Broadband ferromagnetic resonance studies on influence of interface bonding on magnetoeletric effects in ferrite–ferroelectric composites

D. V. B. Murthy , Gopalan Srinivasan

Front. Phys. ›› 2012, Vol. 7 ›› Issue (4) : 418 -423.

PDF (353KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (4) : 418 -423. DOI: 10.1107/s11467-011-0230-z
RESEARCH ARTICLE

Broadband ferromagnetic resonance studies on influence of interface bonding on magnetoeletric effects in ferrite–ferroelectric composites

Author information +
History +
PDF (353KB)

Abstract

A systematic study has been carried out on the effects of interface bonding on the strain mediated magnetoelectric (ME) coupling in ferromagnetic–ferroelectric bilayers. The technique used involves the static electric field E tuning of the ferromagnetic resonance (FMR) in yttrium iron garnet (YIG) and lead zirconate titanate (PZT) or lead magnesium niobate-lead titanate (PMN-PT). A broad band detection technique has been developed for studies over 1-40 GHz in three types of bilayers: epoxy bonded, eutectic bonded and YIG films directly grown onto piezoelectric substrate by electrophoretic deposition. The strength A of the converse ME effect (CME) defined as the ratio of the frequency shift δf in FMR in E, A = δf/E, varies over the range 0.8 to 4.3 MHz·cm/kV, and is the highest for eutectic bonded samples and is the weakest for epoxy bonded bilayers. The results presented here as of importance for dual electric and magnetic field tunable ferrite–ferroelectric microwave resonators and filters.

Keywords

ferrite / ferroelectric / magnetoelectric / ferromagnetic resonance

Cite this article

Download citation ▾
D. V. B. Murthy, Gopalan Srinivasan. Broadband ferromagnetic resonance studies on influence of interface bonding on magnetoeletric effects in ferrite–ferroelectric composites. Front. Phys., 2012, 7(4): 418-423 DOI:10.1107/s11467-011-0230-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Fiebig and N. A. Spaldin, Eur. Phys. J. B, 2009, 71: 293

[2]

K. F. Wang, J. M. Liu, and Z. F. Ren, Adv. Phys., 2009, 58: 321

[3]

C. W. Nan, M. I. Bichurin, S. X. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys., 2008, 103: 031101

[4]

R. Ramesh and N. A. Spaldin, Nat. Mater., 2007, 6: 21

[5]

M. Vopsaroiu, J. Blackburn, and M. G. Cain, J. Phys. D, 2007, 40: 5027

[6]

G. Srinivasan, Ann. Rev. Mater. Res., 2010, 40: 153

[7]

G. Lawes and G. Srinivasan, J. Phys. D, 2011, 44: 243001

[8]

M. I. Bichurin, R. V. Petrov, and Yu. V. Kiliba, Ferroelectrics, 1997, 204: 311

[9]

W. J. Kim, W. Chang, S. B. Qadri, H. D. Wu, J. M. Pond, S. W. Kirchoefer, H. S. Newman, D. B. Chrisey, and J. S. Horwitz, Appl. Phys. A, 2000, 71: 7

[10]

A. A. Semenov, S. F. Karmanenko, B. A. Kalinikos, G. Srinivasan, A. N. Slavin, and J. V. Mantese, Elec. Lett., 2006, 42: 641

[11]

G. Srinivasan and K.Y. Fetisov, Ferroelectrics, 2006, 342: 65

[12]

K. R. Smith, M. J. Kabatek, P. Krivosik, and M. Wu, J. Appl. Phys., 2008, 104: 043911

[13]

D. Rugar, R. Budakian, H. J. Mamin, and B. W Chui, Nature, 2004, 430: 329

[14]

R. Meckenstock, Rev. Sci. Instrum., 2008, 79: 041101

[15]

Y. Obukhov, D. V. Pelekhov, J. Kim, P. Banerjee, I. Martin, E.Nazaretski, R. Movshovich, S.An, T. J. Gramila, S. Batra, and P. C. Hammel, Phys. Rev. Lett., 2008, 100: 197601

[16]

T. An, N. Ohnishi, T. Eguchi, Y. Hasegawa, and P. Kabos, IEEE Magn. Lett., 2010, 1: 3500104

[17]

S. C. Lee, C. P. Vlahacos, B. J. Feenstra, A. S. Schwartz, D. E. Steinhauer, F. C. Wellstood, and S. M. Anlage, Appl. Phys. Lett., 2000, 77: 4404

[18]

D. I. Mircea and T. W. Clinton, Appl. Phys. Lett., 2007, 90: 142504

[19]

Y. K. Fetisov and G. Srinivasan, Appl. Phys. Lett., 2006, 88, 143: 503

[20]

A. B. Ustinov, Yu. K. Fetisov, and G. Srinivasan, Tech. Phys. Lett., 2008, 34: 593

[21]

N. Benatmane, S. P. Crane, F. Zavaliche, R. Ramesh, and T. W. Clinton, Appl. Phys. Lett., 2010, 96: 082503

[22]

L. E. Cross, in: Ferroelectric Ceramics: Tailoring Properties for Specific Applications, Ferroelectric Ceramics, edited by N. Setter, Basel: Birkhäuser, 1993

[23]

Y. G. Li, J. Sun, C. S. Yang, J. Q. Liu, S. Susumu, and T. Katsuhiko, Chin. Phys. Lett., 2011, 28(6): 068103

[24]

O.O. Van der Biest, L. J. Vandeperre, Annu. Rev. Mater. Sci., 1999, 29: 327

[25]

I. Zhitomirsky, Advances in Colloid and Interface Science, 2002, 97: 279

[26]

S. K. Kurinec, N. Okeke, S. K. Gupta, H. Zhang, and T. D. Xiao, J. Mater. Sci., 2006, 41: 8181

[27]

S. Hashi, S. Yabukami, A. Maeda, N. Takada, S. Yanase, and Y. Okazaki, J. Mag. Magn. Mater., 2007, 316: 465

[28]

K. Takenaka, H. Nakayama, Y. Setsuhara, H. Abe, and K. Nogi, Surface and Coatings Tech., 2008, 202: 5336

[29]

C. Washburn, D. Brown, J. Cabacungan, J. Venkataraman, and S. K. Kurinec, Materials Research Society Symposium Proceedings: Materials, Integration and Technology for Monolithic Instruments, 2005, 869: 157

[30]

S. Shastry, G. Srinivasan, M. I. Bichurin, V. M. Petrov, and A. S. Tatarenko, Phys. Rev. B, 2004, 70: 064416

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (353KB)

998

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/