Efficient generation of polarization multiplexed OAM using levitated metasurfaces

Sihan Cui, Xiaojun Huang, Cuizhen Sun, Helin Yang, Xiaoyan Li

PDF(3705 KB)
PDF(3705 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (1) : 012202. DOI: 10.15302/frontphys.2025.012202
RESEARCH ARTICLE

Efficient generation of polarization multiplexed OAM using levitated metasurfaces

Author information +
History +

Abstract

Dual-polarization (DP) vortex waves (VWs) are widely applied in optical, electromagnetic, and quantum science owing to their ability to simultaneously convey two distinct and non-interfering orbital angular momentums (OAMs). Here, we propose a lightweight levitated meta-atom to achieve 360° phase control with a difference of no more than 1° while maximizing the reflection efficiency. In combination with convergent phase modulation, a OAM metasurface array that facilitates the generation of DP VWs with high mode purity and low divergence angles was designed. The measured DP VW bearing mode l = 1 had only 4° divergence angle and 84% mode purity at 5.8 GHz. Furthermore, DP VWs with integer, fractional (l = 1.5) and higher order (l = 8) modes are discussed based on an OAM purity spectrum analysis. The experimental results were consistent with the simulation results, demonstrating the practicality of the proposed DP OAM metasurface and its potential applications in the field of multithreaded communication systems.

Graphical abstract

Keywords

dual-polarization / orbital angular momentum / low divergence angles / high mode purity

Cite this article

Download citation ▾
Sihan Cui, Xiaojun Huang, Cuizhen Sun, Helin Yang, Xiaoyan Li. Efficient generation of polarization multiplexed OAM using levitated metasurfaces. Front. Phys., 2025, 20(1): 012202 https://doi.org/10.15302/frontphys.2025.012202

References

[1]
L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre−Gaussian laser modes, Phys. Rev. A 45(11), 8185 (1992)
CrossRef ADS Google scholar
[2]
N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, Terabit-scale orbital angular momentum mode division multiplexing in fibers, Science 340(6140), 1545 (2013)
CrossRef ADS Google scholar
[3]
J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Terabit free-space data transmission employing orbital angular momentum multiplexing, Nat. Photonics 6(7), 488 (2012)
CrossRef ADS Google scholar
[4]
Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, High-capacity millimetre-wave communications with orbital angular momentum multiplexing, Nat. Commun. 5(1), 4876 (2014)
CrossRef ADS Google scholar
[5]
S. J. Li, Z. Y. Li, G. S. Huang, X. B. Liu, R. Q. Li, and X. Y. Cao, Digital coding transmissive metasurface for multi-OAM-beam, Front. Phys. 17(6), 62501 (2022)
CrossRef ADS Google scholar
[6]
Y.BaoJ. C. NiC.W. Qiu, A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams, Adv. Mater. 32(6), 1905659 (2020)
[7]
C. Wu, Q. Li, Z. H. Zhang, S. Zhao, and H. Q. Li, Control of phase, polarization, and amplitude based on geometric phase in a racemic helix array, Photon. Res. 9(11), 2265 (2021)
CrossRef ADS Google scholar
[8]
W. T. Zhang, S. L. Zheng, X. N. Hui, R. F. Dong, X. F. Jin, H. Chi, and X. M. Zhang, Mode division multiplexing communication using microwave orbital angular momentum: An experimental study, IEEE Trans. Wirel. Commun. 16(2), 1308 (2017)
CrossRef ADS Google scholar
[9]
Y. H. Gong, R. Wang, Y. K. Deng, B. W. Zhang, N. Wang, N. Li, and P. Wang, Generation and transmission of OAM-carrying vortex beams using circular antenna array, IEEE Trans. Antenn. Propag. 65(6), 2940 (2017)
CrossRef ADS Google scholar
[10]
B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, Utilization of photon orbital angular momentum in the low-frequency radio domain, Phys. Rev. Lett. 99(8), 087701 (2007)
CrossRef ADS Google scholar
[11]
Q. Lou, C. H. Xue, and Z. N. Chen, High efficiency metalens antenna using Huygens’ metasurface with glide symmetric I-shape metal strips, IEEE Trans. Antenn. Propag. 69(11), 7394 (2021)
CrossRef ADS Google scholar
[12]
A. Amini and H. Oraizi, Control of orbital angular momentum regimen by modulated metasurface leaky-wave antennas, IEEE Trans. Antenn. Propag. 70(11), 10166 (2022)
CrossRef ADS Google scholar
[13]
W. L. Hsu, Y. C. Chen, S. P. Yeh, Q. C. Zeng, Y. W. Huang, and C. M. Wang, Review of metasurfaces and metadevices: Advantages of different materials and fabrications, Nanomaterials (Basel) 12(12), 1973 (2022)
CrossRef ADS Google scholar
[14]
D. Hakobyan, H. Magallanes, G. Seniutinas, S. Juodkazis, and E. Brasselet, Tailoring orbital angular momentum of light in the visible domain with metallic metasurfaces, Adv. Opt. Mater. 4(2), 306 (2016)
CrossRef ADS Google scholar
[15]
C. Xue, Q. Lou, and Z. N. Chen, Broadband double-layered Huygens’ metasurface lens antenna for 5G millimeter-wave systems, IEEE Trans. Antenn. Propag. 68(3), 1468 (2020)
CrossRef ADS Google scholar
[16]
Q. Lv, C. Jin, B. Zhang, and Z. Shen, Hybrid absorptive-diffusive frequency selective radome, IEEE Trans. Antenn. Propag. 69(6), 3312 (2021)
CrossRef ADS Google scholar
[17]
Z. Y. Song, Q. Q. Chu, X. P. Shen, and Q. H. Liu, Wideband high-efficient linear polarization rotators, Front. Phys. 13(5), 137803 (2018)
CrossRef ADS Google scholar
[18]
A. Amini and H. Oraizi, Adiabatic Floquet-wave expansion for the analysis of leaky-wave holograms generating polarized vortex beams, Phys. Rev. Appl. 15(3), 034049 (2021)
CrossRef ADS Google scholar
[19]
J. Li, W. Liu, H. Xu, Z. Huang, J. Wang, J. Wen, J. Yang, J. Guan, S. Wang, A. Alù, Z. K. Zhou, S. Chen, and L. Chen, An RGB‐achromatic aplanatic metalens, Laser Photonics Rev. 18(4), 2300729 (2024)
CrossRef ADS Google scholar
[20]
M. Deng, M. Cotrufo, J. Wang, J. J. Dong, Z. C. Ruan, A. Alù, and L. Chen, Broadband angular spectrum differentiation using dielectric metasurfaces, Nat. Commun. 15(1), 2237 (2024)
CrossRef ADS Google scholar
[21]
B. Fang, D. Feng, P. Chen, L. Shi, J. Cai, J. Li, C. Li, Z. Hong, and X. Jing, Broadband cross-circular polarization carpet cloaking based on a phase change material metasurface in the mid-infrared region, Front. Phys. 17(5), 53502 (2022)
CrossRef ADS Google scholar
[22]
Z. Xu, Z. Li, Y. Tian, Y. Wei, and F. Wu, Highly efficient bifunctional dielectric metasurfaces at visible wavelength: Beam focusing and anomalous refraction in high-order modes, Front. Phys. (Lausanne) 8, 575824 (2020)
CrossRef ADS Google scholar
[23]
D. Wang, B. Cai, L. L. Yang, L. Wu, Y. Z. Cheng, F. Chen, H. Luo, and X. C. Li, Transmission/reflection mode switchable ultra-broadband terahertz vanadium dioxide (VO2) metasurface filter for electromagnetic shielding application, Surf. Interfaces 49, 104403 (2024)
CrossRef ADS Google scholar
[24]
Y. X. Wang, Y. Y. Yuan, Y. Liu, X. M. Ding, B. Ratni, Q. Wu, S. N. Burokur, G. W. Hu, and K. Zhang, Extreme diffraction management in phase‐corrected gradient metasurface by Fourier harmonic component engineering, Laser Photonics Rev. 17(7), 2300152 (2023)
CrossRef ADS Google scholar
[25]
J. X. Li, Y. Y. Yuan, Q. Wu, and K. Zhang, Bi-isotropic Huygens’ metasurface for polarization-insensitive cross-polarization conversion and wavefront manipulation, IEEE Trans. Antenn. Propag. 72(3), 2445 (2024)
CrossRef ADS Google scholar
[26]
J. Li, G. Hu, L. Shi, N. He, D. Li, Q. Shang, Q. Zhang, H. Fu, L. Zhou, W. Xiong, J. Guan, J. Wang, S. He, and L. Chen, Full-color enhanced second harmonic generation using rainbow trapping in ultrathin hyperbolic metamaterials, Nat. Commun. 12(1), 6425 (2021)
CrossRef ADS Google scholar
[27]
X. Li, M. Feng, J. Wang, Y. Meng, J. Yang, T. Liu, R. Zhu, and S. Qu, Suppressing edge back-scattering of electromagnetic waves using coding metasurface purfle, Front. Phys. (Lausanne) 8, 578295 (2020)
CrossRef ADS Google scholar
[28]
H.H. GaoX. J. HuangX.W. MaX.Y. LiL.Y. Guo H.L. Yang, An ultra-wideband coding polarizer for beam control and RCS reduction, Int. J. Electron. Commun. 152, 154244 (2022) (AEÜ)
[29]
G. W. Ding, K. Chen, X. Y. Luo, G. X. Qian, J. M. Zhao, T. Jiang, and Y. J. Feng, Direct routing of intensity-editable multi-beams by dual geometric phase interference in metasurface, Nanophotonics 9(9), 0203 (2020)
CrossRef ADS Google scholar
[30]
Y. Z. Cheng, C. G. Rong, J. Li, F. Chen, H. Luo, and X. C. Li, Dual-band terahertz reflective-mode metasurface for the wavefront manipulation of independent linear and circular polarization waves, J. Opt. Soc. Am. B 41(2), 341 (2024)
CrossRef ADS Google scholar
[31]
H. H. Gao, X. J. Huang, X. W. Ma, X. Y. Li, L. Y. Guo, and H. L. Yang, An ultra-wideband coding polarizer for beam control and RCS reduction, Front. Phys. 18(4), 42301 (2023)
CrossRef ADS Google scholar
[32]
Y. Q. He, B. Cai, L. Wu, L. Chen, Y. Z. Cheng, F. Chen, H. Luo, and X. C. Li, Tunable VO2 metasurface for reflective terahertz linear and circular polarization wavefront manipulation at two frequencies independently, Phys. Rev. B 681, 415848 (2024)
[33]
Z. R. Huang, Y. Q. Zheng, J. H. Li, Y. Z. Cheng, J. Wang, Z. K. Zhou, and L. Chen, High-resolution metalens imaging polarimetry, Nano Lett. 23(23), 10991 (2023)
CrossRef ADS Google scholar
[34]
L. J. Yang, S. Sun, and W. E. I. Sha, Ultra-wideband reflection-type metasurface for generating integer and fractional orbital angular momentum, IEEE Trans. Antenn. Propag. 68(3), 2166 (2020)
CrossRef ADS Google scholar
[35]
Q. Li, C. Wu, Z. H. Zhang, S. Zhao, B. Zhong, S. Li, H. Q. Li, and L. J. Jin, High-purity multi-mode vortex beam generation with full complex-amplitude-controllable metasurface, IEEE Trans. Antenn. Propag. 71(1), 774 (2023)
CrossRef ADS Google scholar
[36]
L. J. Yang, S. Sun, and W. E. I. Sha, Manipulation of orbital angular momentum spectrum using shape-tailored metasurfaces, Adv. Opt. Mater. 9(2), 2001711 (2021)
CrossRef ADS Google scholar
[37]
P. Xu, H. X. Liu, R. J. Li, K. Y. Zhang, and L. Li, Dual-band spin-decoupled metasurface for generating multiple coaxial OAM beams, IEEE Trans. Antenn. Propag. 70(11), 10678 (2022)
CrossRef ADS Google scholar
[38]
Y.H. CuiZ. X. TuY.QinR.L. Li, A compact broadband antenna for ultra high frequency and L band on 5G new radio base stations, IET. Microwaves Propag. 17(5), 361 (2023)
[39]
Ö. Özdogan and E. Björnson, Massive MIMO with dual-polarized antennas, IEEE Trans. Wirel. Commun. 22(2), 1448 (2022)
CrossRef ADS Google scholar
[40]
J. S. Li and J. S. Chen, Multi-beam and multi-mode orbital angular momentum by utilizing a single metasurface, Opt. Express 29(17), 27332 (2021)
CrossRef ADS Google scholar
[41]
X.QiZ.Y. Zhang X.Z. ZongX. F. QueZ.P. NieJ.Hu, Generating dual-mode dual-polarization OAM based on transmissive metasurface, Sci. Rep. 9(97) (2019)
[42]
C. H. Xue, H. C. Zhao, T. Li, and X. Gao, Efficient generation of a dual-polarized vortex wave with an ultrathin Huygens’ metasurface, Opt. Express 30(21), 39175 (2022)
CrossRef ADS Google scholar
[43]
X. D. Bai, F. W. Kong, J. Y. Qian, Y. Z. Song, C. He, X. L. Liang, R. H. Jin, and W. R. Zhu, Polarization insensitive metasurface lens for efficient generation of convergent OAM beams, IEEE Antennas Wirel. Propag. Lett. 18(12), 2696 (2019)
CrossRef ADS Google scholar
[44]
F.WanL. L. LiL.H. ZhangH.L. Wei, A transmission meta-surface for generating OAM beams, IEEE Antennas Wirel. Propag. Lett. 17(10), 1793 (2018)
[45]
P. Zhang, K. Y. Liu, H. X. Li, R. J. Li, and L. Li, Dual-band metasurface generating multiple OAM beams independently in full polarizations, Opt. Express 31(20), 32637 (2023)
CrossRef ADS Google scholar
[46]
R.ZhongH. C. RenM.J. YinQ.XinS.Y. Wang, A broadband orbital angular momentum generator utilizing polarization conversion metasurface at microwave frequencies, Optik (Stuttg.) 274, 170580 (2023)
[47]
P. Xu, H. Liu, R. Li, K. Zhang, and L. Li, Dual-band spin-decoupled metasurface for generating multiple coaxial OAM beams, IEEE Trans. Antenn. Propag. 70(11), 10678 (2022)
CrossRef ADS Google scholar
[48]
Y.HuangX. LiX.GuoZ.QiH.Zhu Q.Li, A reflective metasurface for generating dual‐mode dual‐polarized high‐order Bessel vortex beams with equal divergence angle, IET Microw. Antennas Propag. 16(8), 489 (2022)
[49]
F. Qin, L. Zeng, S. Liu, C. Gu, X. Liu, and H. Zhang, Dual-mode high-gain OAM array based on nested metasurface with simplified feeding network, IEEE Antennas Wirel. Propag. Lett. 23(1), 59 (2024)
CrossRef ADS Google scholar
[50]
Z. Zhou, Y. Qi, B. Zhang, Y. Wen, L. Wang, and X. Wang, Dual-mode switchable metasurface for multi-type OAM vortex beam generation and dual-band perfect absorption in terahertz band, Phys. Scr. 98(10), 105518 (2023)
CrossRef ADS Google scholar
[51]
D. Yang, Y. Yuan, Q. Wu, and K. Zhang, High gain OAM antenna with low profile utilizing integrated reflective metasurface, IEEE Trans. Antenn. Propag. 23(1), 294 (2023)
CrossRef ADS Google scholar

Declarations

The authors declare no competing interests and no conflicts.

Acknowledgements

This work was supported by the Key Research and Development Program of Shaanxi Province (No. 2022GD-TSLD-64).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(3705 KB)

Accesses

Citations

Detail

Sections
Recommended

/