Broadband ferromagnetic resonance studies on influence of interface bonding on magnetoeletric effects in ferrite–ferroelectric composites

D. V. B. Murthy, Gopalan Srinivasan

PDF(353 KB)
PDF(353 KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (4) : 418-423. DOI: 10.1107/s11467-011-0230-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Broadband ferromagnetic resonance studies on influence of interface bonding on magnetoeletric effects in ferrite–ferroelectric composites

Author information +
History +

Abstract

A systematic study has been carried out on the effects of interface bonding on the strain mediated magnetoelectric (ME) coupling in ferromagnetic–ferroelectric bilayers. The technique used involves the static electric field E tuning of the ferromagnetic resonance (FMR) in yttrium iron garnet (YIG) and lead zirconate titanate (PZT) or lead magnesium niobate-lead titanate (PMN-PT). A broad band detection technique has been developed for studies over 1-40 GHz in three types of bilayers: epoxy bonded, eutectic bonded and YIG films directly grown onto piezoelectric substrate by electrophoretic deposition. The strength A of the converse ME effect (CME) defined as the ratio of the frequency shift δf in FMR in E, A = δf/E, varies over the range 0.8 to 4.3 MHz·cm/kV, and is the highest for eutectic bonded samples and is the weakest for epoxy bonded bilayers. The results presented here as of importance for dual electric and magnetic field tunable ferrite–ferroelectric microwave resonators and filters.

Keywords

ferrite / ferroelectric / magnetoelectric / ferromagnetic resonance

Cite this article

Download citation ▾
D. V. B. Murthy, Gopalan Srinivasan. Broadband ferromagnetic resonance studies on influence of interface bonding on magnetoeletric effects in ferrite–ferroelectric composites. Front. Phys., 2012, 7(4): 418‒423 https://doi.org/10.1107/s11467-011-0230-z

References

[1]
M. Fiebig and N. A. Spaldin, Eur. Phys. J. B, 2009, 71: 293
CrossRef ADS Google scholar
[2]
K. F. Wang, J. M. Liu, and Z. F. Ren, Adv. Phys., 2009, 58: 321
CrossRef ADS Google scholar
[3]
C. W. Nan, M. I. Bichurin, S. X. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys., 2008, 103: 031101
CrossRef ADS Google scholar
[4]
R. Ramesh and N. A. Spaldin, Nat. Mater., 2007, 6: 21
CrossRef ADS Google scholar
[5]
M. Vopsaroiu, J. Blackburn, and M. G. Cain, J. Phys. D, 2007, 40: 5027
CrossRef ADS Google scholar
[6]
G. Srinivasan, Ann. Rev. Mater. Res., 2010, 40: 153
CrossRef ADS Google scholar
[7]
G. Lawes and G. Srinivasan, J. Phys. D, 2011, 44: 243001
CrossRef ADS Google scholar
[8]
M. I. Bichurin, R. V. Petrov, and Yu. V. Kiliba, Ferroelectrics, 1997, 204: 311
CrossRef ADS Google scholar
[9]
W. J. Kim, W. Chang, S. B. Qadri, H. D. Wu, J. M. Pond, S. W. Kirchoefer, H. S. Newman, D. B. Chrisey, and J. S. Horwitz, Appl. Phys. A, 2000, 71: 7
[10]
A. A. Semenov, S. F. Karmanenko, B. A. Kalinikos, G. Srinivasan, A. N. Slavin, and J. V. Mantese, Elec. Lett., 2006, 42: 641
CrossRef ADS Google scholar
[11]
G. Srinivasan and K.Y. Fetisov, Ferroelectrics, 2006, 342: 65
CrossRef ADS Google scholar
[12]
K. R. Smith, M. J. Kabatek, P. Krivosik, and M. Wu, J. Appl. Phys., 2008, 104: 043911
CrossRef ADS Google scholar
[13]
D. Rugar, R. Budakian, H. J. Mamin, and B. W Chui, Nature, 2004, 430: 329
CrossRef ADS Google scholar
[14]
R. Meckenstock, Rev. Sci. Instrum., 2008, 79: 041101
CrossRef ADS Google scholar
[15]
Y. Obukhov, D. V. Pelekhov, J. Kim, P. Banerjee, I. Martin, E.Nazaretski, R. Movshovich, S.An, T. J. Gramila, S. Batra, and P. C. Hammel, Phys. Rev. Lett., 2008, 100: 197601
CrossRef ADS Google scholar
[16]
T. An, N. Ohnishi, T. Eguchi, Y. Hasegawa, and P. Kabos, IEEE Magn. Lett., 2010, 1: 3500104
CrossRef ADS Google scholar
[17]
S. C. Lee, C. P. Vlahacos, B. J. Feenstra, A. S. Schwartz, D. E. Steinhauer, F. C. Wellstood, and S. M. Anlage, Appl. Phys. Lett., 2000, 77: 4404
CrossRef ADS Google scholar
[18]
D. I. Mircea and T. W. Clinton, Appl. Phys. Lett., 2007, 90: 142504
CrossRef ADS Google scholar
[19]
Y. K. Fetisov and G. Srinivasan, Appl. Phys. Lett., 2006, 88, 143: 503
[20]
A. B. Ustinov, Yu. K. Fetisov, and G. Srinivasan, Tech. Phys. Lett., 2008, 34: 593
CrossRef ADS Google scholar
[21]
N. Benatmane, S. P. Crane, F. Zavaliche, R. Ramesh, and T. W. Clinton, Appl. Phys. Lett., 2010, 96: 082503
CrossRef ADS Google scholar
[22]
L. E. Cross, in: Ferroelectric Ceramics: Tailoring Properties for Specific Applications, Ferroelectric Ceramics, edited by N. Setter, Basel: Birkhäuser, 1993
[23]
Y. G. Li, J. Sun, C. S. Yang, J. Q. Liu, S. Susumu, and T. Katsuhiko, Chin. Phys. Lett., 2011, 28(6): 068103
CrossRef ADS Google scholar
[24]
O.O. Van der Biest, L. J. Vandeperre, Annu. Rev. Mater. Sci., 1999, 29: 327
CrossRef ADS Google scholar
[25]
I. Zhitomirsky, Advances in Colloid and Interface Science, 2002, 97: 279
CrossRef ADS Google scholar
[26]
S. K. Kurinec, N. Okeke, S. K. Gupta, H. Zhang, and T. D. Xiao, J. Mater. Sci., 2006, 41: 8181
CrossRef ADS Google scholar
[27]
S. Hashi, S. Yabukami, A. Maeda, N. Takada, S. Yanase, and Y. Okazaki, J. Mag. Magn. Mater., 2007, 316: 465
CrossRef ADS Google scholar
[28]
K. Takenaka, H. Nakayama, Y. Setsuhara, H. Abe, and K. Nogi, Surface and Coatings Tech., 2008, 202: 5336
CrossRef ADS Google scholar
[29]
C. Washburn, D. Brown, J. Cabacungan, J. Venkataraman, and S. K. Kurinec, Materials Research Society Symposium Proceedings: Materials, Integration and Technology for Monolithic Instruments, 2005, 869: 157
[30]
S. Shastry, G. Srinivasan, M. I. Bichurin, V. M. Petrov, and A. S. Tatarenko, Phys. Rev. B, 2004, 70: 064416
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(353 KB)

Accesses

Citations

Detail

Sections
Recommended

/