Kinetics of Rayleigh−Taylor instability in van der Waals fluid: the influence of compressibility

Jie Chen, Aiguo Xu, Yudong Zhang, Dawei Chen, Zhihua Chen

PDF(8901 KB)
PDF(8901 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (1) : 011201. DOI: 10.15302/frontphys.2025.011201
RESEARCH ARTICLE

Kinetics of Rayleigh−Taylor instability in van der Waals fluid: the influence of compressibility

Author information +
History +

Abstract

Early studies on Rayleigh−Taylor instability (RTI) primarily relied on the Navier−Stokes (NS) model. As research progresses, it becomes increasingly evident that the kinetic information that the NS model failed to capture is of great value for identifying and even controlling the RTI process; simultaneously, the lack of analysis techniques for complex physical fields results in a significant waste of data information. In addition, early RTI studies mainly focused on the incompressible case and the weakly compressible case. In the case of strong compressibility, the density of the fluid from the upper layer (originally heavy fluid) may become smaller than that of the surrounding (originally light) fluid, thus invalidating the early method of distinguishing light and heavy fluids based on density. In this paper, tracer particles are incorporated into a single-fluid discrete Boltzmann method (DBM) model that considers the van der Waals potential. By using tracer particles to label the matter-particle sources, a careful study of the matter-mixing and energy-mixing processes of the RTI evolution is realized in the single-fluid framework. The effects of compressibility on the evolution of RTI are examined mainly through the analysis of bubble and spike velocities, the ratio of area occupied by heavy fluid, and various entropy generation rates of the system. It is demonstrated that: (i) compressibility has a suppressive effect on the spike velocity, and this suppressive impact diminishes as the Atwood number ( At) increases. The influence of compressibility on bubble velocity shows a staged behavior with increasing At. (ii) The impact of compressibility on the entropy production rate associated with the heat flow ( S˙ NOEF) is related to the stages of RTI evolution. Moreover, this staged impact of compressibility on S˙ NOEF varies with At. Compressibility exhibits an inhibitory effect on the entropy production rate associated with viscous stresses ( S˙ NOMF). (iii) By incorporating the morphological parameter of the proportion of area occupied by heavy fluid ( Ah), it is observed that the first minimum point of dAh/dt can serve as a criterion for identifying the point at which bubble velocity reaches its first maximum value. The series of physical cognition provides a more accurate understanding of the RTI kinetics and a helpful reference for the development of corresponding regulation techniques.

Graphical abstract

Keywords

discrete Boltzmann method / Rayleigh−Taylor instability / compressibility effect / tracer particles

Cite this article

Download citation ▾
Jie Chen, Aiguo Xu, Yudong Zhang, Dawei Chen, Zhihua Chen. Kinetics of Rayleigh−Taylor instability in van der Waals fluid: the influence of compressibility. Front. Phys., 2025, 20(1): 011201 https://doi.org/10.15302/frontphys.2025.011201

References

[1]
L.Rayleigh, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proceedings of the London Mathematical Society s1–14, 170 (1882)
[2]
G. I. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I, Proc. R. Soc. Lond. A 201(1065), 192 (1950)
CrossRef ADS Google scholar
[3]
Y.Zhou, Hydrodynamic Instabilities and Turbulence: Rayleigh–Taylor, Richtmyer–Meshkov, and Kelvin–Helmholtz Mixing, Cambridge: Cambridge University Press, 2024
[4]
Y.Zhou, Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I, Phys. Rep. 720–722, 1 (2017)
[5]
Y.Zhou, Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II, Phys. Rep. 723–725, 1 (2017)
[6]
Y. Zhou, R. J. R. Williams, P. Ramaprabhu, M. Groom, B. Thornber, A. Hillier, W. Mostert, B. Rollin, S. Balachandar, P. D. Powell, A. Mahalov, and N. Attal, Rayleigh–Taylor and Richtmyer–Meshkov instabilities: A journey through scales, Physica D 423, 132838 (2021)
CrossRef ADS Google scholar
[7]
I. B. Bernstein and D. L. Book, Effect of compressibility on the Rayleigh–Taylor instability, Phys. Fluids 26(2), 453 (1983)
CrossRef ADS Google scholar
[8]
Y. M. Yang and Q. Zhang, General properties of a multilayer stratified fluids system, Phys. Fluids A 5(5), 1167 (1993)
CrossRef ADS Google scholar
[9]
G. M. Blake, Fluid dynamic stability of double radio sources, Mon. Not. R. Astron. Soc. 156(1), 67 (1972)
CrossRef ADS Google scholar
[10]
L. Baker, Compressible Rayleigh–Taylor instability, Phys. Fluids 26(4), 950 (1983)
CrossRef ADS Google scholar
[11]
D. Livescu, Compressibility effects on the Rayleigh–Taylor instability growth between immiscible fluids, Phys. Fluids 16(1), 118 (2004)
CrossRef ADS Google scholar
[12]
C. Xue and W. H. Ye, Destabilizing effect of compressibility on Rayleigh–Taylor instability for fluids with fixed density profile, Phys. Plasmas 17(4), 042705 (2010)
CrossRef ADS Google scholar
[13]
M. A. Lafay, B. Le Creurer, and S. Gauthier, Compressibility effects on the Rayleigh–Taylor instability between miscible fluids, Europhys. Lett. 79(6), 64002 (2007)
CrossRef ADS Google scholar
[14]
S. J. Reckinger, D. Livescu, and O. V. Vasilyev, Comprehensive numerical methodology for direct numerical simulations of compressible Rayleigh–Taylor instability, J. Comput. Phys. 313, 181 (2016)
CrossRef ADS Google scholar
[15]
S. Gauthier, Compressible Rayleigh–Taylor turbulent mixing layer between Newtonian miscible fluids, J. Fluid Mech. 830, 211 (2017)
CrossRef ADS Google scholar
[16]
T. F. Luo, J. C. Wang, C. Y. Xie, M. P. Wan, and S. Y. Chen, Effects of compressibility and Atwood number on the single-mode Rayleigh–Taylor instability, Phys. Fluids 32(1), 012110 (2020)
CrossRef ADS Google scholar
[17]
C. Q. Fu, Z. Y. Zhao, X. Xu, P. Wang, N. S. Liu, Z. H. Wan, and X. Y. Lu, Nonlinear saturation of bubble evolution in a two-dimensional single-mode stratified compressible Rayleigh–Taylor instability, Phys. Rev. Fluids 7(2), 023902 (2022)
CrossRef ADS Google scholar
[18]
C. S. Qin, F. G. Zhang, and Y. Li, Compressibility Effect on Rayleigh–Taylor Instability, Explosion and Shock Waves 21(3), 193 (2001)
[19]
C. S. Qin and P. Wang, The role of fluid compressibility in Rayleigh–Taylor Instability, Explosion and Shock Waves 24(1), 1 (2004)
[20]
B. J. Olson and A. W. Cook, Rayleigh–Taylor shock waves, Phys. Fluids 19(12), 128108 (2007)
CrossRef ADS Google scholar
[21]
S.J. ReckingerD.LivescuO.V. Vasilyev, Simulations of compressible Rayleigh−Taylor instability using the adaptive wavelet collocation method, Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii 2012
[22]
S. A. Wieland, P. E. Hamlington, S. J. Reckinger, and D. Livescu, Effects of isothermal stratification strength on vorticity dynamics for single-mode compressible Rayleigh‒Taylor instability, Phys. Rev. Fluids 4(9), 093905 (2019)
CrossRef ADS Google scholar
[23]
C. Q. Fu, Z. Zhao, P. Wang, N. S. Liu, Z. H. Wan, and X. Y. Lu, Bubble re-acceleration behaviours in compressible Rayleigh–Taylor instability with isothermal stratification, J. Fluid Mech. 954, A16 (2023)
CrossRef ADS Google scholar
[24]
F. Chen, A. G. Xu, Y. D. Zhang, and Q. K. Zeng, Morphological and non-equilibrium analysis of coupled Rayleigh–Taylor–Kelvin–Helmholtz instability, Phys. Fluids 32(10), 104111 (2020)
CrossRef ADS arXiv Google scholar
[25]
A.G. XuY. D. Zhang, Complex Media Kinetics, Beijing: Science Press, 2022 (in Chinese)
[26]
A. G. Xu, J. D. Zhang, and Y. B. Gan, Advances in the kinetics of heat and mass transfer in near-continuous complex flows, Front. Phys. 19(4), 42500 (2024)
CrossRef ADS arXiv Google scholar
[27]
S.Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Oxford: Oxford University Press, 2001
[28]
W. Osborn, E. Orlandini, M. R. Swift, J. Yeomans, and J. R. Banavar, Lattice Boltzmann study of hydrodynamic spinodal decomposition, Phys. Rev. Lett. 75(22), 4031 (1995)
CrossRef ADS Google scholar
[29]
M. R. Swift, W. Osborn, and J. Yeomans, Lattice Boltzmann simulation of nonideal fluids, Phys. Rev. Lett. 75(5), 830 (1995)
CrossRef ADS Google scholar
[30]
H. Liang, B. C. Shi, Z. L. Guo, and Z. H. Chai, Phase-field based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows, Phys. Rev. E 89(5), 053320 (2014)
CrossRef ADS Google scholar
[31]
H. Liang, Q. X. Li, B. C. Shi, and Z. H. Chai, Lattice Boltzmann simulation of three-dimensional Rayleigh–Taylor instability, Phys. Rev. E 93(3), 033113 (2016)
CrossRef ADS Google scholar
[32]
H. Liang, Z. H. Xia, and H. W. Huang, Late-time description of immiscible Rayleigh–Taylor instability: A lattice Boltzmann study, Phys. Fluids 33(8), 082103 (2021)
CrossRef ADS arXiv Google scholar
[33]
F. Chen, A. G. Xu, and G. C. Zhang, Collaboration and competition between Richtmyer–Meshkov instability and Rayleigh–Taylor instability, Phys. Fluids 30(10), 102105 (2018)
CrossRef ADS arXiv Google scholar
[34]
Y. B. Gan, A. G. Xu, G. C. Zhang, C. D. Lin, H. L. Lai, and Z. P. Liu, Nonequilibrium and morphological characterizations of Kelvin–Helmholtz instability in compressible flows, Front. Phys. 14(4), 43602 (2019)
CrossRef ADS arXiv Google scholar
[35]
H. L. Lai, A. G. Xu, G. C. Zhang, Y. B. Gan, Y. J. Ying, and S. Succi, Nonequilibrium thermohydrodynamic effects on the Rayleigh–Taylor instability in compressible flows, Phys. Rev. E 94(2), 023106 (2016)
CrossRef ADS Google scholar
[36]
C. D. Lin, A. G. Xu, G. C. Zhang, K. H. Luo, and Y. J. Li, Discrete Boltzmann modeling of Rayleigh–Taylor instability in two-component compressible flows, Phys. Rev. E 96(5), 053305 (2017)
CrossRef ADS arXiv Google scholar
[37]
G. Zhang, A. G. Xu, D. J. Zhang, Y. J. Li, H. L. Lai, and X. M. Hu, Delineation of the flow and mixing induced by Rayleigh–Taylor instability through tracers, Phys. Fluids 33(7), 076105 (2021)
CrossRef ADS arXiv Google scholar
[38]
H. W. Li, A. G. Xu, G. Zhang, and Y. M. Shan, Rayleigh−Taylor instability under multi-mode perturbation: Discrete Boltzmann modeling with tracers, Commum. Theor. Phys. 74(11), 115601 (2022)
CrossRef ADS arXiv Google scholar
[39]
J.W. Miles, Taylor instability of a flat plate, General Dynamics Report No. GAMD-7335, AD643161 1966 (unpublished)
[40]
A. R. Piriz, J. J. López Cela, and N. A. Tahir, Linear analysis of incompressible Rayleigh–Taylor instability in solids, Phys. Rev. E 80(4), 046305 (2009)
CrossRef ADS Google scholar
[41]
B. Y. Li, J. X. Peng, Y. Gu, and L. H. He, Experimental research on Rayleigh-Taylor instability of oxygen-free high conductivity copper under explosive loading, Acta Phys. Sin. 69(9), 094701 (2020)
CrossRef ADS Google scholar
[42]
A. G. Xu, G. C. Zhang, and Y. J. Ying, Progress of discrete Boltzmann modeling and simulation of combustion system, Acta Phys. Sin. 64(18), 184701 (2015)
CrossRef ADS Google scholar
[43]
A.G. XuG. C. ZhangY.D. Zhang, Kinetic Theory: Discrete Boltzmann Modeling of Compressible Flows, Rijeka: InTech, 2018
[44]
A. G. Xu, J. Chen, J. H. Song, D. W. Chen, and Z. H. Chen, Progress of discrete Boltzmann study on multiphase complex flows, Acta Aerodyn. Sin 39(3), 138 (2021)
[45]
A. G. Xu, Y. M. Shan, F. Chen, Y. B. Gan, and C. D. Lin, Progress of mesoscale modeling and investigation of combustion multiphase flow, Acta Aeronauticaet Astronautica Sinica 42(12), 46 (2021)
[46]
A. G. Xu, J. H. Song, F. Chen, K. Xie, and Y. J. Ying, Modeling and analysis methods for complex fields based on phase space, Chin. J. Comput. Phys. 38(6), 631 (2021)
[47]
Y. B. Gan, A. G. Xu, H. L. Lai, W. Li, G. L. Sun, and S. Succi, Discrete Boltzmann multi-scale modelling of nonequilibrium multiphase flows, Soft Matter 951, A8 (2022)
[48]
D. J. Zhang, A. G. Xu, Y. B. Gan, Y. D. Zhang, J. H. Song, and Y. J. Li, Viscous effects on morphological and thermodynamic non-equilibrium characterizations of shock-bubble interaction, Phys. Fluids 35(10), 106113 (2023)
CrossRef ADS arXiv Google scholar
[49]
X. Wu and Z. H. Liu, Characteristics of heat conduction in complex networks, Complex Systems Complex. Sci. 8(1), 0039 (2011)
[50]
L. Wang, D. H. He, and B. B. Hu, Heat conduction in a three-dimensional momentum-conserving anharmonic lattice, Phys. Rev. Lett. 105(16), 160601 (2010)
CrossRef ADS Google scholar
[51]
G. Gonnella, A. Lamura, and V. Sofonea, Lattice Boltzmann simulation of thermal nonideal fluids, Phys. Rev. E 76(3), 036703 (2007)
CrossRef ADS Google scholar
[52]
Y. B. Gan, A. G. Xu, H. L. Lai, W. Li, G. L. Sun, and S. Succi, Discrete Boltzmann multi-scale modelling of nonequilibrium multiphase flows, J. Fluid Mech. 951, A8 (2022)
CrossRef ADS arXiv Google scholar
[53]
J. Chen, A. G. Xu, D. W. Chen, Y. D. Zhang, and Z. H. Chen, Discrete Boltzmann modeling of Rayleigh–Taylor instability: Effects of interfacial tension, viscosity, and heat conductivity, Phys. Rev. E 106(1), 015102 (2022)
CrossRef ADS arXiv Google scholar
[54]
J. H. Song, A. G. Xu, L. Miao, F. Chen, Z. P. Liu, L. F. Wang, and X. Hou, Plasma kinetics: Discrete Boltzmann modeling and Richtmyer–Meshkov instability, Phys. Fluids 36(1), 016107 (2024)
CrossRef ADS arXiv Google scholar
[55]
H. B. Cai, X. X. Yan, P. L. Yao, and S. P. Zhu, Hybrid fluid–particle modeling of shock-driven hydrodynamic instabilities in a plasma, Matter and Radiation at Extremes 6(3), 035901 (2021)
CrossRef ADS Google scholar
[56]
L. Q. Shan, H. B. Cai, W. S. Zhang, Q. Tang, F. Zhang, Z. F. Song, B. Bi, F. J. Ge, J. B. Chen, D. X. Liu, W. W. Wang, Z. H. Yang, W. Qi, C. Tian, Z. Q. Yuan, B. Zhang, L. Yang, J. L. Jiao, B. Cui, W. M. Zhou, L. F. Cao, C. T. Zhou, Y. Q. Gu, B. H. Zhang, S. P. Zhu, and X. T. He, Experimental evidence of kinetic effects in indirect-drive inertial confinement fusion hohlraums, Phys. Rev. Lett. 120(19), 195001 (2018)
CrossRef ADS Google scholar
[57]
R. F. Qiu, X. Y. Yan, Y. Bao, and Y. C. You, Mesoscopic kinetic approach of nonequilibrium effects for shock waves, Entropy (Basel) 26(3), 200 (2024)
CrossRef ADS Google scholar
[58]
A. Onuki, Dynamic van der Waals theory of two-phase fluids in heat flow, Phys. Rev. Lett. 94(5), 054501 (2005)
CrossRef ADS Google scholar
[59]
X. Bian, H. Aluie, D. X. Zhao, H. S. Zhang, and D. Livescu, Revisiting the late-time growth of single-mode Rayleigh–Taylor instability and the role of vorticity, Physica D 403, 132250 (2020)
CrossRef ADS arXiv Google scholar
[60]
Y. D. Zhang, A. G. Xu, G. C. Zhang, Y. B. Gan, Z. H. Chen, and S. Succi, Entropy production in thermal phase separation: A kinetic-theory approach, Soft Matter 15(10), 2245 (2019)
CrossRef ADS Google scholar
[61]
A. Tiribocchi, N. Stella, G. Gonnella, and A. Lamura, Hybrid lattice Boltzmann model for binary fluid mixtures, Phys. Rev. E 80(2), 026701 (2009)
CrossRef ADS arXiv Google scholar
[62]
J. C. Wang, Y. T. Yang, Y. P. Shi, Z. L. Xiao, X. T. He, and Y. J. Li, Cascade of kinetic energy in three-dimensional compressible turbulence, Phys. Rev. Lett. 110(21), 214505 (2013)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

The authors thank Yanbiao Gan, Feng Chen, Chuandong Lin, Huilin Lai, Zhipeng Liu, Ge Zhang, Yiming Shan, Dejia Zhang, Jiahui Song, Hanwei Li, Yingqi Jia, and Xuan Zhang for helpful discussions on DBM. This work was supported by the National Natural Science Foundation of China (Grant Nos. 12172061, 12102397, and 12101064), the Opening Project of State Key Laboratory of Explosion Science and Safety Protection (Beijing Institute of Technology) (Grant No. KFJJ23-02M), the Foundation of National Key Laboratory of Shock Wave and Detonation Physics (Grant No. JCKYS2023212003), and the 2023 Computational Physics Key Laboratory Youth Fund Sponsored Project (Grant No. 6241A05QN23001).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(8901 KB)

Accesses

Citations

Detail

Sections
Recommended

/