Broadband ferromagnetic resonance studies on influence of interface bonding on magnetoeletric effects in ferrite–ferroelectric composites
D. V. B. Murthy, Gopalan Srinivasan
Broadband ferromagnetic resonance studies on influence of interface bonding on magnetoeletric effects in ferrite–ferroelectric composites
A systematic study has been carried out on the effects of interface bonding on the strain mediated magnetoelectric (ME) coupling in ferromagnetic–ferroelectric bilayers. The technique used involves the static electric field E tuning of the ferromagnetic resonance (FMR) in yttrium iron garnet (YIG) and lead zirconate titanate (PZT) or lead magnesium niobate-lead titanate (PMN-PT). A broad band detection technique has been developed for studies over 1-40 GHz in three types of bilayers: epoxy bonded, eutectic bonded and YIG films directly grown onto piezoelectric substrate by electrophoretic deposition. The strength A of the converse ME effect (CME) defined as the ratio of the frequency shift δf in FMR in E, A = δf/E, varies over the range 0.8 to 4.3 MHz·cm/kV, and is the highest for eutectic bonded samples and is the weakest for epoxy bonded bilayers. The results presented here as of importance for dual electric and magnetic field tunable ferrite–ferroelectric microwave resonators and filters.
ferrite / ferroelectric / magnetoelectric / ferromagnetic resonance
[1] |
M. Fiebig and N. A. Spaldin, Eur. Phys. J. B, 2009, 71: 293
CrossRef
ADS
Google scholar
|
[2] |
K. F. Wang, J. M. Liu, and Z. F. Ren, Adv. Phys., 2009, 58: 321
CrossRef
ADS
Google scholar
|
[3] |
C. W. Nan, M. I. Bichurin, S. X. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys., 2008, 103: 031101
CrossRef
ADS
Google scholar
|
[4] |
R. Ramesh and N. A. Spaldin, Nat. Mater., 2007, 6: 21
CrossRef
ADS
Google scholar
|
[5] |
M. Vopsaroiu, J. Blackburn, and M. G. Cain, J. Phys. D, 2007, 40: 5027
CrossRef
ADS
Google scholar
|
[6] |
G. Srinivasan, Ann. Rev. Mater. Res., 2010, 40: 153
CrossRef
ADS
Google scholar
|
[7] |
G. Lawes and G. Srinivasan, J. Phys. D, 2011, 44: 243001
CrossRef
ADS
Google scholar
|
[8] |
M. I. Bichurin, R. V. Petrov, and Yu. V. Kiliba, Ferroelectrics, 1997, 204: 311
CrossRef
ADS
Google scholar
|
[9] |
W. J. Kim, W. Chang, S. B. Qadri, H. D. Wu, J. M. Pond, S. W. Kirchoefer, H. S. Newman, D. B. Chrisey, and J. S. Horwitz, Appl. Phys. A, 2000, 71: 7
|
[10] |
A. A. Semenov, S. F. Karmanenko, B. A. Kalinikos, G. Srinivasan, A. N. Slavin, and J. V. Mantese, Elec. Lett., 2006, 42: 641
CrossRef
ADS
Google scholar
|
[11] |
G. Srinivasan and K.Y. Fetisov, Ferroelectrics, 2006, 342: 65
CrossRef
ADS
Google scholar
|
[12] |
K. R. Smith, M. J. Kabatek, P. Krivosik, and M. Wu, J. Appl. Phys., 2008, 104: 043911
CrossRef
ADS
Google scholar
|
[13] |
D. Rugar, R. Budakian, H. J. Mamin, and B. W Chui, Nature, 2004, 430: 329
CrossRef
ADS
Google scholar
|
[14] |
R. Meckenstock, Rev. Sci. Instrum., 2008, 79: 041101
CrossRef
ADS
Google scholar
|
[15] |
Y. Obukhov, D. V. Pelekhov, J. Kim, P. Banerjee, I. Martin, E.Nazaretski, R. Movshovich, S.An, T. J. Gramila, S. Batra, and P. C. Hammel, Phys. Rev. Lett., 2008, 100: 197601
CrossRef
ADS
Google scholar
|
[16] |
T. An, N. Ohnishi, T. Eguchi, Y. Hasegawa, and P. Kabos, IEEE Magn. Lett., 2010, 1: 3500104
CrossRef
ADS
Google scholar
|
[17] |
S. C. Lee, C. P. Vlahacos, B. J. Feenstra, A. S. Schwartz, D. E. Steinhauer, F. C. Wellstood, and S. M. Anlage, Appl. Phys. Lett., 2000, 77: 4404
CrossRef
ADS
Google scholar
|
[18] |
D. I. Mircea and T. W. Clinton, Appl. Phys. Lett., 2007, 90: 142504
CrossRef
ADS
Google scholar
|
[19] |
Y. K. Fetisov and G. Srinivasan, Appl. Phys. Lett., 2006, 88, 143: 503
|
[20] |
A. B. Ustinov, Yu. K. Fetisov, and G. Srinivasan, Tech. Phys. Lett., 2008, 34: 593
CrossRef
ADS
Google scholar
|
[21] |
N. Benatmane, S. P. Crane, F. Zavaliche, R. Ramesh, and T. W. Clinton, Appl. Phys. Lett., 2010, 96: 082503
CrossRef
ADS
Google scholar
|
[22] |
L. E. Cross, in: Ferroelectric Ceramics: Tailoring Properties for Specific Applications, Ferroelectric Ceramics, edited by N. Setter, Basel: Birkhäuser, 1993
|
[23] |
Y. G. Li, J. Sun, C. S. Yang, J. Q. Liu, S. Susumu, and T. Katsuhiko, Chin. Phys. Lett., 2011, 28(6): 068103
CrossRef
ADS
Google scholar
|
[24] |
O.O. Van der Biest, L. J. Vandeperre, Annu. Rev. Mater. Sci., 1999, 29: 327
CrossRef
ADS
Google scholar
|
[25] |
I. Zhitomirsky, Advances in Colloid and Interface Science, 2002, 97: 279
CrossRef
ADS
Google scholar
|
[26] |
S. K. Kurinec, N. Okeke, S. K. Gupta, H. Zhang, and T. D. Xiao, J. Mater. Sci., 2006, 41: 8181
CrossRef
ADS
Google scholar
|
[27] |
S. Hashi, S. Yabukami, A. Maeda, N. Takada, S. Yanase, and Y. Okazaki, J. Mag. Magn. Mater., 2007, 316: 465
CrossRef
ADS
Google scholar
|
[28] |
K. Takenaka, H. Nakayama, Y. Setsuhara, H. Abe, and K. Nogi, Surface and Coatings Tech., 2008, 202: 5336
CrossRef
ADS
Google scholar
|
[29] |
C. Washburn, D. Brown, J. Cabacungan, J. Venkataraman, and S. K. Kurinec, Materials Research Society Symposium Proceedings: Materials, Integration and Technology for Monolithic Instruments, 2005, 869: 157
|
[30] |
S. Shastry, G. Srinivasan, M. I. Bichurin, V. M. Petrov, and A. S. Tatarenko, Phys. Rev. B, 2004, 70: 064416
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |