Kinetics of Rayleigh−Taylor instability in van der Waals fluid: the influence of compressibility
Jie Chen, Aiguo Xu, Yudong Zhang, Dawei Chen, Zhihua Chen
Kinetics of Rayleigh−Taylor instability in van der Waals fluid: the influence of compressibility
Early studies on Rayleigh−Taylor instability (RTI) primarily relied on the Navier−Stokes (NS) model. As research progresses, it becomes increasingly evident that the kinetic information that the NS model failed to capture is of great value for identifying and even controlling the RTI process; simultaneously, the lack of analysis techniques for complex physical fields results in a significant waste of data information. In addition, early RTI studies mainly focused on the incompressible case and the weakly compressible case. In the case of strong compressibility, the density of the fluid from the upper layer (originally heavy fluid) may become smaller than that of the surrounding (originally light) fluid, thus invalidating the early method of distinguishing light and heavy fluids based on density. In this paper, tracer particles are incorporated into a single-fluid discrete Boltzmann method (DBM) model that considers the van der Waals potential. By using tracer particles to label the matter-particle sources, a careful study of the matter-mixing and energy-mixing processes of the RTI evolution is realized in the single-fluid framework. The effects of compressibility on the evolution of RTI are examined mainly through the analysis of bubble and spike velocities, the ratio of area occupied by heavy fluid, and various entropy generation rates of the system. It is demonstrated that: (i) compressibility has a suppressive effect on the spike velocity, and this suppressive impact diminishes as the Atwood number () increases. The influence of compressibility on bubble velocity shows a staged behavior with increasing . (ii) The impact of compressibility on the entropy production rate associated with the heat flow () is related to the stages of RTI evolution. Moreover, this staged impact of compressibility on varies with . Compressibility exhibits an inhibitory effect on the entropy production rate associated with viscous stresses (). (iii) By incorporating the morphological parameter of the proportion of area occupied by heavy fluid (), it is observed that the first minimum point of can serve as a criterion for identifying the point at which bubble velocity reaches its first maximum value. The series of physical cognition provides a more accurate understanding of the RTI kinetics and a helpful reference for the development of corresponding regulation techniques.
discrete Boltzmann method / Rayleigh−Taylor instability / compressibility effect / tracer particles
[1] |
L.Rayleigh, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proceedings of the London Mathematical Society s1–14, 170 (1882)
|
[2] |
G. I. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I, Proc. R. Soc. Lond. A 201(1065), 192 (1950)
CrossRef
ADS
Google scholar
|
[3] |
Y.Zhou, Hydrodynamic Instabilities and Turbulence: Rayleigh–Taylor, Richtmyer–Meshkov, and Kelvin–Helmholtz Mixing, Cambridge: Cambridge University Press, 2024
|
[4] |
Y.Zhou, Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I, Phys. Rep. 720–722, 1 (2017)
|
[5] |
Y.Zhou, Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II, Phys. Rep. 723–725, 1 (2017)
|
[6] |
Y. Zhou, R. J. R. Williams, P. Ramaprabhu, M. Groom, B. Thornber, A. Hillier, W. Mostert, B. Rollin, S. Balachandar, P. D. Powell, A. Mahalov, and N. Attal, Rayleigh–Taylor and Richtmyer–Meshkov instabilities: A journey through scales, Physica D 423, 132838 (2021)
CrossRef
ADS
Google scholar
|
[7] |
