Interlayer ferromagnetic coupling in nonmagnetic elements doped CrI3 thin films

Xuqi Li, Xuyan Chen, Shiyang Sun, Huihui Zhang, Haidan Sang, Xiaonan Wang, Shifei Qi, Zhenhua Qiao

PDF(3317 KB)
PDF(3317 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (6) : 63209. DOI: 10.1007/s11467-024-1435-2
LETTER

Interlayer ferromagnetic coupling in nonmagnetic elements doped CrI3 thin films

Author information +
History +

Abstract

The exploration of magnetism in two-dimensional layered materials has attracted extensive research interest. For the monoclinic phase CrI3 with interlayer antiferromagnetism, finding a static and robust way of realizing the intrinsic interlayer ferromagnetic coupling is desirable. In this work, we study the electronic structure and magnetic properties of the nonmagnetic element (e.g., O, S, Se, N, P, As, and C) doped bi- and triple-layer CrI3 systems via first-principles calculations. Our results demonstrate that O, P, S, As, and Se doped CrI3 bilayer can realize interlayer ferromagnetism. Further analysis shows that the interlayer ferromagnetic coupling in the doped few-layer CrI3 is closely related to the formation of localized spin-polarized state around the doped elements. Further study presents that, for As-doped tri-layer CrI3, it can realize interlayer ferromagnetic coupling. This work proves that nonmagnetic element doping can realize the interlayer ferromagnetically-coupled few-layer CrI3 while maintaining its semiconducting characteristics without introducing additional carriers.

Graphical abstract

Keywords

ferromagnetism / magnetic doping

Cite this article

Download citation ▾
Xuqi Li, Xuyan Chen, Shiyang Sun, Huihui Zhang, Haidan Sang, Xiaonan Wang, Shifei Qi, Zhenhua Qiao. Interlayer ferromagnetic coupling in nonmagnetic elements doped CrI3 thin films. Front. Phys., 2024, 19(6): 63209 https://doi.org/10.1007/s11467-024-1435-2

