Vibrational resonance via a single-ion phonon laser

Quan Yuan, Shuang-Qing Dai, Tai-Hao Cui, Pei-Dong Li, Yuan-Zhang Dong, Ji Li, Fei Zhou, Jian-Qi Zhang, Liang Chen, Mang Feng

PDF(2619 KB)
PDF(2619 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (1) : 012203. DOI: 10.15302/frontphys.2025.012203
RESEARCH ARTICLE

Vibrational resonance via a single-ion phonon laser

Author information +
History +

Abstract

Vibrational resonances are ubiquitous in various nonlinear systems and play crucial roles in detecting weak low-frequency signals and developing highly sensitive sensors. Here we demonstrate vibrational resonance, for the first time, utilizing a single-ion phonon laser system exhibiting Van der Pol-type nonlinearity. To enhance the response of the phonon laser system to weak signals, we experimentally realize continuously tunable symmetry of the bistability in the phonon laser system via optical modulation, and achieve the maximum vibrational resonance amplification of 23 dB. In particular, our single-ion phonon laser system relaxes the frequency separation condition and exhibits the potential of multi-frequency signal amplification using the vibrational resonance. Our study employs the phonon laser to study and optimize the vibrational resonance with simple and well-controllable optical technology, which holds potential applications in developing precision metrology and single-ion sensors with on-chip ion traps.

Graphical abstract

Keywords

single-ion phonon laser / vibrational resonance / nonlinear system

Cite this article

Download citation ▾
Quan Yuan, Shuang-Qing Dai, Tai-Hao Cui, Pei-Dong Li, Yuan-Zhang Dong, Ji Li, Fei Zhou, Jian-Qi Zhang, Liang Chen, Mang Feng. Vibrational resonance via a single-ion phonon laser. Front. Phys., 2025, 20(1): 012203 https://doi.org/10.15302/frontphys.2025.012203

