Recent advances of light-field modulated operation in laser-induced breakdown spectroscopy
Shangyong Zhao, Yuchen Zhao, Yujia Dai, Ziyuan Liu, Huihui Zha, Xun Gao
Recent advances of light-field modulated operation in laser-induced breakdown spectroscopy
The simplicity and low-cost way to improve qualitative and quantitative analytical performance has always been a crucial concern for laser-induced breakdown spectroscopy (LIBS), and many scientists have been engaged in this evolving research direction. In this review, we investigated an update on recent developments in light-field modulated operation in LIBS. It covered a brief description of LIBS, optical polarization, and beam shaping. Here, the optical polarization is divided into laser beam polarization and plasma polarization. In addition, the methodology and development of light-field modulated LIBS were summarized and discussed. Finally, the existing problems with light-field modulated LIBS were presented, along with some of their own insights and the future direction of their development. This review will provide a guideline for LIBS researchers with basic knowledge, which is very useful in the signal optimization of LIBS research and applications.
laser-induced breakdown spectroscopy / light-field modulated / laser beam polarization / plasma polarization / beam shaping
[1] |
J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, N. Omenetto, Comparing several atomic spectrometric methods to the superstars, special emphasis on laser induced breakdown spectrometry, LIBS, a future super star, J. Anal. Atom. Spectrom. 19, 1061e1083 (2004)
CrossRef
ADS
Google scholar
|
[2] |
Z. Wang, T. Yuan, Z. Hou, W. Zhou, J. Lu, H. Ding, and X. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)
CrossRef
ADS
Google scholar
|
[3] |
S. Zhao, C. Song, X. Gao, and J. Lin, Quantitative analysis of Pb in soil by femtosecond–nanosecond double-pulse laser-induced breakdown spectroscopy, Results Phys. 15, 102736 (2019)
CrossRef
ADS
Google scholar
|
[4] |
Q. Wang, A. Chen, and X. Gao, Sensitivity improvement of laser-induced breakdown spectroscopy to detect heavy metals in water by Tesla coil discharge, J. Anal. At. Spectrom. 39(1), 261 (2024)
CrossRef
ADS
Google scholar
|
[5] |
Y. Ikeda, J. K. Soriano, H. Ohba, and I. Wakaida, Analysis of gadolinium oxide using microwave-enhanced fiber‑coupled micro‑laser‑induced breakdown spectroscopy, Sci. Rep. 13(1), 4828 (2023)
CrossRef
ADS
Google scholar
|
[6] |
S. Ma, Y. Liu, H. Tian, L. Guo, and D. Dong, Investigation of resonance excitation of trace elements using resonant laser-induced breakdown spectroscopy (RLIBS), J. Anal. At. Spectrom. 38(2), 342 (2023)
CrossRef
ADS
Google scholar
|
[7] |
Y. Song, W. Song, L. Li, W. Gu, K. Kou, M. S. Afgan, Z. Hou, Z. Li, and Z. Wang, Flame-assisted plasma modulation to improve the raw signal quality for laser-induced breakdown spectroscopy, Opt. Lasers Eng. 162, 107433 (2023)
CrossRef
ADS
Google scholar
|
[8] |
S. Zhao, X. Gao, A. Chen, and J. Lin, Effect of spatial confinement on Pb measurements in soil by femtosecond laser‑induced breakdown spectroscopy, Appl. Phys. B 126(1), 7 (2020)
CrossRef
ADS
Google scholar
|
[9] |
M. A. Khan, S. Bashir, N. A. Chishti, E. Bonyah, A. Dawood, and Z. Ahmad, Effect of ambient environment and magnetic field on laser-induced cobalt plasma, AIP Adv. 13(1), 015017 (2023)
CrossRef
ADS
Google scholar
|
[10] |
Q. Wang, Y. Liu, L. Jiang, A. Chen, J. Han, and M. Jin, Metal micro/nanostructure enhanced laser-induced breakdown spectroscopy, Anal. Chim. Acta 1241, 340802 (2023)
CrossRef
ADS
Google scholar
|
[11] |
Y. Zhu, N. Deng, Z. Hu, W. Wang, C. Lau, Y. Liu, and L. Guo, Droplet constraint by a superhydrophobic−superhydrophilic hybrid surface with a SiO2 NP coating for determination of heavy metals using LIBS, ACS Appl. Nano Mater. 5(12), 17508 (2022)
CrossRef
ADS
Google scholar
|
[12] |
J. Yu, Z. Hou, Y. Ma, T. Li, Y. Fu, Y. Wang, Z. Li, and Z. Wang, Improvement of laser induced breakdown spectroscopy signal using gas mixture, Spectrochim. Acta B 174, 105992 (2020)
CrossRef
ADS
Google scholar
|
[13] |
K. Zehra, S. Bashir, S. A. Hassan, Q. S. Ahmed, M. Akram, and A. Hayat, The effect of nature and pressure of ambient environment on laser-induced breakdown spectroscopy and ablation mechanisms of Si, Laser Part. Beams 35(3), 492 (2017)
CrossRef
ADS
Google scholar
|
[14] |
Y. Zhao, S. Singha, Y. Liu, and R. J. Gordon, Polarization-resolved laser-induced breakdown spectroscopy, Opt. Lett. 34(4), 494 (2009)
CrossRef
ADS
Google scholar
|
[15] |
Y. Liu, J. S. Penczak, and R. J. Gordon, Nanosecond polarization-resolved laser-induced breakdown spectroscopy, Opt. Lett. 35(2), 112 (2010)
CrossRef
ADS
Google scholar
|
[16] |
L. Nagli and M. Gaft, Fraunhofer-type absorption line splitting and polarization in confocal double-pulse laser induced plasma, Spectrochim. Acta B 88, 127 (2013)
CrossRef
ADS
Google scholar
|
[17] |
S. Sheta, Z. Hou, Y. Wang, and Z. Wang, Evaluation of femtosecond laser‑induced breakdown spectroscopy system as an offline coal analyzer, Sci. Rep. 11(1), 15968 (2021)
CrossRef
ADS
Google scholar
|
[18] |
S.MaL.Guo D.Dong, A molecular laser-induced breakdown spectroscopy technique for the detection of nitrogen in water, J. Anal. At. Spectrom. 37(3), 663 (2022)
|
[19] |
W. Wang, L. Sun, G. Wang, P. Zhang, L. Qi, L. Zheng, and W. Dong, The effect of sample surface roughness on microanalysis of microchip laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 35(2), 357 (2020)
CrossRef
ADS
Google scholar
|
[20] |
R. Liu, K. Rong, Z. Wang, M. Cui, Y. Deguchi, S. Tanaka, J. Yan, and J. Liu, Sample temperature effect on steel measurement using SP-LIBS and collinear long-short DP-LIBS, ISIJ Int. 60(8), 1724 (2020)
CrossRef
ADS
Google scholar
|
[21] |
F. Poggialini, B. Campanella, S. Legnaioli, S. Pagnotta, and V. Palleschi, Investigating double pulse nanoparticle enhanced laser induced breakdown spectroscopy, Spectrochim. Acta B 167, 105845 (2020)
CrossRef
ADS
Google scholar
|
[22] |
H. Li, C. Wang, Y. Wang, S. Fu, and L. Fang, Double-enhanced LIBS system with N2 atmosphere and cylindrical cavity confinement for quantitative analysis of Sr element in soil, Meas. Sci. Technol. 34(9), 095204 (2023)
CrossRef
ADS
Google scholar
|
[23] |
J. Ji, W. Song, Z. Hou, L. Li, X. Yu, and Z. Wang, Raw signal improvement using beam shaping plasma modulation for uranium detection in ore using laser-induced breakdown spectroscopy, Anal. Chim. Acta 1235, 340551 (2022)
CrossRef
ADS
Google scholar
|
[24] |
J. Gao, J. Yang, Z. Wang, S. Sun, B. Hu, and Z. Liu, The study of femtosecond LIBS in Vortex–Gaussian and double Gaussian configurations, Appl. Phys. B 129(8), 119 (2023)
CrossRef
ADS
Google scholar
|
[25] |
J. Lv, C. Zhu, Z. Tang, Q. Li, K. Liu, W. Zhang, K. Liu, and X. Li, Bessel beams: A potential strategy for laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 36(12), 2756 (2021)
CrossRef
ADS
Google scholar
|
[26] |
M. Hu, S. Shi, M. Yan, E. Wu, and H. Zeng, Femtosecond laser-induced breakdown spectroscopy by multidimensional plasma grating, J. Anal. At. Spectrom. 37(4), 841 (2022)
CrossRef
ADS
Google scholar
|
[27] |
U. K. Adarsh, V. K. Unnikrishnan, P. Vasa, S. D. George, S. Chidangil, and D. Mathur, Effect of laser polarization on atomic and ionic emissions in laser‑induced breakdown spectroscopy (LIBS), Appl. Phys. B 129(12), 185 (2023)
CrossRef
ADS
Google scholar
|
[28] |
L. Yang, M. Liu, Y. Liu, Q. Li, S. Li, Y. Jiang, A. Chen, and M. Jin, Influence of polarization of laser beam on emission intensity of femtosecond laser-induced breakdown spectroscopy, Chin. Phys. B 29(6), 065203 (2020)
CrossRef
ADS
Google scholar
|
[29] |
S. Zhao, Y. Zhao, Z. Hou, and Z. Wang, Rapid and high-resolution visualization elements analysis of material surface based on laser-induced breakdown spectroscopy and hyperspectral imaging, Appl. Surf. Sci. 629, 157415 (2023)
CrossRef
ADS
Google scholar
|
[30] |
S. Zhao, C. Song, X. Gao, K. Guo, Z. Hao, and J. Lin, The plasma characteristics of femtosecond–nanosecond dual–pulse laser ablated soil, Results Phys. 19, 103601 (2020)
CrossRef
ADS
Google scholar
|
[31] |
P. S. Hsu, A. K. Patnaik, A. J. Stolt, J. Estevadeordal, S. Roy, and J. R. Gord, Femtosecond-laser-induced plasma spectroscopy for high-pressure gas sensing: Enhanced stability of spectroscopic signal, Appl. Phys. Lett. 113(21), 214103 (2018)
CrossRef
ADS
Google scholar
|
[32] |
Y. Fu, Z. Hou, T. Li, Z. Li, and Z. Wang, Investigation of intrinsic origins of the signal uncertainty for laser-induced breakdown spectroscopy, Spectrochim. Acta B 155, 67 (2019)
CrossRef
ADS
Google scholar
|
[33] |
Y. Fu, W. Gu, Z. Hou, S. A. Muhammed, T. Li, Y. Wang, and Z. Wang, Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy, Front. Phys. 16(2), 22502 (2021)
CrossRef
ADS
Google scholar
|
[34] |
T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, Femtosecond laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 31(1), 90 (2016)
CrossRef
ADS
Google scholar
|
[35] |
S. Zhao, Y. Zhao, Z. Hou, and Z. Wang, Stability and accuracy improvement of element analysis in steel alloys using polarization-resolved laser-induced breakdown spectroscopy, Spectrochim. Acta B 203, 106666 (2023)
CrossRef
ADS
Google scholar
|
[36] |
Z. Wang, M. S. Afgan, W. L. Gu, Y. Z. Song, Y. Wang, Z. Y. Hou, W. R. Song, and Z. Li, Recent advances in laser-induced breakdown spectroscopy quantification: From fundamental understanding to data processing, Trends Analyt. Chem. 143, 116385 (2021)
CrossRef
ADS
Google scholar
|
[37] |
H. Le, P. Penchev, A. Henrottin, D. Bruneel, V. Nasrollahi, J. A. Ramos-de-Campos, and S. Dimov, Effects of top-hat laser beam processing and scanning strategies in laser micro-structuring, Micromachines (Basel) 11(2), 221 (2020)
CrossRef
ADS
Google scholar
|
[38] |
C. Liu and Y. Guo, Flat-top line-shaped beam shaping and system design, Sensors 22(11), 4199 (2022)
CrossRef
ADS
Google scholar
|
[39] |
M. A. Poletti, Spherical coordinate descriptions of cylindrical and spherical Bessel beams, J. Acoust. Soc. Am. 141(3), 2069 (2017)
CrossRef
ADS
Google scholar
|
[40] |
X. Zhao and X. Jia, Vectorial structure of arbitrary vector vortex beams diffracted by a circular aperture in the far field, Laser Phys. 28(1), 015004 (2018)
CrossRef
ADS
Google scholar
|
[41] |
Z. Zhang, S. Wang, X. Hu, S. Wang, Y. Pu, H. Li, and J. Wang, All-fiber passively Q-switched laser with flat-top beam emissions, Opt. Lett. 47(3), 521 (2022)
CrossRef
ADS
Google scholar
|
[42] |
V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions, Pramana 74(6), 983 (2010)
CrossRef
ADS
Google scholar
|
[43] |
B. Man, Q. Dong, A. Liu, X. Wei, Q. Zhang, J. He, and X. Wang, Line-broadening analysis of plasma emission produced by laser ablation of metal Cu, J. Opt. A 6(1), 17 (2004)
CrossRef
ADS
Google scholar
|
[44] |
J. Wang, X. Li, H. Li, X. Li, and Z. Li, Lens-to-sample distance effect on the quantitative analysis of steel by laser-induced breakdown spectroscopy, J. Phys. D 53(25), 255203 (2020)
CrossRef
ADS
Google scholar
|
[45] |
H. Yin, Z. Hou, T. Yuan, Z. Wang, W. Ni, and Z. Li, Application of spatial confinement for gas analysis using laser-induced breakdown spectroscopy to improve signal stability, J. Anal. At. Spectrom. 30(4), 922 (2015)
CrossRef
ADS
Google scholar
|
[46] |
W. Song, Z. Song, J. Vincent, H. Wang, and Z. Wang, Quantification of extra virgin olive oil adulteration using smartphone videos, Talanta 216, 120920 (2020)
CrossRef
ADS
Google scholar
|
[47] |
C. L. Goueguel, A. Soumare, C. Nault, and J. Nault, Direct determination of soil texture using laser-induced breakdown spectroscopy and multivariate linear regressions, J. Anal. At. Spectrom. 34(8), 1588 (2019)
CrossRef
ADS
Google scholar
|
[48] |
C. R. Bhatt, D. Hartzler, J. C. Jain, and D. L. McIntyre, Evaluation of analytical performance of double pulse laser-induced breakdown spectroscopy for the detection of rare earth elements, Opt. Laser Technol. 126, 106110 (2020)
CrossRef
ADS
Google scholar
|
[49] |
E. M. Garcell and C. Guo, Polarization-controlled microgroove arrays induced by femtosecond laser pulses, J. Appl. Phys. 123(21), 213103 (2018)
CrossRef
ADS
Google scholar
|
[50] |
X. Li, W. Rong, L. Jiang, K. Zhang, C. Li, Q. Cao, G. Zhang, and Y. Lu, Generation and elimination of polarization dependent ablation of cubic crystals by femtosecond laser radiation, Opt. Express 22(24), 30170 (2014)
CrossRef
ADS
Google scholar
|
[51] |
X. Ji, L. Jiang, X. Li, W. Han, Y. Liu, Q. Huang, and Y. Lu, Polarization-dependent elliptical crater morphologies formed on a silicon surface by single-shot femtosecond laser ablation, Appl. Opt. 53(29), 6742 (2014)
CrossRef
ADS
Google scholar
|
[52] |
S. M. Pimenov, E. V. Zavedeev, B. Jaeggi, and B. Neuenschwander, Femtosecond laser-induced periodic surface structures in titanium-doped diamond-like nanocomposite films: Effects of the beam polarization rotation, Materials (Basel) 16(2), 795 (2023)
CrossRef
ADS
Google scholar
|
[53] |
F. Bai, H. Li, Y. Huang, W. Fan, H. Pan, Z. Wang, C. Wang, J. Qian, Y. Li, and Q. Zhao, Polarization effects in femtosecond laser induced amorphization of monocrystalline silicon, Chem. Phys. Lett. 662, 102 (2016)
CrossRef
ADS
Google scholar
|
[54] |
G. K. Krasin, M. S. Kovalev, S. I. Kudryashov, P. A. Danilov, V. P. Martovitskii, I. V. Gritsenko, I. M. Podlesnykh, R. A. Khmelnitskii, E. V. Kuzmin, Y. S. Gulina, and A. O. Levchenko, Polarization-dependent near-IR ultrashort-pulse laser ablation of natural diamond surfaces, Appl. Surf. Sci. 595, 153549 (2022)
CrossRef
ADS
Google scholar
|
[55] |
V. Wanie, T. Shao, P. Lassonde, F. Calegari, F. Vidal, H. Ibrahim, X. Bian, and F. Légaré, Laser polarization dependence of strong-field ionization in lithium niobate, Phys. Rev. B 101(21), 214311 (2020)
CrossRef
ADS
Google scholar
|
[56] |
X. Liu, W. Cheng, M. Petrarca, and P. Polynkin, Universal threshold for femtosecond laser ablation with oblique illumination, Appl. Phys. Lett. 109(16), 161604 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[57] |
J. M. Guay, A. Villafranca, F. Baset, K. Popov, L. Ramunno, and V. R. Bhardwaj, Polarization-dependent femtosecond laser ablation of poly-methyl methacrylate, New J. Phys. 14(8), 085010 (2012)
CrossRef
ADS
Google scholar
|
[58] |
J. A. Tomko, R. Jimenez, J. J. Naddeo, D. M. Bubb, and S. M. O’Malley, Effects of laser polarization and linear surface features on nanoparticle synthesis during laser ablation in liquids, Laser Phys. 28(3), 035602 (2018)
CrossRef
ADS
Google scholar
|
[59] |
Y. Liu, A. Gruner, D. G. K. Aboud, J. Bonse, J. Schille, U. Loeschner, and A. M. Kietzig, Polarization effects on laser-inscribed angled micro-structures, Appl. Surf. Sci. 649, 159191 (2024)
CrossRef
ADS
Google scholar
|
[60] |
S. Shin, J. Hur, J. K. Park, and D. Kim, Polarization effects on ablation efficiency and microstructure symmetricity in femtosecond laser processing of materials — developing a pattern generation model for laser scanning, Opt. Express 30(11), 18018 (2022)
CrossRef
ADS
Google scholar
|
[61] |
H. Cheng, P. Li, S. Liu, H. Lu, L. Han, and J. Zhao, Polarization-switchable nanoripples fabricated on a silicon surface by femtosecond-laser-assisted nanopatterning, Appl. Opt. 59(24), 7211 (2020)
CrossRef
ADS
Google scholar
|
[62] |
G. Lazzini, L. Romoli, F. Tantussi, and F. Fuso, Nanostructure patterns on stainless-steel upon ultrafast laser ablation with circular polarization, Opt. Laser Technol. 107, 435 (2018)
CrossRef
ADS
Google scholar
|
[63] |
Y. Guo, P. Qiu, and S. Xu, Combined effects of polarization and secondary ablation on precision machining of microgrooves by laser-induced microjet-assisted ablation, Opt. Express 30(25), 44665 (2022)
CrossRef
ADS
Google scholar
|
[64] |
R. Torres, T. Kaempfe, M. Delaigue, O. Parriaux, C. Hoenninger, J. Lopez, R. Kling, and E. Mottay, Influence of laser beam polarization on laser micro-machining of molybdenum, J. Laser Micro Nanoeng. 8(3), 188 (2013)
CrossRef
ADS
Google scholar
|
[65] |
V. N. Lednev, S. M. Pershin, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. E. Ligachev, A. A. Rudenko, R. A. Chmelnitsky, and A. F. Bunkin, Laser ablation of polished and nanostructured titanium surfaces by nanosecond laser pulses, Spectrochim. Acta B 88, 15 (2013)
CrossRef
ADS
Google scholar
|
[66] |
H. Al-Khazraji and V. R. Bhardwaj, Polarization dependent micro-structuring of silicon with a femtosecond laser, Appl. Surf. Sci. 353, 600 (2015)
CrossRef
ADS
Google scholar
|
[67] |
H. Guo, Z. Zhu, T. Wang, N. Chen, Y. Liu, J. Zhang, H. Sun, J. Liu, and R. Li, Polarization-gated filament-induced remote breakdown spectroscopy, Chin. Opt. Lett. 16(3), 033201 (2018)
CrossRef
ADS
Google scholar
|
[68] |
J. Hou, L. Zhang, W. Yin, Y. Zhao, W. Ma, L. Dong, G. Yang, L. Xiao, and S. Ji, Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics, J. Anal. At. Spectrom. 32(8), 1519 (2017)
CrossRef
ADS
Google scholar
|
[69] |
Q. Wang, A. Chen, Y. Wang, L. Sui, S. Li, and M. Jin, Spectral intensity clamping in linearly and circularly polarized femtosecond filament-induced Cu plasmas, J. Anal. At. Spectrom. 33(7), 1154 (2018)
CrossRef
ADS
Google scholar
|
[70] |
Q. Wang, A. Chen, X. Wang, S. Li, J. Jiang, and M. Jin, Signal improvement using circular polarization for focused femtosecond laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 34(6), 1242 (2019)
CrossRef
ADS
Google scholar
|
[71] |
S. Li, Y. Jiang, A. Chen, L. He, D. Liu, and M. Jin, Revisiting the mechanism of nitrogen fluorescence emission induced by femtosecond filament in air, Phys. Plasmas 24(3), 033111 (2017)
CrossRef
ADS
Google scholar
|
[72] |
Y. Chen, Y. Liu, Q. Wang, S. Li, Y. Jiang, A. Chen, and M. Jin, Effect of laser polarization on molecular emission from femtosecond LIBS, J. Anal. At. Spectrom. 37(1), 82 (2022)
CrossRef
ADS
Google scholar
|
[73] |
G. A. Wubetu, J. T. Costello, T. J. Kelly, P. Wachulak, A. Bartnik, W. Skrzeczanowski, and H. Fiedorowicz, Comparison of LIBS and polarization resolved LIBS emission for aluminium alloy, J. Appl. Spectrosc. 90(1), 116 (2023)
CrossRef
ADS
Google scholar
|
[74] |
Y. Shi, A. Chen, Y. Jiang, S. Li, and M. Jin, Influence of laser polarization on plasma fluorescence emission during the femtosecond filamentation in air, Opt. Commun. 367, 174 (2016)
CrossRef
ADS
Google scholar
|
[75] |
D. Zhao, N. Farid, R. Hai, D. Wu, and H. Ding, Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy, Plasma Sci. Technol. 16(2), 149 (2014)
CrossRef
ADS
Google scholar
|
[76] |
J. Xu, X. Wang, and M. Yao, Optimization of copper detection based on polarization-resolved laser-induced breakdown spectroscopy, Appl. Opt. 60(17), 5266 (2021)
CrossRef
ADS
Google scholar
|
[77] |
X. Wang, M. Yao, M. Zeng, and J. Xu, Detection model of copper based on polarization degree induced by low-energy density laser, Appl. Opt. 60(35), 10780 (2021)
CrossRef
ADS
Google scholar
|
[78] |
J. S. Penczak, Y. Liu, and R. J. Gordon, Polarization and fluence dependence of the polarized emission in nanosecond laser-induced breakdown spectroscopy, Spectrochim. Acta B 66(2), 186 (2011)
CrossRef
ADS
Google scholar
|
[79] |
J. Xu, X. Wang, M. Yao, and M. Liu, Detection model of the plasma spectrum based on the polarization recognition rate induced by a low energy density laser, Appl. Opt. 61(16), 4768 (2022)
CrossRef
ADS
Google scholar
|
[80] |
A. Eslami Majd, A. S. Arabanian, and R. Massudi, Polarization resolved laser induced breakdown spectroscopy by single shot nanosecond pulsed Nd: YAG laser, Opt. Lasers Eng. 48(7-8), 750 (2010)
CrossRef
ADS
Google scholar
|
[81] |
N.AgnesH. Y. TaoZ.Q. HaoC.K. SunX.Gao J.Q. Lin, A comparison of single shot nanosecond and femtosecond polarization-resolved laser-induced breakdown spectroscopy of Al, Chin. Phys. B 22(1), 014209 (2013)
|
[82] |
M. Aghababaei Nejad, M. Soltanolkotabi, A. Eslami Majd, and Polarization investigation of laser-induced breakdown plasma emission from Al, Mo, W, and Pb elements using nongated detector, J. Laser Appl. 30(2), 022005 (2018)
CrossRef
ADS
Google scholar
|
[83] |
J. S. Penczak, Y. Liu, and R. J. Gordon, Polarization resolved laser-induced breakdown spectroscopy of Al, J. Phys. Chem. A 113(47), 13310 (2009)
CrossRef
ADS
Google scholar
|
[84] |
M. E. Asgill, H. Y. Moon, N. Omenetto, and D. W. Hahn, Investigation of polarization effects for nanosecond laser-induced breakdown spectroscopy, Spectrochim. Acta B 65(12), 1033 (2010)
CrossRef
ADS
Google scholar
|
[85] |
E.Yurdanur-TaselH.BerberogluS.Bilikmen, Investigation of materials of different crystal structure under various time delays using double pulse laser induced breakdown spectroscopy, Spectrochim. Acta B 74–75, 74 (2012)
|
[86] |
Y.Jr PenczakR.D. LiuD.H. SchallerRichJ. GordonR.
|
[87] |
M. Aghababaei Nejad and A. Eslami Majd, Temporal evolution of polarization resolved laser‑induced breakdown spectroscopy of Cu, Plasma Chem. Plasma Process. 40(1), 325 (2020)
CrossRef
ADS
Google scholar
|
[88] |
A. P. Williamson and J. Kiefer, Strategies for suppressing elastically scattered laser light in ungated laser-induced breakdown spectroscopy, Spectrochim. Acta B 149, 267 (2018)
CrossRef
ADS
Google scholar
|
[89] |
M. Aghababaei Nejad, M. Soltanolkotabi, and A. Eslami Majd, Polarization mechanism in a ns laser-induced plasma spectroscopy of Al alloy, Appl. Phys. B 124(1), 6 (2018)
CrossRef
ADS
Google scholar
|
[90] |
H. Zhao, L. Cai, and G. Wu, On polarization resolved laser induced breakdown spectroscopy combined with support-vector regression to improve the accuracy of soil heavy-metal (Cd) detection, Chin. J. Anal. Chem. 51(2), 100176 (2023)
CrossRef
ADS
Google scholar
|
[91] |
J. Xu, X. Wang, M. Yao, and M. Liu, Improving the stability of LIBS for chromium in soil based on the model of micro-linear spectrum, J. Anal. At. Spectrom. 38(11), 2441 (2023)
CrossRef
ADS
Google scholar
|
[92] |
G. Teng, Q. Wang, Q. Hao, A. Fan, H. Yang, X. Xu, G. Chen, K. Wei, Z. Zhao, M. N. Khan, B. S. Idrees, M. Bao, T. Luo, Y. Zheng, and B. Lu, Full-Stokes polarization laser-induced breakdown spectroscopy detection of infiltrative glioma boundary tissue, Biomed. Opt. Express 14(7), 3469 (2023)
CrossRef
ADS
Google scholar
|
[93] |
J. Li, Y. Tang, Z. Kuang, J. Schille, U. Loeschner, W. Perrie, D. Liu, G. Dearden, and S. Edwardson, Multi imaging-based beam shaping for ultrafast laser-material processing using spatial light modulators, Opt. Lasers Eng. 112, 59 (2019)
CrossRef
ADS
Google scholar
|
[94] |
S. Rung, J. Barth, and R. Hellmann, Characterization of laser beam shaping optics based on their ablation geometry of thin films, Micromachines (Basel) 5(4), 943 (2014)
CrossRef
ADS
Google scholar
|
[95] |
K. K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate, Appl. Phys. Lett. 104(24), 241604 (2014)
CrossRef
ADS
Google scholar
|
[96] |
D. Kong, X. Sun, Y. Hu, and J. Duan, Theoretical and experimental research on a spatially modulated femtosecond bessel-like laser for microdrilling in silica glass, Opt. Commun. 542, 129594 (2023)
CrossRef
ADS
Google scholar
|
[97] |
L. Ackermann, M. Gehring, C. Roider, K. Cvecek, and M. Schmidt, Spot arrays for uniform material ablation with ultrashort pulsed lasers, Opt. Laser Technol. 163, 109358 (2023)
CrossRef
ADS
Google scholar
|
[98] |
D. Doan, R. Iida, B. Kim, I. Satoh, and K. Fushinobu, Bessel beam laser-scribing of thin film silicon solar cells by ns pulsed laser, J. Therm. Sci. Tech. 11(1), JTST0011 (2016)
CrossRef
ADS
Google scholar
|
[99] |
R. Sahin and I. Kabacelik, Nanostructuring of ITO thin films through femtosecond laser ablation, Appl. Phys. A 122(4), 314 (2016)
CrossRef
ADS
Google scholar
|
[100] |
P. Yin, B. Xu, Y. Liu, Y. Wang, W. Zhao, and J. Tang, Simulation of evaporation ablation dynamics of materials by nanosecond pulse laser of Gaussian beam and flat-top beam, Acta Phys. Sin. 73(9), 095202 (2024)
CrossRef
ADS
Google scholar
|
[101] |
J. Choi, W. Choi, Y. Shin, S. Han, K. Kim, and S. Cho, Enhancement periodic regularity of surface nano ripple structures on Si wafer using a square shaped flat‑top beam femtosecond NIR laser, Appl. Phys. A 128(1), 46 (2022)
CrossRef
ADS
Google scholar
|
[102] |
M. Burger, P. Polynkin, and I. Jovanovic, Filament-induced breakdown spectroscopy with structured beams, Opt. Express 28(24), 36812 (2020)
CrossRef
ADS
Google scholar
|
[103] |
E. Figueiras, D. Olivieri, A. Paredes, and H. Michinel, An open source virtual laboratory for the Schrödinger equation, Eur. J. Phys. 39(5), 055802 (2018)
CrossRef
ADS
Google scholar
|
[104] |
L. Ackermann, C. Roider, K. Cvecek, and M. Schmidt, Methods for uniform beam shaping and their effect on material ablation, Appl. Phys. A 128(10), 877 (2022)
CrossRef
ADS
Google scholar
|
[105] |
D. Pallarés-Aldeiturriaga, A. Abou Khalil, J. P. Colombier, R. Stoian, and X. Sedao, Ultrafast Cylindrical Vector Beams for Improved Energy Feedthrough and Low Roughness Surface Ablation of Metals, Materials (Basel) 16(1), 176 (2022)
CrossRef
ADS
Google scholar
|
[106] |
H. Kim, J. Yoon, W. Choi, K. Kim, and S. Cho, Ablation depth control with 40 nm resolution on ITO thin films using a square, flat top beam shaped femtosecond NIR laser, Opt. Lasers Eng. 84, 44 (2016)
CrossRef
ADS
Google scholar
|
[107] |
Z. Kuang, J. Li, S. Edwardson, W. Perrie, D. Liu, and G. Dearden, Ultrafast laser beam shaping for material processing at imaging plane by geometric masks using a spatial light modulator, Opt. Lasers Eng. 70, 1 (2015)
CrossRef
ADS
Google scholar
|
[108] |
Y. Shin, J. Choi, and S. Cho, Fine ablation with depth control of 25‑nm resolution and morphologies irradiated by femtosecond laser pulses via beam shaping, Appl. Phys. A 129(8), 534 (2023)
CrossRef
ADS
Google scholar
|
[109] |
D. Liu, Y. Wang, Z. Zhai, Z. Fang, Q. Tao, W. Perrie, S. P. Edwarson, and G. Dearden, Dynamic laser beam shaping for material processing using hybrid holograms, Opt. Laser Technol. 102, 68 (2018)
CrossRef
ADS
Google scholar
|
[110] |
R. Sahin, T. Ersoy, and S. Akturk, Ablation of metal thin films using femtosecond laser Bessel vortex beams, Appl. Phys. A 118(1), 125 (2015)
CrossRef
ADS
Google scholar
|
[111] |
T. Häfner, J. Strauß, C. Roider, J. Heberle, and M. Schmidt, Tailored laser beam shaping for efficient and accurate microstructuring, Appl. Phys. A 124(2), 111 (2018)
CrossRef
ADS
Google scholar
|
[112] |
D. Zhang, X. Li, Y. Fu, Q. Yao, Z. Li, and K. Sugioka, Liquid vortexes and flows induced by femtosecond laser ablation in liquid governing formation of circular and crisscross LIPSS, Opto-Electron. Adv. 5(2), 210066 (2022)
CrossRef
ADS
Google scholar
|
[113] |
W. Yan, J. Lv, C. Zhu, Q. Li, J. Chen, L. Kang, B. Lu, and X. Li, Classification of uneven steel samples by laser induced breakdown spectroscopy based on a Bessel beam, J. Anal. At. Spectrom. 38(6), 1232 (2023)
CrossRef
ADS
Google scholar
|
[114] |
Z. Hou, M. S. Afgan, S. Sheta, J. Liu, and Z. Wang, Plasma modulation using beam shaping to improve signal quality for laser induced breakdown spectroscopy, J. Anal. At. Spectrom. 35(8), 1671 (2020)
CrossRef
ADS
Google scholar
|
[115] |
J. Jia, H. Fu, Z. Hou, H. Wang, Z. Wang, F. Dong, Z. Ni, and Z. Zhang, Effect of laser beam shaping on the determination of manganese and chromium elements in steel samples using laser-induced breakdown spectroscopy, Spectrochim. Acta B 163, 105747 (2020)
CrossRef
ADS
Google scholar
|
[116] |
J. Jia, H. Fu, Z. Hou, H. Wang, Z. Ni, Z. Wang, F. Dong, and Z. Zhang, Analysis of element content in cement by Gaussian and flattop laser-induced breakdown spectroscopy, J. Phys. D 52(40), 405102 (2019)
CrossRef
ADS
Google scholar
|
[117] |
J. Gao, J. Yang, Z. Wang, S. Sun, B. Hu, and Z. Liu, The study of femtosecond LIBS in Vortex–Gaussian and double Gaussian configurations, Appl. Phys. B 129(8), 119 (2023)
CrossRef
ADS
Google scholar
|
[118] |
A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy, Appl. Spectrosc. 53(8), 960 (1999)
CrossRef
ADS
Google scholar
|
[119] |
W. Gu, N. Nishi, Z. Hou, Z. Wang, and T. Sakka, Investigation of the signal uncertainty in laser-induced breakdown spectroscopy based on error propagation considering self-absorption, Spectrochim. Acta B 206, 106732 (2023)
CrossRef
ADS
Google scholar
|
[120] |
A.P. JoglekarH.LiuG.J. SpoonerE.MeyhöferG.MourouA.J. Hunt, A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining, Appl. Phys. B 77(1), 25 (2003)
|
[121] |
V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, Multiphoton ionization in dielectrics: Comparison of circular and linear polarization, Phys. Rev. Lett. 97(23), 237403 (2006)
CrossRef
ADS
Google scholar
|
[122] |
K. Zhang, W. Song, Z. Hou, and Z. Wang, Effect of ambient pressures on laser-induced breakdown spectroscopy signals, Front. Phys. 19(4), 42203 (2024)
CrossRef
ADS
Google scholar
|
[123] |
L. Guo, D. Zhang, L. Sun, S. Yao, L. Zhang, Z. Wang, Q. Wang, H. Ding, Y. Lu, Z. Hou, and Z. Wang, Development in the application of laser-induced breakdown spectroscopy in recent years: A review, Front. Phys. 16(2), 22500 (2021)
CrossRef
ADS
Google scholar
|
[124] |
Z. Wang, Y. Deguchi, Z. Zhang, Z. Wang, X. Zeng, and J. Yan, Laser-induced breakdown spectroscopy in Asia, Front. Phys. 11(6), 114213 (2016)
CrossRef
ADS
Google scholar
|
[125] |
Z.HouW. GuT.LiZ.WangL.Li X.YuY.Zhang Z.Liu, A calibration-free model for laser-induced breakdown spectroscopy using non-gated detectors, Front. Phys. 17(6), 62503 (2022)
|
/
〈 | 〉 |