
Interlayer ferromagnetic coupling in nonmagnetic elements doped CrI3 thin films
Xuqi Li, Xuyan Chen, Shiyang Sun, Huihui Zhang, Haidan Sang, Xiaonan Wang, Shifei Qi, Zhenhua Qiao
Front. Phys. ›› 2024, Vol. 19 ›› Issue (6) : 63209.
Interlayer ferromagnetic coupling in nonmagnetic elements doped CrI3 thin films
The exploration of magnetism in two-dimensional layered materials has attracted extensive research interest. For the monoclinic phase CrI3 with interlayer antiferromagnetism, finding a static and robust way of realizing the intrinsic interlayer ferromagnetic coupling is desirable. In this work, we study the electronic structure and magnetic properties of the nonmagnetic element (e.g., O, S, Se, N, P, As, and C) doped bi- and triple-layer CrI3 systems via first-principles calculations. Our results demonstrate that O, P, S, As, and Se doped CrI3 bilayer can realize interlayer ferromagnetism. Further analysis shows that the interlayer ferromagnetic coupling in the doped few-layer CrI3 is closely related to the formation of localized spin-polarized state around the doped elements. Further study presents that, for As-doped tri-layer CrI3, it can realize interlayer ferromagnetic coupling. This work proves that nonmagnetic element doping can realize the interlayer ferromagnetically-coupled few-layer CrI3 while maintaining its semiconducting characteristics without introducing additional carriers.
ferromagnetism / magnetic doping
Fig.1 (a) Side and top views of crystal structures of high-temperature monoclinic bilayer CrI3 phase and the substitution sites are labeled as I1 and I2. Formation energies of (b) O, S, Se, N and (c) P, As, or C element-doped bilayer CrI3 as a function of the host element chemical potentials. Possible interstitial sites (d) and the formation energy (e) as a function of chemical potential for interstitial and substitutional configurations in the N doped bilayer CrI3. |
Tab.1 The structural and magnetic properties of As doped trilayer CrI3. The spin direction of each layer is denoted by the up/down arrow. The ground state of each dopant is denoted by red. The energy differences between the specific structure and ground state are shown. The energy is in unit of meV. |
Structure | | | | |
---|---|---|---|---|
CrI3 | 1.99 | 4.55 | 12.89 | 0 |
As1 | 15.15 | 119.91 | 121.58 | 11.52 |
As2 | 37.22 | 127.3 | 147.85 | 20.44 |
As3 | 78.56 | 100.28 | 85.28 | 0 |
Fig.2 (a) Energy difference between interlayer ferromagnetic (FM) and antiferromagnetic (AFM) states. (b) Difference of interlayer distance between doping configuration and pristine CrI3. (c) Charge difference between Cr atoms near doping site in the doped and pristine bilayer CrI3. (d) Schematic illustration of localized spin-polarized state-mediated interlayer ferromagneitic coupling in doped bilayer CrI3. |
Fig.3 Differential charge density of (a) pristine and (b) As-doped bilayer CrI3. Spin density of (c) pristine and (d) As-doped bilayer CrI3. Local density of states from (e) PBE+U and (f) HSE06 calculations in As-doped bilayer CrI3. Yellow and blue isosurfaces represent respectively charge accumulation and reduction. Red and green isosurfaces represent respectively spin up and spin down. Cr-d, I-p and As-p orbitals in each layer of CrI3 are displayed. In addition, band-decomposed charge density of the localized electron state is shown in the inset of (f). |
Fig.4 The density of states in ferromagnetic state of (a) O, (b) P, (c) S, and (d) Se doped CrI3 bilayer from PBE+U calculations. The density of states in ferromagnetic state of (e) O, (f) P, (g) S, and (h) Se doped CrI3 bilayer from HSE06 calculations. Band-decomposed charge density of the localized electron state in ferromagnetic state of (i) O, (j) P, (k) S, and (l) Se doped CrI3 bilayer from HSE06 calculations. The shadow part indicates the formation of spin-polarized state. |
[1] |
B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[2] |
C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[3] |
Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, and Y. Zhang, Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563(7729), 94 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[4] |
M. Gibertini, M. Koperski, A. F. Morpurgo, and K. S. Novoselov, Magnetic 2D materials and heterostructures, Nat. Nanotechnol. 14(5), 408 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[5] |
D. Zhong, K. L. Seyler, X. Linpeng, R. Cheng, N. Sivadas, B. Huang, E. Schmidgall, T. Taniguchi, K. Watanabe, M. A. McGuire, W. Yao, D. Xiao, K. M. C. Fu, and X. Xu, Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics, Sci. Adv. 3(5), e1603113 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[6] |
K. L. Seyler, D. Zhong, B. Huang, X. Linpeng, N. P. Wilson, T. Taniguchi, K. Watanabe, W. Yao, D. Xiao, M. A. McGuire, K. M. C. Fu, and X. Xu, Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures, Nano Lett. 18(6), 3823 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[7] |
K. Zollner, M. Gmitra, and J. Fabian, Electrically tunable exchange splitting in bilayer graphene on monolayer Cr2X2Te6 with X = Ge, Si, and Sn, New J. Phys. 20(7), 073007 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[8] |
T. Song, X. Cai, M. W. Y. Tu, X. Zhang, B. Huang, N. P. Wilson, K. L. Seyler, L. Zhu, T. Taniguchi, K. Watanabe, M. A. McGuire, D. H. Cobden, D. Xiao, W. Yao, and X. Xu, Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures, Science 360(6394), 1214 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[9] |
D. R. Klein, D. MacNeill, J. L. Lado, D. Soriano, E. Navarro-Moratalla, K. Watanabe, T. Taniguchi, S. Manni, P. Canfield, J. Fernández-Rossier, and P. Jarillo-Herrero, Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling, Science 360(6394), 1218 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[10] |
C. Cardoso, D. Soriano, N. A. García-Martínez, and J. Fernández-Rossier, Van der Waals spin valves, Phys. Rev. Lett. 121(6), 067701 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[11] |
Z. Wang, I. Gutiérrez-Lezama, N. Ubrig, M. Kroner, M. Gibertini, T. Taniguchi, K. Watanabe, A. Imamoğlu, E. Giannini, and A. F. Morpurgo, Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3, Nat. Commun. 9(1), 2516 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[12] |
D. Ghazaryan, M. T. Greenaway, Z. Wang, V. H. Guarochico-Moreira, I. J. Vera-Marun, J. Yin, Y. Liao, S. V. Morozov, O. Kristanovski, A. I. Lichtenstein, M. I. Katsnelson, F. Withers, A. Mishchenko, L. Eaves, A. K. Geim, K. S. Novoselov, and A. Misra, Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3, Nat. Electron. 1(6), 344 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[13] |
B. Huang, G. Clark, D. R. Klein, D. MacNeill, E. Navarro-Moratalla, K. L. Seyler, N. Wilson, M. A. McGuire, D. H. Cobden, D. Xiao, W. Yao, P. Jarillo-Herrero, and X. Xu, Electrical control of 2D magnetism in bilayer CrI3, Nat. Nanotechnol. 13(7), 544 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[14] |
Z. Wang, M. Gibertini, D. Dumcenco, T. Taniguchi, K. Watanabe, E. Giannini, and A. F. Morpurgo, Determining the phase diagram of atomically thin layered antiferromagnet CrCl3, Nat. Nanotechnol. 14(12), 1116 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[15] |
Y. Wang, F. Zhang, M. Zeng, H. Sun, Z. Hao, Y. Cai, H. Rong, C. Zhang, C. Liu, X. Ma, L. Wang, S. Guo, J. Lin, Q. Liu, C. Liu, and C. Chen, Intrinsic magnetic topological materials, Front. Phys. 18(2), 21304 (2023)
CrossRef
ADS
Google scholar
|
[16] |
M. Kim, P. Kumaravadivel, J. Birkbeck, W. Kuang, S. G. Xu, D. G. Hopkinson, J. Knolle, P. A. McClarty, A. I. Berdyugin, M. Ben Shalom, R. V. Gorbachev, S. J. Haigh, S. Liu, J. H. Edgar, K. S. Novoselov, I. V. Grigorieva, and A. K. Geim, Micromagnetometry of two-dimensional ferromagnets, Nat. Electron. 2(10), 457 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[17] |
B. Karpiak, A. W. Cummings, K. Zollner, M. Vila, D. Khokhriakov, A. M. Hoque, A. Dankert, P. Svedlindh, J. Fabian, S. Roche, and S. P. Dash, Magnetic proximity in a van der Waals heterostructure of magnetic insulator and graphene, 2D Mater. 7(1), 015026 (2019)
CrossRef
ADS
Google scholar
|
[18] |
N. Sivadas, S. Okamoto, X. Xu, C. J. Fennie, and D. Xiao, Stacking-dependent magnetism in bilayer CrI3, Nano Lett. 18(12), 7658 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[19] |
D. Wang and B. Sanyal, Systematic study of monolayer to trilayer CrI3: Stacking sequence dependence of electronic structure and magnetism, J. Phys. Chem. C 125(33), 18467 (2021)
CrossRef
ADS
Google scholar
|
[20] |
P. Jiang, C. Wang, D. Chen, Z. Zhong, Z. Yuan, Z. Y. Lu, and W. Ji, Stacking tunable interlayer magnetism in bilayer CrI3, Phys. Rev. B 99(14), 144401 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[21] |
S. W. Jang, M. Y. Jeong, H. Yoon, S. Ryee, and M. J. Han, Microscopic understanding of magnetic interactions in bilayer CrI3, Phys. Rev. Mater. 3(3), 031001 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[22] |
D. Soriano, C. Cardoso, and J. Fernández-Rossier, Interplay between interlayer exchange and stacking in CrI3 bilayers, Solid State Commun. 299, 113662 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[23] |
L. Thiel, Z. Wang, M. A. Tschudin, D. Rohner, I. Gutiérrez-Lezama, N. Ubrig, M. Gibertini, E. Giannini, A. F. Morpurgo, and P. Maletinsky, Probing magnetism in 2D materials at the nanoscale with single-spin microscopy, Science 364(6444), 973 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[24] |
N. Ubrig, Z. Wang, J. Teyssier, T. Taniguchi, K. Watanabe, E. Giannini, A. F. Morpurgo, and M. Gibertini, Low-temperature monoclinic layer stacking in atomically thin CrI3 crystals, 2D Mater. 7(1), 015007 (2020)
CrossRef
ADS
Google scholar
|
[25] |
H. H. Kim, B. Yang, T. Patel, F. Sfigakis, C. Li, S. Tian, H. L. Lei, and A. W. Tsen, One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure, Nano Lett. 18(8), 4885 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[26] |
M. A. McGuire, H. Dixit, V. R. Cooper, and B. C. Sales, Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3, Chem. Mater. 27(2), 612 (2015)
CrossRef
ADS
Google scholar
|
[27] |
S. Jiang, L. Li, Z. Wang, K. F. Mak, and J. Shan, Controlling magnetism in 2D CrI3 by electrostatic doping, Nat. Nanotechnol. 13(7), 549 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[28] |
C. Xu, Q. J. Wang, B. Xu, and J. Hu, Effect of biaxial strain and hydrostatic pressure on the magnetic properties of bilayer CrI3, Front. Phys. 16(5), 53502 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[29] |
R. Xu and X. Zou, Electric field-modulated magnetic phase transition in van der Waals CrI3 bilayers, J. Phys. Chem. Lett. 11(8), 3152 (2020)
|
[30] |
D. Soriano and M. I. Katsnelson, Magnetic polaron and antiferromagnetic-ferromagnetic transition in doped bilayer CrI3, Phys. Rev. B 101(4), 041402(R) (2020)
CrossRef
ADS
arXiv
Google scholar
|
[31] |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef
ADS
Google scholar
|
[32] |
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef
ADS
Google scholar
|
[33] |
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef
ADS
Google scholar
|
[34] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[35] |
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)
CrossRef
ADS
Google scholar
|
[36] |
V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B 44(3), 943 (1991)
CrossRef
ADS
Google scholar
|
[37] |
S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B 57(3), 1505 (1998)
CrossRef
ADS
Google scholar
|
[38] |
M. Yang, H. Shu, P. Tang, P. Liang, D. Cao, and X. Chen, Intrinsic polarization-induced enhanced ferro-magnetism and self-doped p‒n junctions in CrBr3/GaN van der Waals heterostructures, ACS Appl. Mater. Interfaces 13(7), 8764 (2021)
CrossRef
ADS
Google scholar
|
[39] |
C. Franchini, M. Reticcioli, M. Setvin, and U. Diebold, Polarons in materials, Nat. Rev. Mater. 6(7), 560 (2021)
CrossRef
ADS
Google scholar
|
[40] |
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
CrossRef
ADS
Google scholar
|
[41] |
J. M. Zhang, W. G. Zhu, Y. Zhang, D. Xiao, and Y. G. Yao, Tailoring magnetic doping in the topological insulator Bi2Se3, Phys. Rev. Lett. 109(26), 266405 (2012)
CrossRef
ADS
arXiv
Google scholar
|
[42] |
S. Qi, R. Gao, M. Chang, T. Hou, Y. Han, and Z. Qiao, Nonmagnetic doping induced quantum anomalous Hall effect in topological insulators, Phys. Rev. B 102(8), 085419 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[43] |
Y. Han, S. Sun, S. Qi, X. Xu, and Z. Qiao, Interlayer ferromagnetism and high-temperature quantum anomalous Hall effect in p-doped MnBi2Te4 multilayers, Phys. Rev. B 103(24), 245403 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[44] |
H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Room-temperature ferromagnetism in carbon-doped ZnO, Phys. Rev. Lett. 99(12), 127201 (2007)
CrossRef
ADS
Google scholar
|
[45] |
S.GrimmeJ. AntonyS.EhrlichS.Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132(15), 154104 (2010)
|
[46] |
M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Van der Waals density functional for general geometries, Phys. Rev. Lett. 92(24), 246401 (2004)
CrossRef
ADS
Google scholar
|
[47] |
K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Higher-accuracy van der Waals density functional, Phys. Rev. B 82(8), 081101(R) (2010)
CrossRef
ADS
arXiv
Google scholar
|
[48] |
J. Klimeš, D. R. Bowler, and A. Michaelides, Van der Waals density functionals applied to solids, Phys. Rev. B 83(19), 195131 (2011)
CrossRef
ADS
arXiv
Google scholar
|
[49] |
J. Klimeš, D. R. Bowler, and A. Michaelides, Chemical accuracy for the van der Waals density functional, J. Phys.: Condens. Matter 22(2), 022201 (2010)
CrossRef
ADS
Google scholar
|
[50] |
T. Li, S. Jiang, N. Sivadas, Z. Wang, Y. Xu, D. Weber, J. E. Goldberger, K. Watanabe, T. Taniguchi, C. J. Fennie, K. Fai Mak, and J. Shan, Pressure-controlled interlayer magnetism in atomically thin CrI3, Nat. Mater. 18(12), 1303 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[51] |
T. Song, Z. Fei, M. Yankowitz, Z. Lin, Q. Jiang, K. Hwangbo, Q. Zhang, B. Sun, T. Taniguchi, K. Watanabe, M. A. McGuire, D. Graf, T. Cao, J. H. Chu, D. H. Cobden, C. R. Dean, D. Xiao, and X. Xu, Switching 2D magnetic states via pressure tuning of layer stacking, Nat. Mater. 18(12), 1298 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[52] |
J. Xia, J. Yan, Z. Wang, Y. He, Y. Gong, W. Chen, T. C. Sum, Z. Liu, P. M. Ajayan, and Z. Shen, Strong coupling and pressure engineering in WSe2−MoSe2 heterobilayers, Nat. Phys. 17(1), 92 (2021)
CrossRef
ADS
Google scholar
|
[53] |
W. Zhu, C. Song, Y. Zhou, Q. Wang, H. Bai, and F. Pan, Insight into interlayer magnetic coupling in 1T-type transition metal dichalcogenides based on the stacking of nonmagnetic atoms, Phys. Rev. B 103(22), 224404 (2021)
CrossRef
ADS
Google scholar
|
[54] |
J. W. Xiao and B. H. Yan, An electron-counting rule to determine the interlayer magnetic coupling of the van der Waals materials, 2D Mater. 7(4), 045010 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[55] |
Z. Li, J. Li, K. He, X. Wan, W. Duan, and Y. Xu, Tunable interlayer magnetism and band topology in van der Waals heterostructures of MnBi2Te4-family materials, Phys. Rev. B 102(8), 081107(R) (2020)
CrossRef
ADS
arXiv
Google scholar
|
[56] |
W. Zhu, C. Song, L. Liao, Z. Zhou, H. Bai, Y. Zhou, and F. Pan, Quantum anomalous Hall insulator state in ferromagnetically ordered MnBi2Te4/VBi2Te4 heterostructures, Phys. Rev. B 102(8), 085111 (2020)
CrossRef
ADS
Google scholar
|
[57] |
N. Liu, S. Zhou, and J. Zhao, High-Curie-temperature ferromagnetism in bilayer CrI3 on bulk semiconducting substrates, Phys. Rev. Mater. 4(9), 094003 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[58] |
J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides, Nat. Mater. 4(2), 173 (2005)
CrossRef
ADS
Google scholar
|
[59] |
E. J. Telford, A. H. Dismukes, R. L. Dudley, R. A. Wiscons, K. Lee, D. G. Chica, M. E. Ziebel, M. G. Han, J. Yu, S. Shabani, A. Scheie, K. Watanabe, T. Taniguchi, D. Xiao, Y. Zhu, A. N. Pasupathy, C. Nuckolls, X. Zhu, C. R. Dean, and X. Roy, Coupling between magnetic order and charge transport in a two-dimensional magnetic semiconductor, Nat. Mater. 21(7), 754 (2022)
CrossRef
ADS
arXiv
Google scholar
|
/
〈 |
|
〉 |