References

[1]
L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, Stochastic resonance, Rev. Mod. Phys. 70(1), 223 (1998)
CrossRef ADS Google scholar
[2]
P. S. Landa and P. V. E. McClintock, Vibrational resonance, J. Phys. Math. Gen. 33(45), L433 (2000)
CrossRef ADS Google scholar
[3]
R. L. Badzey and P. Mohanty, Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance, Nature 437(7061), 995 (2005)
CrossRef ADS Google scholar
[4]
V. N. Chizhevsky and G. Giacomelli, Improvement of signal-to-noise ratio in a bistable optical system: Comparison between vibrational and stochastic resonance, Phys. Rev. A 71(1), 011801 (2005)
CrossRef ADS Google scholar
[5]
V. N. Chizhevsky and G. Giacomelli, Vibrational resonance and the detection of aperiodic binary signals, Phys. Rev. E 77(5), 051126 (2008)
CrossRef ADS Google scholar
[6]
V. N. Chizhevsky, E. Smeu, and G. Giacomelli, Experimental evidence of “vibrational resonance” in an optical system, Phys. Rev. Lett. 91(22), 220602 (2003)
CrossRef ADS Google scholar
[7]
A. Chowdhury, M. G. Clerc, S. Barbay, I. Robert-Philip, and R. Braive, Weak signal enhancement by nonlinear resonance control in a forced nano-electromechanical resonator, Nat. Commun. 11(1), 2400 (2020)
CrossRef ADS Google scholar
[8]
B. Deng, M. Göb, B. A. Stickler, M. Masuhr, K. Singer, and D. Wang, Amplifying a zeptonewton force with a single-ion nonlinear oscillator, Phys. Rev. Lett. 131(15), 153601 (2023)
CrossRef ADS Google scholar
[9]
G. Madiot, S. Barbay, and R. Braive, Vibrational resonance amplification in a thermo-optic optomechanical nanocavity, Nano Lett. 21(19), 8311 (2021)
CrossRef ADS Google scholar
[10]
J. P. Baltanás, L. López, I. I. Blechman, P. S. Landa, A. Zaikin, J. Kurths, and M. A. F. Sanjuán, Experimental evidence, numerics, and theory of vibrational resonance in bistable systems, Phys. Rev. E 67(6), 066119 (2003)
CrossRef ADS Google scholar
[11]
P. Fu, C. J. Wang, K. L. Yang, X. B. Li, and B. Yu, Reentrance-like vibrational resonance in a fractional-order birhythmic biological system, Chaos Solitons Fractals 155, 111649 (2022)
CrossRef ADS Google scholar
[12]
R. Gui, Y. Wang, Y. Yao, and G. Cheng, Enhanced logical vibrational resonance in a two-well potential system, Chaos Solitons Fractals 138, 109952 (2020)
CrossRef ADS Google scholar
[13]
L. Du, R. Han, J. Jiang, and W. Guo, Entropic vibrational resonance, Phys. Rev. E 102(1), 012149 (2020)
CrossRef ADS Google scholar
[14]
J. Jiang, K. Li, W. Guo, and L. Du, Energetic and entropic vibrational resonance, Chaos Solitons Fractals 152, 111400 (2021)
CrossRef ADS Google scholar
[15]
M. Asir, A. Jeevarekha, and P. Philominathan, Multiple vibrational resonance and antiresonance in a coupled anharmonic oscillator under monochromatic excitation, Pramana 93(3), 43 (2019)
CrossRef ADS Google scholar
[16]
R. Samikkannu, M. Ramasamy, S. Kumarasamy, and K. Rajagopal, Studies on ghost-vibrational resonance in a periodically driven anharmonic oscillator, Eur. Phys. J. B 96(5), 56 (2023)
CrossRef ADS Google scholar
[17]
S. Rajamani, S. Rajasekar, and M. A. F. Sanjuán, Ghost- vibrational resonance, Commun. Nonlinear Sci. Numer. Simul. 19(11), 4003 (2014)
CrossRef ADS Google scholar
[18]
B. Deng, J. Wang, X. Wei, K. M. Tsang, and W. L. Chan, Vibrational resonance in neuron populations, Chaos 20(1), 013113 (2010)
CrossRef ADS Google scholar
[19]
A. Calim, T. Palabas, and M. Uzuntarla, Stochastic and vibrational resonance in complex networks of neurons, Philos. Trans. Royal Soc. A 379(2198), 20200236 (2021)
CrossRef ADS Google scholar
[20]
Y. Ren, Y. Pan, F. Duan, F. Chapeau-Blondeau, and D. Abbott, Exploiting vibrational resonance in weak-signal detection, Phys. Rev. E 96(2), 022141 (2017)
CrossRef ADS Google scholar
[21]
T. Gong, J. Yang, M. A. F. Sanjuán, H. Liu, and Z. Shan, Vibrational resonance by using a real-time scale transformation method, Phys. Scr. 97(4), 045207 (2022)
CrossRef ADS Google scholar
[22]
Z. Li, C. Li, Z. Xiong, G. Xu, Y. R. Wang, X. Tian, I. Yang, Z. Liu, Q. Zeng, R. Lin, Y. Li, J. K. W. Lee, J. S. Ho, and C. W. Qiu, Stochastic exceptional points for noise-assisted sensing, Phys. Rev. Lett. 130(22), 227201 (2023)
CrossRef ADS Google scholar
[23]