I. B. Bernstein and D. L. Book, Effect of compressibility on the Rayleigh–Taylor instability, Phys. Fluids 26(2), 453 (1983)
CrossRef
ADS
Google scholar
|
[8] |
Y. M. Yang and Q. Zhang, General properties of a multilayer stratified fluids system, Phys. Fluids A 5(5), 1167 (1993)
CrossRef
ADS
Google scholar
|
[9] |
G. M. Blake, Fluid dynamic stability of double radio sources, Mon. Not. R. Astron. Soc. 156(1), 67 (1972)
CrossRef
ADS
Google scholar
|
[10] |
L. Baker, Compressible Rayleigh–Taylor instability, Phys. Fluids 26(4), 950 (1983)
CrossRef
ADS
Google scholar
|
[11] |
D. Livescu, Compressibility effects on the Rayleigh–Taylor instability growth between immiscible fluids, Phys. Fluids 16(1), 118 (2004)
CrossRef
ADS
Google scholar
|
[12] |
C. Xue and W. H. Ye, Destabilizing effect of compressibility on Rayleigh–Taylor instability for fluids with fixed density profile, Phys. Plasmas 17(4), 042705 (2010)
CrossRef
ADS
Google scholar
|
[13] |
M. A. Lafay, B. Le Creurer, and S. Gauthier, Compressibility effects on the Rayleigh–Taylor instability between miscible fluids, Europhys. Lett. 79(6), 64002 (2007)
CrossRef
ADS
Google scholar
|
[14] |
S. J. Reckinger, D. Livescu, and O. V. Vasilyev, Comprehensive numerical methodology for direct numerical simulations of compressible Rayleigh–Taylor instability, J. Comput. Phys. 313, 181 (2016)
CrossRef
ADS
Google scholar
|
[15] |
S. Gauthier, Compressible Rayleigh–Taylor turbulent mixing layer between Newtonian miscible fluids, J. Fluid Mech. 830, 211 (2017)
CrossRef
ADS
Google scholar
|
[16] |
T. F. Luo, J. C. Wang, C. Y. Xie, M. P. Wan, and S. Y. Chen, Effects of compressibility and Atwood number on the single-mode Rayleigh–Taylor instability, Phys. Fluids 32(1), 012110 (2020)
CrossRef
ADS
Google scholar
|
[17] |
C. Q. Fu, Z. Y. Zhao, X. Xu, P. Wang, N. S. Liu, Z. H. Wan, and X. Y. Lu, Nonlinear saturation of bubble evolution in a two-dimensional single-mode stratified compressible Rayleigh–Taylor instability, Phys. Rev. Fluids 7(2), 023902 (2022)
CrossRef
ADS
Google scholar
|
[18] |
C. S. Qin, F. G. Zhang, and Y. Li, Compressibility Effect on Rayleigh–Taylor Instability, Explosion and Shock Waves 21(3), 193 (2001)
|
[19] |
C. S. Qin and P. Wang, The role of fluid compressibility in Rayleigh–Taylor Instability, Explosion and Shock Waves 24(1), 1 (2004)
|
[20] |
B. J. Olson and A. W. Cook, Rayleigh–Taylor shock waves, Phys. Fluids 19(12), 128108 (2007)
CrossRef
ADS
Google scholar
|
[21] |
S.J. ReckingerD.LivescuO.V. Vasilyev, Simulations of compressible Rayleigh−Taylor instability using the adaptive wavelet collocation method, Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii 2012
|
[22] |
S. A. Wieland, P. E. Hamlington, S. J. Reckinger, and D. Livescu, Effects of isothermal stratification strength on vorticity dynamics for single-mode compressible Rayleigh‒Taylor instability, Phys. Rev. Fluids 4(9), 093905 (2019)
CrossRef
ADS
Google scholar
|
[23] |
C. Q. Fu, Z. Zhao, P. Wang, N. S. Liu, Z. H. Wan, and X. Y. Lu, Bubble re-acceleration behaviours in compressible Rayleigh–Taylor instability with isothermal stratification, J. Fluid Mech. 954, A16 (2023)
CrossRef
ADS
Google scholar
|
[24] |
F. Chen, A. G. Xu, Y. D. Zhang, and Q. K. Zeng, Morphological and non-equilibrium analysis of coupled Rayleigh–Taylor–Kelvin–Helmholtz instability, Phys. Fluids 32(10), 104111 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[25] |
A.G. XuY. D. Zhang, Complex Media Kinetics, Beijing: Science Press, 2022 (in Chinese)
|
[26] |
A. G. Xu, J. D. Zhang, and Y. B. Gan, Advances in the kinetics of heat and mass transfer in near-continuous complex flows, Front. Phys. 19(4), 42500 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[27] |
S.Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Oxford: Oxford University Press, 2001