References

[1]
B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
CrossRef ADS arXiv Google scholar
[2]
C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
CrossRef ADS arXiv Google scholar
[3]
Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, and Y. Zhang, Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563(7729), 94 (2018)
CrossRef ADS arXiv Google scholar
[4]
M. Gibertini, M. Koperski, A. F. Morpurgo, and K. S. Novoselov, Magnetic 2D materials and heterostructures, Nat. Nanotechnol. 14(5), 408 (2019)
CrossRef ADS arXiv Google scholar
[5]
D. Zhong, K. L. Seyler, X. Linpeng, R. Cheng, N. Sivadas, B. Huang, E. Schmidgall, T. Taniguchi, K. Watanabe, M. A. McGuire, W. Yao, D. Xiao, K. M. C. Fu, and X. Xu, Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics, Sci. Adv. 3(5), e1603113 (2017)
CrossRef ADS arXiv Google scholar
[6]
K. L. Seyler, D. Zhong, B. Huang, X. Linpeng, N. P. Wilson, T. Taniguchi, K. Watanabe, W. Yao, D. Xiao, M. A. McGuire, K. M. C. Fu, and X. Xu, Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures, Nano Lett. 18(6), 3823 (2018)
CrossRef ADS arXiv Google scholar
[7]
K. Zollner, M. Gmitra, and J. Fabian, Electrically tunable exchange splitting in bilayer graphene on monolayer Cr2X2Te6 with X = Ge, Si, and Sn, New J. Phys. 20(7), 073007 (2018)
CrossRef ADS arXiv Google scholar
[8]
T. Song, X. Cai, M. W. Y. Tu, X. Zhang, B. Huang, N. P. Wilson, K. L. Seyler, L. Zhu, T. Taniguchi, K. Watanabe, M. A. McGuire, D. H. Cobden, D. Xiao, W. Yao, and X. Xu, Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures, Science 360(6394), 1214 (2018)
CrossRef ADS arXiv Google scholar
[9]
D. R. Klein, D. MacNeill, J. L. Lado, D. Soriano, E. Navarro-Moratalla, K. Watanabe, T. Taniguchi, S. Manni, P. Canfield, J. Fernández-Rossier, and P. Jarillo-Herrero, Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling, Science 360(6394), 1218 (2018)
CrossRef ADS arXiv Google scholar
[10]
C. Cardoso, D. Soriano, N. A. García-Martínez, and J. Fernández-Rossier, Van der Waals spin valves, Phys. Rev. Lett. 121(6), 067701 (2018)
CrossRef ADS arXiv Google scholar
[11]
Z. Wang, I. Gutiérrez-Lezama, N. Ubrig, M. Kroner, M. Gibertini, T. Taniguchi, K. Watanabe, A. Imamoğlu, E. Giannini, and A. F. Morpurgo, Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3, Nat. Commun. 9(1), 2516 (2018)
CrossRef ADS arXiv Google scholar
[12]
D. Ghazaryan, M. T. Greenaway, Z. Wang, V. H. Guarochico-Moreira, I. J. Vera-Marun, J. Yin, Y. Liao, S. V. Morozov, O. Kristanovski, A. I. Lichtenstein, M. I. Katsnelson, F. Withers, A. Mishchenko, L. Eaves, A. K. Geim, K. S. Novoselov, and A. Misra, Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3, Nat. Electron. 1(6), 344 (2018)
CrossRef ADS arXiv Google scholar
[13]
B. Huang, G. Clark, D. R. Klein, D. MacNeill, E. Navarro-Moratalla, K. L. Seyler, N. Wilson, M. A. McGuire, D. H. Cobden, D. Xiao, W. Yao, P. Jarillo-Herrero, and X. Xu, Electrical control of 2D magnetism in bilayer CrI3, Nat. Nanotechnol. 13(7), 544 (2018)
CrossRef ADS arXiv Google scholar
[14]
Z. Wang, M. Gibertini, D. Dumcenco, T. Taniguchi, K. Watanabe, E. Giannini, and A. F. Morpurgo, Determining the phase diagram of atomically thin layered antiferromagnet CrCl3, Nat. Nanotechnol. 14(12), 1116 (2019)
CrossRef ADS arXiv Google scholar
[15]
Y. Wang, F. Zhang, M. Zeng, H. Sun, Z. Hao, Y. Cai, H. Rong, C. Zhang, C. Liu, X. Ma, L. Wang, S. Guo, J. Lin, Q. Liu, C. Liu, and C. Chen, Intrinsic magnetic topological materials, Front. Phys. 18(2), 21304 (2023)
CrossRef ADS Google scholar
[16]
M. Kim, P. Kumaravadivel, J. Birkbeck, W. Kuang, S. G. Xu, D. G. Hopkinson, J. Knolle, P. A. McClarty, A. I. Berdyugin, M. Ben Shalom, R. V. Gorbachev, S. J. Haigh, S. Liu, J. H. Edgar, K. S. Novoselov, I. V. Grigorieva, and A. K. Geim, Micromagnetometry of two-dimensional ferromagnets, Nat. Electron. 2(10), 457 (2019)
CrossRef ADS arXiv Google scholar
[17]
B. Karpiak, A. W. Cummings, K. Zollner, M. Vila, D. Khokhriakov, A. M. Hoque, A. Dankert, P. Svedlindh, J. Fabian, S. Roche, and S. P. Dash, Magnetic proximity in a van der Waals heterostructure of magnetic insulator and graphene, 2D Mater. 7(1), 015026 (2019)
CrossRef ADS Google scholar
[18]
N. Sivadas, S. Okamoto, X. Xu, C. J. Fennie, and D. Xiao, Stacking-dependent magnetism in bilayer CrI3, Nano Lett. 18(12), 7658 (2018)
CrossRef ADS arXiv Google scholar
[19]
D. Wang and B. Sanyal, Systematic study of monolayer to trilayer CrI3: Stacking sequence dependence of electronic structure and magnetism, J. Phys. Chem. C 125(33), 18467 (2021)
CrossRef ADS Google scholar
[20]
P. Jiang, C. Wang, D. Chen, Z. Zhong, Z. Yuan, Z. Y. Lu, and W. Ji, Stacking tunable interlayer magnetism in bilayer CrI3, Phys. Rev. B 99(14), 144401 (2019)
CrossRef ADS arXiv Google scholar
[21]
S. W. Jang, M. Y. Jeong, H. Yoon, S. Ryee, and M. J. Han, Microscopic understanding of magnetic interactions in bilayer CrI3, Phys. Rev. Mater. 3(3), 031001 (2019)
CrossRef ADS arXiv Google scholar
[22]
D. Soriano, C. Cardoso, and J. Fernández-Rossier, Interplay between interlayer exchange and stacking in CrI3 bilayers, Solid State Commun. 299, 113662 (2019)
CrossRef ADS arXiv Google scholar
[23]
L. Thiel, Z. Wang, M. A. Tschudin, D. Rohner, I. Gutiérrez-Lezama, N. Ubrig, M. Gibertini, E. Giannini, A. F. Morpurgo, and P. Maletinsky, Probing magnetism in 2D materials at the nanoscale with single-spin microscopy, Science 364(6444), 973 (2019)
CrossRef ADS arXiv Google scholar
[24]
N. Ubrig, Z. Wang, J. Teyssier, T. Taniguchi, K. Watanabe, E. Giannini, A. F. Morpurgo, and M. Gibertini, Low-temperature monoclinic layer stacking in atomically thin CrI3 crystals, 2D Mater. 7(1), 015007 (2020)
CrossRef ADS Google scholar
[25]
H. H. Kim, B. Yang, T. Patel, F. Sfigakis, C. Li, S. Tian, H. L. Lei, and A. W. Tsen, One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure, Nano Lett. 18(8), 4885 (2018)
CrossRef ADS arXiv Google scholar
[26]
M. A. McGuire, H. Dixit, V. R. Cooper, and B. C. Sales, Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3, Chem. Mater. 27(2), 612 (2015)
CrossRef ADS Google scholar
[27]
S. Jiang, L. Li, Z. Wang, K. F. Mak, and J. Shan, Controlling magnetism in 2D CrI3 by electrostatic doping, Nat. Nanotechnol. 13(7), 549 (2018)
CrossRef ADS arXiv Google scholar
[28]
C. Xu, Q. J. Wang, B. Xu, and J. Hu, Effect of biaxial strain and hydrostatic pressure on the magnetic properties of bilayer CrI3, Front. Phys. 16(5), 53502 (2021)
CrossRef ADS arXiv Google scholar
[29]
R. Xu and X. Zou, Electric field-modulated magnetic phase transition in van der Waals CrI3 bilayers, J. Phys. Chem. Lett. 11(8), 3152 (2020)
[30]
D. Soriano and M. I. Katsnelson, Magnetic polaron and antiferromagnetic-ferromagnetic transition in doped bilayer CrI3, Phys. Rev. B 101(4), 041402(R) (2020)
CrossRef ADS arXiv Google scholar
[31]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef ADS Google scholar
[32]
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[33]
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef ADS Google scholar
[34]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[35]
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)
CrossRef ADS Google scholar
[36]
V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B 44(3), 943 (1991)
CrossRef ADS Google scholar
[37]
S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B 57(3), 1505 (1998)
CrossRef ADS Google scholar
[38]
M. Yang, H. Shu, P. Tang, P. Liang, D. Cao, and X. Chen, Intrinsic polarization-induced enhanced ferro-magnetism and self-doped p‒n junctions in CrBr3/GaN van der Waals heterostructures, ACS Appl. Mater. Interfaces 13(7), 8764 (2021)
CrossRef ADS Google scholar
[39]
C. Franchini, M. Reticcioli, M. Setvin, and U. Diebold, Polarons in materials, Nat. Rev. Mater. 6(7), 560 (2021)
CrossRef ADS Google scholar
[40]
J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
CrossRef ADS Google scholar
[41]
J. M. Zhang, W. G. Zhu, Y. Zhang, D. Xiao, and Y. G. Yao, Tailoring magnetic doping in the topological insulator Bi2Se3, Phys. Rev. Lett. 109(26), 266405 (2012)
CrossRef ADS arXiv Google scholar
[42]
S. Qi, R. Gao, M. Chang, T. Hou, Y. Han, and Z. Qiao, Nonmagnetic doping induced quantum anomalous Hall effect in topological insulators, Phys. Rev. B 102(8), 085419 (2020)
CrossRef ADS arXiv Google scholar
[43]
Y. Han, S. Sun, S. Qi, X. Xu, and Z. Qiao, Interlayer ferromagnetism and high-temperature quantum anomalous Hall effect in p-doped MnBi2Te4 multilayers, Phys. Rev. B 103(24), 245403 (2021)
CrossRef ADS arXiv Google scholar
[44]
H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Room-temperature ferromagnetism in carbon-doped ZnO, Phys. Rev. Lett. 99(12), 127201 (2007)
CrossRef ADS Google scholar
[45]
S.GrimmeJ. AntonyS.EhrlichS.Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132(15), 154104 (2010)
[46]
M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Van der Waals density functional for general geometries, Phys. Rev. Lett. 92(24), 246401 (2004)
CrossRef ADS Google scholar
[47]
K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Higher-accuracy van der Waals density functional, Phys. Rev. B 82(8), 081101(R) (2010)
CrossRef ADS arXiv Google scholar
[48]
J. Klimeš, D. R. Bowler, and A. Michaelides, Van der Waals density functionals applied to solids, Phys. Rev. B 83(19), 195131 (2011)
CrossRef ADS arXiv Google scholar
[49]
J. Klimeš, D. R. Bowler, and A. Michaelides, Chemical accuracy for the van der Waals density functional, J. Phys.: Condens. Matter 22(2), 022201 (2010)
CrossRef ADS Google scholar
[50]
T. Li, S. Jiang, N. Sivadas, Z. Wang, Y. Xu, D. Weber, J. E. Goldberger, K. Watanabe, T. Taniguchi, C. J. Fennie, K. Fai Mak, and J. Shan, Pressure-controlled interlayer magnetism in atomically thin CrI3, Nat. Mater. 18(12), 1303 (2019)
CrossRef ADS arXiv Google scholar
[51]
T. Song, Z. Fei, M. Yankowitz, Z. Lin, Q. Jiang, K. Hwangbo, Q. Zhang, B. Sun, T. Taniguchi, K. Watanabe, M. A. McGuire, D. Graf, T. Cao, J. H. Chu, D. H. Cobden, C. R. Dean, D. Xiao, and X. Xu, Switching 2D magnetic states via pressure tuning of layer stacking, Nat. Mater. 18(12), 1298 (2019)
CrossRef ADS arXiv Google scholar
[52]
J. Xia, J. Yan, Z. Wang, Y. He, Y. Gong, W. Chen, T. C. Sum, Z. Liu, P. M. Ajayan, and Z. Shen, Strong coupling and pressure engineering in WSe2−MoSe2 heterobilayers, Nat. Phys. 17(1), 92 (2021)
CrossRef ADS Google scholar
[53]
W. Zhu, C. Song, Y. Zhou, Q. Wang, H. Bai, and F. Pan, Insight into interlayer magnetic coupling in 1T-type transition metal dichalcogenides based on the stacking of nonmagnetic atoms, Phys. Rev. B 103(22), 224404 (2021)
CrossRef ADS Google scholar
[54]
J. W. Xiao and B. H. Yan, An electron-counting rule to determine the interlayer magnetic coupling of the van der Waals materials, 2D Mater. 7(4), 045010 (2020)
CrossRef ADS arXiv Google scholar
[55]
Z. Li, J. Li, K. He, X. Wan, W. Duan, and Y. Xu, Tunable interlayer magnetism and band topology in van der Waals heterostructures of MnBi2Te4-family materials, Phys. Rev. B 102(8), 081107(R) (2020)
CrossRef ADS arXiv Google scholar
[56]
W. Zhu, C. Song, L. Liao, Z. Zhou, H. Bai, Y. Zhou, and F. Pan, Quantum anomalous Hall insulator state in ferromagnetically ordered MnBi2Te4/VBi2Te4 heterostructures, Phys. Rev. B 102(8), 085111 (2020)
CrossRef ADS Google scholar
[57]
N. Liu, S. Zhou, and J. Zhao, High-Curie-temperature ferromagnetism in bilayer CrI3 on bulk semiconducting substrates, Phys. Rev. Mater. 4(9), 094003 (2020)
CrossRef ADS arXiv Google scholar
[58]
J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides, Nat. Mater. 4(2), 173 (2005)
CrossRef ADS Google scholar
[59]
E. J. Telford, A. H. Dismukes, R. L. Dudley, R. A. Wiscons, K. Lee, D. G. Chica, M. E. Ziebel, M. G. Han, J. Yu, S. Shabani, A. Scheie, K. Watanabe, T. Taniguchi, D. Xiao, Y. Zhu, A. N. Pasupathy, C. Nuckolls, X. Zhu, C. R. Dean, and X. Roy, Coupling between magnetic order and charge transport in a two-dimensional magnetic semiconductor, Nat. Mater. 21(7), 754 (2022)
CrossRef ADS arXiv Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 11974098 and 11974327), the Natural Science Foundation of Hebei Province (No. A2023205017), the Science Foundation of Hebei Normal University (No. 2019B16), the Fundamental Research Funds for the Central Universities (Nos. WK2030020032 and WK2340000082), and Anhui Initiative in Quantum Information Technologies. The supercomputing services of AM-HPC and USTC are gratefully acknowledged.

RIGHTS & PERMISSIONS

2024 The Authors
AI Summary AI Mindmap
PDF(3317 KB)

Accesses

Citations

Detail

Sections
Recommended

/