V. N. Chizhevsky and G. Giacomelli, Experimental and theoretical study of vibrational resonance in a bistable system with asymmetry, Phys. Rev. E 73(2), 022103 (2006)
CrossRef ADS Google scholar
[24]
S. Jeyakumari, V. Chinnathambi, S. Rajasekar, and M. A. F. Sanjuan, Vibrational resonance in an asymmetric duffing oscillator, Int. J. Bifurcat. Chaos 21(1), 275 (2011)
CrossRef ADS Google scholar
[25]
J. Wang, R. Zhang, and J. Liu, Vibrational resonance analysis in a fractional order Toda oscillator model with asymmetric potential, Int. J. Non-linear Mech. 148, 104258 (2023)
CrossRef ADS Google scholar
[26]
U. E. Vincent, T. O. Roy-Layinde, O. O. Popoola, P. O. Adesina, and P. V. E. McClintock, Vibrational resonance in an oscillator with an asymmetrical deformable potential, Phys. Rev. E 98(6), 062203 (2018)
CrossRef ADS Google scholar
[27]
K.VahalaM. HerrmannS.KnünzV.BatteigerG.Saathoff T.W. HänschT.Udem, A phonon laser, Nat. Phys. 5(9), 682 (2009)
[28]
S. Knünz, M. Herrmann, V. Batteiger, G. Saathoff, T. Hänsch, K. Vahala, and T. Udem, Injection locking of a trapped-ion phonon laser, Phys. Rev. Lett. 105(1), 013004 (2010)
CrossRef ADS Google scholar
[29]
T.BehrleT. L. NguyenF.ReiterD.BaurB.de Neeve M.StadlerM. MarinelliF.LancellottiS.YelinJ.Home, A phonon laser in the quantum regime, Phys. Rev. Lett. 131(4), 043605 (2023)
[30]
R. Huang and H. Jing, The nanosphere phonon laser, Nat. Photonics 13(6), 372 (2019)
CrossRef ADS Google scholar
[31]
T. Kuang, R. Huang, W. Xiong, Y. Zuo, X. Han, F. Nori, C. W. Qiu, H. Luo, H. Jing, and G. Xiao, Nonlinear multi-frequency phonon lasers with active levitated optomechanics, Nat. Phys. 19(3), 414 (2023)
CrossRef ADS Google scholar
[32]
J.ZhangB. PengK.ÖzdemirK.PichlerD.O. KrimerG.ZhaoF.NoriY.Liu S.RotterL. Yang, A phonon laser operating at an exceptional point, Nat. Photonics 12(8), 479 (2018)
[33]
Z. Liu, Y. Wei, L. Chen, J. Li, S. Dai, F. Zhou, and M. Feng, Phonon-laser ultrasensitive force sensor, Phys. Rev. Appl. 16(4), 044007 (2021)
CrossRef ADS Google scholar
[34]
Y. Q. Wei, Q. Yuan, L. Chen, T. H. Cui, J. Li, S. Q. Dai, F. Zhou, and M. Feng, Time and frequency resolution of alternating electric signals via single-atom sensor, Phys. Rev. Appl. 19(6), 064062 (2023)
CrossRef ADS Google scholar
[35]
J. Yang, S. Rajasekar, and M. A. F. Sanjuán, Vibrational resonance: A review, Phys. Rep. 1067, 1 (2024)
CrossRef ADS Google scholar
[36]
S. Ghosh and D. S. Ray, Nonlinear vibrational resonance, Phys. Rev. E 88(4), 042904 (2013)
CrossRef ADS Google scholar
[37]
V. N. Chizhevsky, Vibrational higher-order resonances in an overdamped bistable system with biharmonic excitation, Phys. Rev. E 90(4), 042924 (2014)
CrossRef ADS Google scholar
[38]
S. Paul and D. Shankar Ray, Vibrational resonance in a driven two-level quantum system, linear and nonlinear response, Philos. Trans. Royal Soc. A 379(2192), 20200231 (2021)
CrossRef ADS Google scholar
[39]
T. H. Cui, J. Li, Q. Yuan, Y. Q. Wei, S. Q. Dai, P. D. Li, F. Zhou, J. Q. Zhang, L. Chen, and M. Feng, Stochastic resonance in a single-ion nonlinear mechanical oscillator, Chin. Phys. Lett. 40(8), 080501 (2023)
CrossRef ADS Google scholar
[40]
V.N. ChizhevskyG.Giacomelli, Vibrational resonance in a noisy bistable system: Non-feedback control of stochastic resonance, in: Proceedings of 2005 International Conference Physics and Control, 2005, pp 820–825
[41]
A. A. Zaikin, L. López, J. P. Baltanás, J. Kurths, and M. A. F. Sanjuán, Vibrational resonance in a noise-induced structure, Phys. Rev. E 66(1), 011106 (2002)
CrossRef ADS Google scholar
[42]
J. Sheng, X. Wei, C. Yang, and H. Wu, Self-organized of phonon lasers, Phys. Rev. Lett. 124(5), 053604 (2020)
CrossRef ADS Google scholar

Declarations

The authors declare no competing interests and no conflicts.

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. U21A20434, 12074390 and 92265107, the Key Lab of Guangzhou for Quantum Precision Measurement under Grant No. 202201000010, the Science and Technology Projects in Guangzhou under Grant Nos. 202201011727 and 2023A04J0050, Guangdong Provincial Quantum Science Strategic Initiative under Grant No. GDZX2305004, and Nansha Senior Leading Talent Team Technology Project under Grant No. 2021CXTD02.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(2619 KB)

Accesses

Citations

Detail

Sections
Recommended

/