|
[28] |
W. Osborn, E. Orlandini, M. R. Swift, J. Yeomans, and J. R. Banavar, Lattice Boltzmann study of hydrodynamic spinodal decomposition, Phys. Rev. Lett. 75(22), 4031 (1995)
CrossRef
ADS
Google scholar
|
[29] |
M. R. Swift, W. Osborn, and J. Yeomans, Lattice Boltzmann simulation of nonideal fluids, Phys. Rev. Lett. 75(5), 830 (1995)
CrossRef
ADS
Google scholar
|
[30] |
H. Liang, B. C. Shi, Z. L. Guo, and Z. H. Chai, Phase-field based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows, Phys. Rev. E 89(5), 053320 (2014)
CrossRef
ADS
Google scholar
|
[31] |
H. Liang, Q. X. Li, B. C. Shi, and Z. H. Chai, Lattice Boltzmann simulation of three-dimensional Rayleigh–Taylor instability, Phys. Rev. E 93(3), 033113 (2016)
CrossRef
ADS
Google scholar
|
[32] |
H. Liang, Z. H. Xia, and H. W. Huang, Late-time description of immiscible Rayleigh–Taylor instability: A lattice Boltzmann study, Phys. Fluids 33(8), 082103 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[33] |
F. Chen, A. G. Xu, and G. C. Zhang, Collaboration and competition between Richtmyer–Meshkov instability and Rayleigh–Taylor instability, Phys. Fluids 30(10), 102105 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[34] |
Y. B. Gan, A. G. Xu, G. C. Zhang, C. D. Lin, H. L. Lai, and Z. P. Liu, Nonequilibrium and morphological characterizations of Kelvin–Helmholtz instability in compressible flows, Front. Phys. 14(4), 43602 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[35] |
H. L. Lai, A. G. Xu, G. C. Zhang, Y. B. Gan, Y. J. Ying, and S. Succi, Nonequilibrium thermohydrodynamic effects on the Rayleigh–Taylor instability in compressible flows, Phys. Rev. E 94(2), 023106 (2016)
CrossRef
ADS
Google scholar
|
[36] |
C. D. Lin, A. G. Xu, G. C. Zhang, K. H. Luo, and Y. J. Li, Discrete Boltzmann modeling of Rayleigh–Taylor instability in two-component compressible flows, Phys. Rev. E 96(5), 053305 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[37] |
G. Zhang, A. G. Xu, D. J. Zhang, Y. J. Li, H. L. Lai, and X. M. Hu, Delineation of the flow and mixing induced by Rayleigh–Taylor instability through tracers, Phys. Fluids 33(7), 076105 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[38] |
H. W. Li, A. G. Xu, G. Zhang, and Y. M. Shan, Rayleigh−Taylor instability under multi-mode perturbation: Discrete Boltzmann modeling with tracers, Commum. Theor. Phys. 74(11), 115601 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[39] |
J.W. Miles, Taylor instability of a flat plate, General Dynamics Report No. GAMD-7335, AD643161 1966 (unpublished)
|
[40] |
A. R. Piriz, J. J. López Cela, and N. A. Tahir, Linear analysis of incompressible Rayleigh–Taylor instability in solids, Phys. Rev. E 80(4), 046305 (2009)
CrossRef
ADS
Google scholar
|
[41] |
B. Y. Li, J. X. Peng, Y. Gu, and L. H. He, Experimental research on Rayleigh-Taylor instability of oxygen-free high conductivity copper under explosive loading, Acta Phys. Sin. 69(9), 094701 (2020)
CrossRef
ADS
Google scholar
|
[42] |
A. G. Xu, G. C. Zhang, and Y. J. Ying, Progress of discrete Boltzmann modeling and simulation of combustion system, Acta Phys. Sin. 64(18), 184701 (2015)
CrossRef
ADS
Google scholar
|
[43] |
A.G. XuG. C. ZhangY.D. Zhang, Kinetic Theory: Discrete Boltzmann Modeling of Compressible Flows, Rijeka: InTech, 2018
|
[44] |
A. G. Xu, J. Chen, J. H. Song, D. W. Chen, and Z. H. Chen, Progress of discrete Boltzmann study on multiphase complex flows, Acta Aerodyn. Sin 39(3), 138 (2021)
|
[45] |
A. G. Xu, Y. M. Shan, F. Chen, Y. B. Gan, and C. D. Lin, Progress of mesoscale modeling and investigation of combustion multiphase flow, Acta Aeronauticaet Astronautica Sinica 42(12), 46 (2021)
|
[46] |
A. G. Xu, J. H. Song, F. Chen, K. Xie, and Y. J. Ying, Modeling and analysis methods for complex fields based on phase space, Chin. J. Comput. Phys. 38(6), 631 (2021)
|
[47] |
Y. B. Gan, A. G. Xu, H. L. Lai, W. Li, G. L. Sun, and S. Succi, Discrete Boltzmann multi-scale modelling of nonequilibrium multiphase flows, Soft Matter 951, A8 (2022)
|
[48] |
D. J. Zhang, A. G. Xu, Y. B. Gan, Y. D. Zhang, J. H. Song, and Y. J. Li, Viscous effects on morphological and thermodynamic non-equilibrium characterizations of shock-bubble interaction, Phys. Fluids 35(10), 106113 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[49] |
X. Wu and Z. H. Liu, Characteristics of heat conduction in complex networks, Complex Systems Complex. Sci. 8(1), 0039 (2011)
|
[50] |
L. Wang, D. H. He, and B. B. Hu, Heat conduction in a three-dimensional momentum-conserving anharmonic lattice, Phys. Rev. Lett. 105(16), 160601 (2010)
CrossRef
ADS
Google scholar
|
[51] |
G. Gonnella, A. Lamura, and V. Sofonea, Lattice Boltzmann simulation of thermal nonideal fluids, Phys. Rev. E 76(3), 036703 (2007)
CrossRef
ADS
Google scholar
|
[52] |
Y. B. Gan, A. G. Xu, H. L. Lai, W. Li, G. L. Sun, and S. Succi, Discrete Boltzmann multi-scale modelling of nonequilibrium multiphase flows, J. Fluid Mech. 951, A8 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[53] |
J. Chen, A. G. Xu, D. W. Chen, Y. D. Zhang, and Z. H. Chen, Discrete Boltzmann modeling of Rayleigh–Taylor instability: Effects of interfacial tension, viscosity, and heat conductivity, Phys. Rev. E 106(1), 015102 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[54] |
J. H. Song, A. G. Xu, L. Miao, F. Chen, Z. P. Liu, L. F. Wang, and X. Hou, Plasma kinetics: Discrete Boltzmann modeling and Richtmyer–Meshkov instability, Phys. Fluids 36(1), 016107 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[55] |
H. B. Cai, X. X. Yan, P. L. Yao, and S. P. Zhu, Hybrid fluid–particle modeling of shock-driven hydrodynamic instabilities in a plasma, Matter and Radiation at Extremes 6(3), 035901 (2021)
CrossRef
ADS
Google scholar
|
[56] |
L. Q. Shan, H. B. Cai, W. S. Zhang, Q. Tang, F. Zhang, Z. F. Song, B. Bi, F. J. Ge, J. B. Chen, D. X. Liu, W. W. Wang, Z. H. Yang, W. Qi, C. Tian, Z. Q. Yuan, B. Zhang, L. Yang, J. L. Jiao, B. Cui, W. M. Zhou, L. F. Cao, C. T. Zhou, Y. Q. Gu, B. H. Zhang, S. P. Zhu, and X. T. He, Experimental evidence of kinetic effects in indirect-drive inertial confinement fusion hohlraums, Phys. Rev. Lett. 120(19), 195001 (2018)
CrossRef
ADS
Google scholar
|
[57] |
R. F. Qiu, X. Y. Yan, Y. Bao, and Y. C. You, Mesoscopic kinetic approach of nonequilibrium effects for shock waves, Entropy (Basel) 26(3), 200 (2024)
CrossRef
ADS
Google scholar
|
[58] |
A. Onuki, Dynamic van der Waals theory of two-phase fluids in heat flow, Phys. Rev. Lett. 94(5), 054501 (2005)
CrossRef
ADS
Google scholar
|
[59] |
X. Bian, H. Aluie, D. X. Zhao, H. S. Zhang, and D. Livescu, Revisiting the late-time growth of single-mode Rayleigh–Taylor instability and the role of vorticity, Physica D 403, 132250 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[60] |
Y. D. Zhang, A. G. Xu, G. C. Zhang, Y. B. Gan, Z. H. Chen, and S. Succi, Entropy production in thermal phase separation: A kinetic-theory approach, Soft Matter 15(10), 2245 (2019)
CrossRef
ADS
Google scholar
|
[61] |
A. Tiribocchi, N. Stella, G. Gonnella, and A. Lamura, Hybrid lattice Boltzmann model for binary fluid mixtures, Phys. Rev. E 80(2), 026701 (2009)
CrossRef
ADS
arXiv
Google scholar
|
[62] |
J. C. Wang, Y. T. Yang, Y. P. Shi, Z. L. Xiao, X. T. He, and Y. J. Li, Cascade of kinetic energy in three-dimensional compressible turbulence, Phys. Rev. Lett. 110(21), 214505 (2013)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |