Recent advances of light-field modulated operation in laser-induced breakdown spectroscopy

Shangyong Zhao, Yuchen Zhao, Yujia Dai, Ziyuan Liu, Huihui Zha, Xun Gao

PDF(4597 KB)
PDF(4597 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (6) : 62500. DOI: 10.1007/s11467-024-1436-1
TOPICAL REVIEW

Recent advances of light-field modulated operation in laser-induced breakdown spectroscopy

Author information +
History +

Abstract

The simplicity and low-cost way to improve qualitative and quantitative analytical performance has always been a crucial concern for laser-induced breakdown spectroscopy (LIBS), and many scientists have been engaged in this evolving research direction. In this review, we investigated an update on recent developments in light-field modulated operation in LIBS. It covered a brief description of LIBS, optical polarization, and beam shaping. Here, the optical polarization is divided into laser beam polarization and plasma polarization. In addition, the methodology and development of light-field modulated LIBS were summarized and discussed. Finally, the existing problems with light-field modulated LIBS were presented, along with some of their own insights and the future direction of their development. This review will provide a guideline for LIBS researchers with basic knowledge, which is very useful in the signal optimization of LIBS research and applications.

Graphical abstract

Keywords

laser-induced breakdown spectroscopy / light-field modulated / laser beam polarization / plasma polarization / beam shaping

Cite this article

Download citation ▾
Shangyong Zhao, Yuchen Zhao, Yujia Dai, Ziyuan Liu, Huihui Zha, Xun Gao. Recent advances of light-field modulated operation in laser-induced breakdown spectroscopy. Front. Phys., 2024, 19(6): 62500 https://doi.org/10.1007/s11467-024-1436-1

References

[1]
J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, N. Omenetto, Comparing several atomic spectrometric methods to the superstars, special emphasis on laser induced breakdown spectrometry, LIBS, a future super star, J. Anal. Atom. Spectrom. 19, 1061e1083 (2004)
CrossRef ADS Google scholar
[2]
Z. Wang, T. Yuan, Z. Hou, W. Zhou, J. Lu, H. Ding, and X. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)
CrossRef ADS Google scholar
[3]
S. Zhao, C. Song, X. Gao, and J. Lin, Quantitative analysis of Pb in soil by femtosecond–nanosecond double-pulse laser-induced breakdown spectroscopy, Results Phys. 15, 102736 (2019)
CrossRef ADS Google scholar
[4]
Q. Wang, A. Chen, and X. Gao, Sensitivity improvement of laser-induced breakdown spectroscopy to detect heavy metals in water by Tesla coil discharge, J. Anal. At. Spectrom. 39(1), 261 (2024)
CrossRef ADS Google scholar
[5]
Y. Ikeda, J. K. Soriano, H. Ohba, and I. Wakaida, Analysis of gadolinium oxide using microwave-enhanced fiber‑coupled micro‑laser‑induced breakdown spectroscopy, Sci. Rep. 13(1), 4828 (2023)
CrossRef ADS Google scholar
[6]
S. Ma, Y. Liu, H. Tian, L. Guo, and D. Dong, Investigation of resonance excitation of trace elements using resonant laser-induced breakdown spectroscopy (RLIBS), J. Anal. At. Spectrom. 38(2), 342 (2023)
CrossRef ADS Google scholar
[7]
Y. Song, W. Song, L. Li, W. Gu, K. Kou, M. S. Afgan, Z. Hou, Z. Li, and Z. Wang, Flame-assisted plasma modulation to improve the raw signal quality for laser-induced breakdown spectroscopy, Opt. Lasers Eng. 162, 107433 (2023)
CrossRef ADS Google scholar
[8]
S. Zhao, X. Gao, A. Chen, and J. Lin, Effect of spatial confinement on Pb measurements in soil by femtosecond laser‑induced breakdown spectroscopy, Appl. Phys. B 126(1), 7 (2020)
CrossRef ADS Google scholar
[9]
M. A. Khan, S. Bashir, N. A. Chishti, E. Bonyah, A. Dawood, and Z. Ahmad, Effect of ambient environment and magnetic field on laser-induced cobalt plasma, AIP Adv. 13(1), 015017 (2023)
CrossRef ADS Google scholar
[10]
Q. Wang, Y. Liu, L. Jiang, A. Chen, J. Han, and M. Jin, Metal micro/nanostructure enhanced laser-induced breakdown spectroscopy, Anal. Chim. Acta 1241, 340802 (2023)
CrossRef ADS Google scholar
[11]
Y. Zhu, N. Deng, Z. Hu, W. Wang, C. Lau, Y. Liu, and L. Guo, Droplet constraint by a superhydrophobic−superhydrophilic hybrid surface with a SiO2 NP coating for determination of heavy metals using LIBS, ACS Appl. Nano Mater. 5(12), 17508 (2022)
CrossRef ADS Google scholar
[12]
J. Yu, Z. Hou, Y. Ma, T. Li, Y. Fu, Y. Wang, Z. Li, and Z. Wang, Improvement of laser induced breakdown spectroscopy signal using gas mixture, Spectrochim. Acta B 174, 105992 (2020)
CrossRef ADS Google scholar
[13]
K. Zehra, S. Bashir, S. A. Hassan, Q. S. Ahmed, M. Akram, and A. Hayat, The effect of nature and pressure of ambient environment on laser-induced breakdown spectroscopy and ablation mechanisms of Si, Laser Part. Beams 35(3), 492 (2017)
CrossRef ADS Google scholar
[14]
Y. Zhao, S. Singha, Y. Liu, and R. J. Gordon, Polarization-resolved laser-induced breakdown spectroscopy, Opt. Lett. 34(4), 494 (2009)
CrossRef ADS Google scholar
[15]
Y. Liu, J. S. Penczak, and R. J. Gordon, Nanosecond polarization-resolved laser-induced breakdown spectroscopy, Opt. Lett. 35(2), 112 (2010)
CrossRef ADS Google scholar
[16]
L. Nagli and M. Gaft, Fraunhofer-type absorption line splitting and polarization in confocal double-pulse laser induced plasma, Spectrochim. Acta B 88, 127 (2013)
CrossRef ADS Google scholar
[17]
S. Sheta, Z. Hou, Y. Wang, and Z. Wang, Evaluation of femtosecond laser‑induced breakdown spectroscopy system as an offline coal analyzer, Sci. Rep. 11(1), 15968 (2021)
CrossRef ADS Google scholar
[18]
S.MaL.Guo D.Dong, A molecular laser-induced breakdown spectroscopy technique for the detection of nitrogen in water, J. Anal. At. Spectrom. 37(3), 663 (2022)
[19]
W. Wang, L. Sun, G. Wang, P. Zhang, L. Qi, L. Zheng, and W. Dong, The effect of sample surface roughness on microanalysis of microchip laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 35(2), 357 (2020)
CrossRef ADS Google scholar
[20]
R. Liu, K. Rong, Z. Wang, M. Cui, Y. Deguchi, S. Tanaka, J. Yan, and J. Liu, Sample temperature effect on steel measurement using SP-LIBS and collinear long-short DP-LIBS, ISIJ Int. 60(8), 1724 (2020)
CrossRef ADS Google scholar
[21]
F. Poggialini, B. Campanella, S. Legnaioli, S. Pagnotta, and V. Palleschi, Investigating double pulse nanoparticle enhanced laser induced breakdown spectroscopy, Spectrochim. Acta B 167, 105845 (2020)
CrossRef ADS Google scholar
[22]
H. Li, C. Wang, Y. Wang, S. Fu, and L. Fang, Double-enhanced LIBS system with N2 atmosphere and cylindrical cavity confinement for quantitative analysis of Sr element in soil, Meas. Sci. Technol. 34(9), 095204 (2023)
CrossRef ADS Google scholar
[23]
J. Ji, W. Song, Z. Hou, L. Li, X. Yu, and Z. Wang, Raw signal improvement using beam shaping plasma modulation for uranium detection in ore using laser-induced breakdown spectroscopy, Anal. Chim. Acta 1235, 340551 (2022)
CrossRef ADS Google scholar
[24]
J. Gao, J. Yang, Z. Wang, S. Sun, B. Hu, and Z. Liu, The study of femtosecond LIBS in Vortex–Gaussian and double Gaussian configurations, Appl. Phys. B 129(8), 119 (2023)
CrossRef ADS Google scholar
[25]
J. Lv, C. Zhu, Z. Tang, Q. Li, K. Liu, W. Zhang, K. Liu, and X. Li, Bessel beams: A potential strategy for laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 36(12), 2756 (2021)
CrossRef ADS Google scholar
[26]
M. Hu, S. Shi, M. Yan, E. Wu, and H. Zeng, Femtosecond laser-induced breakdown spectroscopy by multidimensional plasma grating, J. Anal. At. Spectrom. 37(4), 841 (2022)
CrossRef ADS Google scholar
[27]
U. K. Adarsh, V. K. Unnikrishnan, P. Vasa, S. D. George, S. Chidangil, and D. Mathur, Effect of laser polarization on atomic and ionic emissions in laser‑induced breakdown spectroscopy (LIBS), Appl. Phys. B 129(12), 185 (2023)
CrossRef ADS Google scholar
[28]
L. Yang, M. Liu, Y. Liu, Q. Li, S. Li, Y. Jiang, A. Chen, and M. Jin, Influence of polarization of laser beam on emission intensity of femtosecond laser-induced breakdown spectroscopy, Chin. Phys. B 29(6), 065203 (2020)
CrossRef ADS Google scholar
[29]
S. Zhao, Y. Zhao, Z. Hou, and Z. Wang, Rapid and high-resolution visualization elements analysis of material surface based on laser-induced breakdown spectroscopy and hyperspectral imaging, Appl. Surf. Sci. 629, 157415 (2023)
CrossRef ADS Google scholar
[30]
S. Zhao, C. Song, X. Gao, K. Guo, Z. Hao, and J. Lin, The plasma characteristics of femtosecond–nanosecond dual–pulse laser ablated soil, Results Phys. 19, 103601 (2020)
CrossRef ADS Google scholar
[31]
P. S. Hsu, A. K. Patnaik, A. J. Stolt, J. Estevadeordal, S. Roy, and J. R. Gord, Femtosecond-laser-induced plasma spectroscopy for high-pressure gas sensing: Enhanced stability of spectroscopic signal, Appl. Phys. Lett. 113(21), 214103 (2018)
CrossRef ADS Google scholar
[32]
Y. Fu, Z. Hou, T. Li, Z. Li, and Z. Wang, Investigation of intrinsic origins of the signal uncertainty for laser-induced breakdown spectroscopy, Spectrochim. Acta B 155, 67 (2019)
CrossRef ADS Google scholar
[33]
Y. Fu, W. Gu, Z. Hou, S. A. Muhammed, T. Li, Y. Wang, and Z. Wang, Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy, Front. Phys. 16(2), 22502 (2021)
CrossRef ADS Google scholar
[34]
T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, Femtosecond laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 31(1), 90 (2016)
CrossRef ADS Google scholar
[35]
S. Zhao, Y. Zhao, Z. Hou, and Z. Wang, Stability and accuracy improvement of element analysis in steel alloys using polarization-resolved laser-induced breakdown spectroscopy, Spectrochim. Acta B 203, 106666 (2023)
CrossRef ADS Google scholar
[36]
Z. Wang, M. S. Afgan, W. L. Gu, Y. Z. Song, Y. Wang, Z. Y. Hou, W. R. Song, and Z. Li, Recent advances in laser-induced breakdown spectroscopy quantification: From fundamental understanding to data processing, Trends Analyt. Chem. 143, 116385 (2021)
CrossRef ADS Google scholar
[37]
H. Le, P. Penchev, A. Henrottin, D. Bruneel, V. Nasrollahi, J. A. Ramos-de-Campos, and S. Dimov, Effects of top-hat laser beam processing and scanning strategies in laser micro-structuring, Micromachines (Basel) 11(2), 221 (2020)
CrossRef ADS Google scholar
[38]
C. Liu and Y. Guo, Flat-top line-shaped beam shaping and system design, Sensors 22(11), 4199 (2022)
CrossRef ADS Google scholar
[39]
M. A. Poletti, Spherical coordinate descriptions of cylindrical and spherical Bessel beams, J. Acoust. Soc. Am. 141(3), 2069 (2017)
CrossRef ADS Google scholar
[40]
X. Zhao and X. Jia, Vectorial structure of arbitrary vector vortex beams diffracted by a circular aperture in the far field, Laser Phys. 28(1), 015004 (2018)
CrossRef ADS Google scholar
[41]
Z. Zhang, S. Wang, X. Hu, S. Wang, Y. Pu, H. Li, and J. Wang, All-fiber passively Q-switched laser with flat-top beam emissions, Opt. Lett. 47(3), 521 (2022)
CrossRef ADS Google scholar
[42]
V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions, Pramana 74(6), 983 (2010)
CrossRef ADS Google scholar
[43]
B. Man, Q. Dong, A. Liu, X. Wei, Q. Zhang, J. He, and X. Wang, Line-broadening analysis of plasma emission produced by laser ablation of metal Cu, J. Opt. A 6(1), 17 (2004)
CrossRef ADS Google scholar
[44]
J. Wang, X. Li, H. Li, X. Li, and Z. Li, Lens-to-sample distance effect on the quantitative analysis of steel by laser-induced breakdown spectroscopy, J. Phys. D 53(25), 255203 (2020)
CrossRef ADS Google scholar
[45]
H. Yin, Z. Hou, T. Yuan, Z. Wang, W. Ni, and Z. Li, Application of spatial confinement for gas analysis using laser-induced breakdown spectroscopy to improve signal stability, J. Anal. At. Spectrom. 30(4), 922 (2015)
CrossRef ADS Google scholar
[46]
W. Song, Z. Song, J. Vincent, H. Wang, and Z. Wang, Quantification of extra virgin olive oil adulteration using smartphone videos, Talanta 216, 120920 (2020)
CrossRef ADS Google scholar
[47]
C. L. Goueguel, A. Soumare, C. Nault, and J. Nault, Direct determination of soil texture using laser-induced breakdown spectroscopy and multivariate linear regressions, J. Anal. At. Spectrom. 34(8), 1588 (2019)
CrossRef ADS Google scholar
[48]
C. R. Bhatt, D. Hartzler, J. C. Jain, and D. L. McIntyre, Evaluation of analytical performance of double pulse laser-induced breakdown spectroscopy for the detection of rare earth elements, Opt. Laser Technol. 126, 106110 (2020)
CrossRef ADS Google scholar
[49]
E. M. Garcell and C. Guo, Polarization-controlled microgroove arrays induced by femtosecond laser pulses, J. Appl. Phys. 123(21), 213103 (2018)
CrossRef ADS Google scholar
[50]
X. Li, W. Rong, L. Jiang, K. Zhang, C. Li, Q. Cao, G. Zhang, and Y. Lu, Generation and elimination of polarization dependent ablation of cubic crystals by femtosecond laser radiation, Opt. Express 22(24), 30170 (2014)
CrossRef ADS Google scholar
[51]
X. Ji, L. Jiang, X. Li, W. Han, Y. Liu, Q. Huang, and Y. Lu, Polarization-dependent elliptical crater morphologies formed on a silicon surface by single-shot femtosecond laser ablation, Appl. Opt. 53(29), 6742 (2014)
CrossRef ADS Google scholar
[52]
S. M. Pimenov, E. V. Zavedeev, B. Jaeggi, and B. Neuenschwander, Femtosecond laser-induced periodic surface structures in titanium-doped diamond-like nanocomposite films: Effects of the beam polarization rotation, Materials (Basel) 16(2), 795 (2023)
CrossRef ADS Google scholar
[53]
F. Bai, H. Li, Y. Huang, W. Fan, H. Pan, Z. Wang, C. Wang, J. Qian, Y. Li, and Q. Zhao, Polarization effects in femtosecond laser induced amorphization of monocrystalline silicon, Chem. Phys. Lett. 662, 102 (2016)
CrossRef ADS Google scholar
[54]
G. K. Krasin, M. S. Kovalev, S. I. Kudryashov, P. A. Danilov, V. P. Martovitskii, I. V. Gritsenko, I. M. Podlesnykh, R. A. Khmelnitskii, E. V. Kuzmin, Y. S. Gulina, and A. O. Levchenko, Polarization-dependent near-IR ultrashort-pulse laser ablation of natural diamond surfaces, Appl. Surf. Sci. 595, 153549 (2022)
CrossRef ADS Google scholar
[55]
V. Wanie, T. Shao, P. Lassonde, F. Calegari, F. Vidal, H. Ibrahim, X. Bian, and F. Légaré, Laser polarization dependence of strong-field ionization in lithium niobate, Phys. Rev. B 101(21), 214311 (2020)
CrossRef ADS Google scholar
[56]
X. Liu, W. Cheng, M. Petrarca, and P. Polynkin, Universal threshold for femtosecond laser ablation with oblique illumination, Appl. Phys. Lett. 109(16), 161604 (2016)
CrossRef ADS arXiv Google scholar
[57]
J. M. Guay, A. Villafranca, F. Baset, K. Popov, L. Ramunno, and V. R. Bhardwaj, Polarization-dependent femtosecond laser ablation of poly-methyl methacrylate, New J. Phys. 14(8), 085010 (2012)
CrossRef ADS Google scholar
[58]
J. A. Tomko, R. Jimenez, J. J. Naddeo, D. M. Bubb, and S. M. O’Malley, Effects of laser polarization and linear surface features on nanoparticle synthesis during laser ablation in liquids, Laser Phys. 28(3), 035602 (2018)
CrossRef ADS Google scholar
[59]
Y. Liu, A. Gruner, D. G. K. Aboud, J. Bonse, J. Schille, U. Loeschner, and A. M. Kietzig, Polarization effects on laser-inscribed angled micro-structures, Appl. Surf. Sci. 649, 159191 (2024)
CrossRef ADS Google scholar
[60]
S. Shin, J. Hur, J. K. Park, and D. Kim, Polarization effects on ablation efficiency and microstructure symmetricity in femtosecond laser processing of materials — developing a pattern generation model for laser scanning, Opt. Express 30(11), 18018 (2022)
CrossRef ADS Google scholar
[61]
H. Cheng, P. Li, S. Liu, H. Lu, L. Han, and J. Zhao, Polarization-switchable nanoripples fabricated on a silicon surface by femtosecond-laser-assisted nanopatterning, Appl. Opt. 59(24), 7211 (2020)
CrossRef ADS Google scholar
[62]
G. Lazzini, L. Romoli, F. Tantussi, and F. Fuso, Nanostructure patterns on stainless-steel upon ultrafast laser ablation with circular polarization, Opt. Laser Technol. 107, 435 (2018)
CrossRef ADS Google scholar
[63]
Y. Guo, P. Qiu, and S. Xu, Combined effects of polarization and secondary ablation on precision machining of microgrooves by laser-induced microjet-assisted ablation, Opt. Express 30(25), 44665 (2022)
CrossRef ADS Google scholar
[64]
R. Torres, T. Kaempfe, M. Delaigue, O. Parriaux, C. Hoenninger, J. Lopez, R. Kling, and E. Mottay, Influence of laser beam polarization on laser micro-machining of molybdenum, J. Laser Micro Nanoeng. 8(3), 188 (2013)
CrossRef ADS Google scholar
[65]
V. N. Lednev, S. M. Pershin, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. E. Ligachev, A. A. Rudenko, R. A. Chmelnitsky, and A. F. Bunkin, Laser ablation of polished and nanostructured titanium surfaces by nanosecond laser pulses, Spectrochim. Acta B 88, 15 (2013)
CrossRef ADS Google scholar
[66]
H. Al-Khazraji and V. R. Bhardwaj, Polarization dependent micro-structuring of silicon with a femtosecond laser, Appl. Surf. Sci. 353, 600 (2015)
CrossRef ADS Google scholar
[67]
H. Guo, Z. Zhu, T. Wang, N. Chen, Y. Liu, J. Zhang, H. Sun, J. Liu, and R. Li, Polarization-gated filament-induced remote breakdown spectroscopy, Chin. Opt. Lett. 16(3), 033201 (2018)
CrossRef ADS Google scholar
[68]
J. Hou, L. Zhang, W. Yin, Y. Zhao, W. Ma, L. Dong, G. Yang, L. Xiao, and S. Ji, Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics, J. Anal. At. Spectrom. 32(8), 1519 (2017)
CrossRef ADS Google scholar
[69]
Q. Wang, A. Chen, Y. Wang, L. Sui, S. Li, and M. Jin, Spectral intensity clamping in linearly and circularly polarized femtosecond filament-induced Cu plasmas, J. Anal. At. Spectrom. 33(7), 1154 (2018)
CrossRef ADS Google scholar
[70]
Q. Wang, A. Chen, X. Wang, S. Li, J. Jiang, and M. Jin, Signal improvement using circular polarization for focused femtosecond laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 34(6), 1242 (2019)
CrossRef ADS Google scholar
[71]
S. Li, Y. Jiang, A. Chen, L. He, D. Liu, and M. Jin, Revisiting the mechanism of nitrogen fluorescence emission induced by femtosecond filament in air, Phys. Plasmas 24(3), 033111 (2017)
CrossRef ADS Google scholar
[72]
Y. Chen, Y. Liu, Q. Wang, S. Li, Y. Jiang, A. Chen, and M. Jin, Effect of laser polarization on molecular emission from femtosecond LIBS, J. Anal. At. Spectrom. 37(1), 82 (2022)
CrossRef ADS Google scholar
[73]
G. A. Wubetu, J. T. Costello, T. J. Kelly, P. Wachulak, A. Bartnik, W. Skrzeczanowski, and H. Fiedorowicz, Comparison of LIBS and polarization resolved LIBS emission for aluminium alloy, J. Appl. Spectrosc. 90(1), 116 (2023)
CrossRef ADS Google scholar
[74]
Y. Shi, A. Chen, Y. Jiang, S. Li, and M. Jin, Influence of laser polarization on plasma fluorescence emission during the femtosecond filamentation in air, Opt. Commun. 367, 174 (2016)
CrossRef ADS Google scholar
[75]
D. Zhao, N. Farid, R. Hai, D. Wu, and H. Ding, Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy, Plasma Sci. Technol. 16(2), 149 (2014)
CrossRef ADS Google scholar
[76]
J. Xu, X. Wang, and M. Yao, Optimization of copper detection based on polarization-resolved laser-induced breakdown spectroscopy, Appl. Opt. 60(17), 5266 (2021)
CrossRef ADS Google scholar
[77]
X. Wang, M. Yao, M. Zeng, and J. Xu, Detection model of copper based on polarization degree induced by low-energy density laser, Appl. Opt. 60(35), 10780 (2021)
CrossRef ADS Google scholar
[78]
J. S. Penczak, Y. Liu, and R. J. Gordon, Polarization and fluence dependence of the polarized emission in nanosecond laser-induced breakdown spectroscopy, Spectrochim. Acta B 66(2), 186 (2011)
CrossRef ADS Google scholar
[79]
J. Xu, X. Wang, M. Yao, and M. Liu, Detection model of the plasma spectrum based on the polarization recognition rate induced by a low energy density laser, Appl. Opt. 61(16), 4768 (2022)
CrossRef ADS Google scholar
[80]
A. Eslami Majd, A. S. Arabanian, and R. Massudi, Polarization resolved laser induced breakdown spectroscopy by single shot nanosecond pulsed Nd: YAG laser, Opt. Lasers Eng. 48(7-8), 750 (2010)
CrossRef ADS Google scholar
[81]
N.AgnesH. Y. TaoZ.Q. HaoC.K. SunX.Gao J.Q. Lin, A comparison of single shot nanosecond and femtosecond polarization-resolved laser-induced breakdown spectroscopy of Al, Chin. Phys. B 22(1), 014209 (2013)
[82]
M. Aghababaei Nejad, M. Soltanolkotabi, A. Eslami Majd, and Polarization investigation of laser-induced breakdown plasma emission from Al, Mo, W, and Pb elements using nongated detector, J. Laser Appl. 30(2), 022005 (2018)
CrossRef ADS Google scholar
[83]
J. S. Penczak, Y. Liu, and R. J. Gordon, Polarization resolved laser-induced breakdown spectroscopy of Al, J. Phys. Chem. A 113(47), 13310 (2009)
CrossRef ADS Google scholar
[84]
M. E. Asgill, H. Y. Moon, N. Omenetto, and D. W. Hahn, Investigation of polarization effects for nanosecond laser-induced breakdown spectroscopy, Spectrochim. Acta B 65(12), 1033 (2010)
CrossRef ADS Google scholar
[85]
E.Yurdanur-TaselH.BerberogluS.Bilikmen, Investigation of materials of different crystal structure under various time delays using double pulse laser induced breakdown spectroscopy, Spectrochim. Acta B 74–75, 74 (2012)
[86]
Y.Jr PenczakR.D. LiuD.H. SchallerRichJ. GordonR., The mechanism for continuum polarization in laser induced breakdown spectroscopy of Si (111), Spectrochim. Acta B 74–75, 3 (2012)
[87]
M. Aghababaei Nejad and A. Eslami Majd, Temporal evolution of polarization resolved laser‑induced breakdown spectroscopy of Cu, Plasma Chem. Plasma Process. 40(1), 325 (2020)
CrossRef ADS Google scholar
[88]
A. P. Williamson and J. Kiefer, Strategies for suppressing elastically scattered laser light in ungated laser-induced breakdown spectroscopy, Spectrochim. Acta B 149, 267 (2018)
CrossRef ADS Google scholar
[89]
M. Aghababaei Nejad, M. Soltanolkotabi, and A. Eslami Majd, Polarization mechanism in a ns laser-induced plasma spectroscopy of Al alloy, Appl. Phys. B 124(1), 6 (2018)
CrossRef ADS Google scholar
[90]
H. Zhao, L. Cai, and G. Wu, On polarization resolved laser induced breakdown spectroscopy combined with support-vector regression to improve the accuracy of soil heavy-metal (Cd) detection, Chin. J. Anal. Chem. 51(2), 100176 (2023)
CrossRef ADS Google scholar
[91]
J. Xu, X. Wang, M. Yao, and M. Liu, Improving the stability of LIBS for chromium in soil based on the model of micro-linear spectrum, J. Anal. At. Spectrom. 38(11), 2441 (2023)
CrossRef ADS Google scholar
[92]
G. Teng, Q. Wang, Q. Hao, A. Fan, H. Yang, X. Xu, G. Chen, K. Wei, Z. Zhao, M. N. Khan, B. S. Idrees, M. Bao, T. Luo, Y. Zheng, and B. Lu, Full-Stokes polarization laser-induced breakdown spectroscopy detection of infiltrative glioma boundary tissue, Biomed. Opt. Express 14(7), 3469 (2023)
CrossRef ADS Google scholar
[93]
J. Li, Y. Tang, Z. Kuang, J. Schille, U. Loeschner, W. Perrie, D. Liu, G. Dearden, and S. Edwardson, Multi imaging-based beam shaping for ultrafast laser-material processing using spatial light modulators, Opt. Lasers Eng. 112, 59 (2019)
CrossRef ADS Google scholar
[94]
S. Rung, J. Barth, and R. Hellmann, Characterization of laser beam shaping optics based on their ablation geometry of thin films, Micromachines (Basel) 5(4), 943 (2014)
CrossRef ADS Google scholar
[95]
K. K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate, Appl. Phys. Lett. 104(24), 241604 (2014)
CrossRef ADS Google scholar
[96]
D. Kong, X. Sun, Y. Hu, and J. Duan, Theoretical and experimental research on a spatially modulated femtosecond bessel-like laser for microdrilling in silica glass, Opt. Commun. 542, 129594 (2023)
CrossRef ADS Google scholar
[97]
L. Ackermann, M. Gehring, C. Roider, K. Cvecek, and M. Schmidt, Spot arrays for uniform material ablation with ultrashort pulsed lasers, Opt. Laser Technol. 163, 109358 (2023)
CrossRef ADS Google scholar
[98]
D. Doan, R. Iida, B. Kim, I. Satoh, and K. Fushinobu, Bessel beam laser-scribing of thin film silicon solar cells by ns pulsed laser, J. Therm. Sci. Tech. 11(1), JTST0011 (2016)
CrossRef ADS Google scholar
[99]
R. Sahin and I. Kabacelik, Nanostructuring of ITO thin films through femtosecond laser ablation, Appl. Phys. A 122(4), 314 (2016)
CrossRef ADS Google scholar
[100]
P. Yin, B. Xu, Y. Liu, Y. Wang, W. Zhao, and J. Tang, Simulation of evaporation ablation dynamics of materials by nanosecond pulse laser of Gaussian beam and flat-top beam, Acta Phys. Sin. 73(9), 095202 (2024)
CrossRef ADS Google scholar
[101]
J. Choi, W. Choi, Y. Shin, S. Han, K. Kim, and S. Cho, Enhancement periodic regularity of surface nano ripple structures on Si wafer using a square shaped flat‑top beam femtosecond NIR laser, Appl. Phys. A 128(1), 46 (2022)
CrossRef ADS Google scholar
[102]
M. Burger, P. Polynkin, and I. Jovanovic, Filament-induced breakdown spectroscopy with structured beams, Opt. Express 28(24), 36812 (2020)
CrossRef ADS Google scholar
[103]
E. Figueiras, D. Olivieri, A. Paredes, and H. Michinel, An open source virtual laboratory for the Schrödinger equation, Eur. J. Phys. 39(5), 055802 (2018)
CrossRef ADS Google scholar
[104]
L. Ackermann, C. Roider, K. Cvecek, and M. Schmidt, Methods for uniform beam shaping and their effect on material ablation, Appl. Phys. A 128(10), 877 (2022)
CrossRef ADS Google scholar
[105]
D. Pallarés-Aldeiturriaga, A. Abou Khalil, J. P. Colombier, R. Stoian, and X. Sedao, Ultrafast Cylindrical Vector Beams for Improved Energy Feedthrough and Low Roughness Surface Ablation of Metals, Materials (Basel) 16(1), 176 (2022)
CrossRef ADS Google scholar
[106]
H. Kim, J. Yoon, W. Choi, K. Kim, and S. Cho, Ablation depth control with 40 nm resolution on ITO thin films using a square, flat top beam shaped femtosecond NIR laser, Opt. Lasers Eng. 84, 44 (2016)
CrossRef ADS Google scholar
[107]
Z. Kuang, J. Li, S. Edwardson, W. Perrie, D. Liu, and G. Dearden, Ultrafast laser beam shaping for material processing at imaging plane by geometric masks using a spatial light modulator, Opt. Lasers Eng. 70, 1 (2015)
CrossRef ADS Google scholar
[108]
Y. Shin, J. Choi, and S. Cho, Fine ablation with depth control of 25‑nm resolution and morphologies irradiated by femtosecond laser pulses via beam shaping, Appl. Phys. A 129(8), 534 (2023)
CrossRef ADS Google scholar
[109]
D. Liu, Y. Wang, Z. Zhai, Z. Fang, Q. Tao, W. Perrie, S. P. Edwarson, and G. Dearden, Dynamic laser beam shaping for material processing using hybrid holograms, Opt. Laser Technol. 102, 68 (2018)
CrossRef ADS Google scholar
[110]
R. Sahin, T. Ersoy, and S. Akturk, Ablation of metal thin films using femtosecond laser Bessel vortex beams, Appl. Phys. A 118(1), 125 (2015)
CrossRef ADS Google scholar
[111]
T. Häfner, J. Strauß, C. Roider, J. Heberle, and M. Schmidt, Tailored laser beam shaping for efficient and accurate microstructuring, Appl. Phys. A 124(2), 111 (2018)
CrossRef ADS Google scholar
[112]
D. Zhang, X. Li, Y. Fu, Q. Yao, Z. Li, and K. Sugioka, Liquid vortexes and flows induced by femtosecond laser ablation in liquid governing formation of circular and crisscross LIPSS, Opto-Electron. Adv. 5(2), 210066 (2022)
CrossRef ADS Google scholar
[113]
W. Yan, J. Lv, C. Zhu, Q. Li, J. Chen, L. Kang, B. Lu, and X. Li, Classification of uneven steel samples by laser induced breakdown spectroscopy based on a Bessel beam, J. Anal. At. Spectrom. 38(6), 1232 (2023)
CrossRef ADS Google scholar
[114]
Z. Hou, M. S. Afgan, S. Sheta, J. Liu, and Z. Wang, Plasma modulation using beam shaping to improve signal quality for laser induced breakdown spectroscopy, J. Anal. At. Spectrom. 35(8), 1671 (2020)
CrossRef ADS Google scholar
[115]
J. Jia, H. Fu, Z. Hou, H. Wang, Z. Wang, F. Dong, Z. Ni, and Z. Zhang, Effect of laser beam shaping on the determination of manganese and chromium elements in steel samples using laser-induced breakdown spectroscopy, Spectrochim. Acta B 163, 105747 (2020)
CrossRef ADS Google scholar
[116]
J. Jia, H. Fu, Z. Hou, H. Wang, Z. Ni, Z. Wang, F. Dong, and Z. Zhang, Analysis of element content in cement by Gaussian and flattop laser-induced breakdown spectroscopy, J. Phys. D 52(40), 405102 (2019)
CrossRef ADS Google scholar
[117]
J. Gao, J. Yang, Z. Wang, S. Sun, B. Hu, and Z. Liu, The study of femtosecond LIBS in Vortex–Gaussian and double Gaussian configurations, Appl. Phys. B 129(8), 119 (2023)
CrossRef ADS Google scholar
[118]
A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy, Appl. Spectrosc. 53(8), 960 (1999)
CrossRef ADS Google scholar
[119]
W. Gu, N. Nishi, Z. Hou, Z. Wang, and T. Sakka, Investigation of the signal uncertainty in laser-induced breakdown spectroscopy based on error propagation considering self-absorption, Spectrochim. Acta B 206, 106732 (2023)
CrossRef ADS Google scholar
[120]
A.P. JoglekarH.LiuG.J. SpoonerE.MeyhöferG.MourouA.J. Hunt, A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining, Appl. Phys. B 77(1), 25 (2003)
[121]
V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, Multiphoton ionization in dielectrics: Comparison of circular and linear polarization, Phys. Rev. Lett. 97(23), 237403 (2006)
CrossRef ADS Google scholar
[122]
K. Zhang, W. Song, Z. Hou, and Z. Wang, Effect of ambient pressures on laser-induced breakdown spectroscopy signals, Front. Phys. 19(4), 42203 (2024)
CrossRef ADS Google scholar
[123]
L. Guo, D. Zhang, L. Sun, S. Yao, L. Zhang, Z. Wang, Q. Wang, H. Ding, Y. Lu, Z. Hou, and Z. Wang, Development in the application of laser-induced breakdown spectroscopy in recent years: A review, Front. Phys. 16(2), 22500 (2021)
CrossRef ADS Google scholar
[124]
Z. Wang, Y. Deguchi, Z. Zhang, Z. Wang, X. Zeng, and J. Yan, Laser-induced breakdown spectroscopy in Asia, Front. Phys. 11(6), 114213 (2016)
CrossRef ADS Google scholar
[125]
Z.HouW. GuT.LiZ.WangL.Li X.YuY.Zhang Z.Liu, A calibration-free model for laser-induced breakdown spectroscopy using non-gated detectors, Front. Phys. 17(6), 62503 (2022)

Contribution statement

Shangyong Zhao: Methodology, Visualization, Investigation, Supervision, Project administration, Funding acquisition, Writing – original draft. Yuchen Zhao: Methodology, Validation, Writing – original draft & editing. Ziyuan Liu: Investigation. Yujia Dai: Investigation. Huihui Za: Writing – review & editing. Xun Gao: Supervision, Project administration, Funding acquisition.

Declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61575030) and the Scientific Research Foundation of Zhejiang A & F University, China (Nos. 2022LFR030, 2022LFR050, and 2024LFR047).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(4597 KB)

Accesses

Citations

Detail

Sections
Recommended

/