafazadeh, Pseudo-Hermiticity and generalized PT- and CPT-symmetries, J. Math. Phys. 44(3), 974 (2003)
CrossRef
ADS
Google scholar
|
[165] |
C. M. Bender, J. Brod, A. Refig, and M. E. Reuter, The C coperator in PT-symmetric quantum theories, J. Phys. Math. Gen. 37(43), 10139 (2004)
CrossRef
ADS
Google scholar
|
[166] |
J. Q. Li, Y. G. Miao, and Z. Xue, A possible method for non-Hermitian and non-PT-symmetric Hamiltonian systems, PLoS One 9(6), e97107 (2014)
CrossRef
ADS
Google scholar
|
[167] |
H.BadhaniS. BanerjeeC.Chandrashekar, Non-Hermitian quantum walks and non-Markovianity: The coin-position interaction, arXiv: 2021)
arXiv
|
[168] |
T. Ohlsson and S. Zhou, Transition probabilities in the two-level quantum system with PT-symmetric non-Hermitian Hamiltonians, J. Math. Phys. 61(5), 052104 (2020)
CrossRef
ADS
Google scholar
|
[169] |
T.ShiC. Sun, Recovering unitarity of Lee model in bi-orthogonal basis, arXiv: 2009)
arXiv
|
[170] |
F.Kleefeld, The construction of a general inner product in non-Hermitian quantum theory and some explanation for the nonuniqueness of the C operator in PT quantum mechanics, arXiv: 2009)
arXiv
|
[171] |
S. Weigert, Completeness and orthonormality in PT-symmetric quantum systems, Phys. Rev. A 68(6), 062111 (2003)
CrossRef
ADS
Google scholar
|
[172] |
P.A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press, 1981
|
[173] |
Z. Xiao and A. Alù, Tailoring exceptional points in a hybrid PT-symmetric and anti-PT-symmetric scattering system, Nanophotonics 10(14), 3723 (2021)
CrossRef
ADS
Google scholar
|
[174] |
K. Ding, G. Ma, M. Xiao, Z. Zhang, and C. T. Chan, and topological properties of multiple exceptional points and their experimental realization, Phys. Rev. X 6(2), 021007 (2016)
CrossRef
ADS
Google scholar
|
[175] |
N. Hatano and D. R. Nelson, Localization transitions in non-Hermitian quantum mechanics, Phys. Rev. Lett. 77(3), 570 (1996)
CrossRef
ADS
Google scholar
|
[176] |
C. R. Leefmans, M. Parto, J. Williams, G. H. Li, A. Dutt, F. Nori, and A. Marandi, Topological temporally mode-locked laser, Nat. Phys. 20, 852 (2024)
CrossRef
ADS
Google scholar
|
[177] |
R. Jaiswal, A. Banerjee, and A. Narayan, Characterizing and tuning exceptional points using Newton polygons, New J. Phys. 25(3), 033014 (2023)
CrossRef
ADS
Google scholar
|
[178] |
S. Sachdev, Quantum phase transitions, Phys. World 12(4), 33 (1999)
CrossRef
ADS
Google scholar
|
[179] |
T. Hayata and A. Yamamoto, Non-Hermitian Hubbard model without the sign problem, Phys. Rev. B 104(12), 125102 (2021)
CrossRef
ADS
Google scholar
|
[180] |
X. J. Yu, Z. Pan, L. Xu, and Z. X. Li, Non-Hermitian strongly interacting Dirac fermions, Phys. Rev. Lett. 132(11), 116503 (2024)
CrossRef
ADS
Google scholar
|
[181] |
Z. Bian, L. Xiao, K. Wang, F. A. Onanga, F. Ruzicka, W. Yi, Y. N. Joglekar, and P. Xue, Quantum information dynamics in a high-dimensional parity‒time-symmetric system, Phys. Rev. A 102(3), 030201 (2020)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |