Temperature dependence of positive and negative magnetoresistances of tantalum-covered multiwalled carbon nanotubes
Julienne Impundu, Wenxiang Wang, Zheng Wei, Yushi Xu, Yu Wang, Jiawang You, Wenbin Huang, Yong Jun Li, Lianfeng Sun
Temperature dependence of positive and negative magnetoresistances of tantalum-covered multiwalled carbon nanotubes
Carbon nanotubes (CNTs) have garnered significant attention due to their remarkable electronic and magnetic properties. In this research, we introduced multiwalled carbon nanotubes covered with tantalum (MWNTs/Ta) to systematically modulate the magnetoresistive properties of the MWNTs/Ta hybrid nanostructures. We observed distinct changes in both positive and negative magnetoresistances of MWNTs/Ta across a broad temperature range using a physical property measurement system and a four-terminal method. This study on temperature-dependent magnetoresistive behavior of the MWNTs/Ta sheds light on the fundamental properties of carbon-based materials and holds promise for practical applications in the field of spintronic devices.
multiwalled carbon nanotubes / tantalum / magnetoresistance / temperature dependence / physical property measurement system / four-terminal method
[1] |
T. W. Odom , J. L. Huang , P. Kim , and C. M. Lieber , Structure and electronic properties of carbon nanotubes, J. Phys. Chem. B 104(13), 2794 (2000)
CrossRef
ADS
Google scholar
|
[2] |
T. W. Ebbesen , H. J. Lezec , H. Hiura , J. W. Bennett , H. F. Ghaemi , and T. Thio , Electrical conductivity of individual carbon nanotubes, Nature 382(6586), 54 (1996)
CrossRef
ADS
Google scholar
|
[3] |
M. R. Falvo , G. J. Clary , V. II Taylor , F. P. Jr Chi , S. Jr Brooks , S. Washburn , and R. Superfine , Bending and buckling of carbon nanotubes under large strain, Nature 389(6651), 582 (1997)
CrossRef
ADS
Google scholar
|
[4] |
P. Avouris , M. Freitag , and V. Perebeinos , Carbon-nanotube photonics and optoelectronics, Nat. Photonics 2(6), 341 (2008)
CrossRef
ADS
Google scholar
|
[5] |
P. Avouris and R. Martel , Progress in carbon nanotube electronics and photonics, MRS Bull. 35(4), 306 (2010)
CrossRef
ADS
Google scholar
|
[6] |
F. Kuemmeth , S. Ilani , D. C. Ralph , and P. L. McEuen , Coupling of spin and orbital motion of electrons in carbon nanotubes, Nature 452(7186), 448 (2008)
CrossRef
ADS
Google scholar
|
[7] |
J. Guo , H. Jiang , Y. Teng , Y. Xiong , Z. Chen , L. You , and D. Xiao , Recent advances in magnetic carbon nanotubes: Synthesis, challenges and highlighted applications, J. Mater. Chem. B 9(44), 9076 (2021)
CrossRef
ADS
Google scholar
|
[8] |
W. Wang , J. Impundu , J. Jin , Z. Peng , H. Liu , Z. Wei , Y. Xu , Y. Wang , J. You , W. Fan , Y. J. Li , and L. Sun , Ferromagnetism in sp2 carbon, Nano Res. 16, 12883 (2023)
CrossRef
ADS
Google scholar
|
[9] |
Z. Li , S. Li , Y. Xu , and N. Tang , Recent advances in magnetism of graphene from 0D to 2D, Chem. Commun. (Camb.) 59(42), 6286 (2023)
CrossRef
ADS
Google scholar
|
[10] |
K. F. Mak , J. Shan , and D. C. Ralph , Probing and controlling magnetic states in 2D layered magnetic materials, Nat. Rev. Phys. 1(11), 646 (2019)
CrossRef
ADS
Google scholar
|
[11] |
J. Impundu , S. Hussain , E. Minani , H. Liu , Y. J. Li , and L. Sun , Local magnetic characterization of 1D and 2D carbon nanomaterials with magnetic force microscopy techniques: A review, Mater. Today Commun. 35, 106103 (2023)
CrossRef
ADS
Google scholar
|
[12] |
Z.ChenJ.LiT.LiT.FanC.MengC.LiJ.KangL.ChaiY.HaoY.TangO.A. Al-HartomyS.WagehA.G. Al-SehemiZ.LuoJ.YuY.ShaoD.LiS.FengW.J. LiuY.HeX.MaZ.XieH.Zhang, A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2, Natl. Sci. Rev. 9(8), nwac104 (2022)
|
[13] |
F.ZhengZ.ChenJ.LiR.WuB.ZhangG.NieZ.XieH.Zhang, A highly sensitive CRISPR‐empowered surface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification, Adv. Sci. (Weinh.) 9(14), 2105231 (2022)
|
[14] |
Y. Gu , Z. Qiu , and K. Müllen , Nanographenes and graphene nanoribbons as multitalents of present and future materials science, J. Am. Chem. Soc. 144(26), 11499 (2022)
CrossRef
ADS
Google scholar
|
[15] |
Y. Liu , C. Zeng , J. Zhong , J. Ding , Z. M. Wang , and Z. Liu , Spintronics in two-dimensional materials, Nano-Micro Lett. 12(1), 93 (2020)
CrossRef
ADS
Google scholar
|
[16] |
E.C. Ahn, 2D materials for spintronic devices, npj 2D Mater. Appl. 4(1), 17 (2020)
|
[17] |
P. Ghising , C. Biswas , and Y. H. Lee , Graphene spin valves for spin logic devices, Adv. Mater. 35(23), 2209137 (2023)
CrossRef
ADS
Google scholar
|
[18] |
E. A. Laird , F. Kuemmeth , G. A. Steele , K. Grove-Rasmussen , J. Nygård , K. Flensberg , and L. P. Kouwenhoven , Quantum transport in carbon nanotubes, Rev. Mod. Phys. 87(3), 703 (2015)
CrossRef
ADS
Google scholar
|
[19] |
W. D. Rice , R. T. Weber , P. Nikolaev , S. Arepalli , V. Berka , A. L. Tsai , and J. Kono , Spin relaxation times of single-wall carbon nanotubes, Phys. Rev. B 88(4), 041401 (2011)
CrossRef
ADS
Google scholar
|
[20] |
B. G. Márkus , M. Gmitra , B. Dóra , G. Csősz , T. Fehér , P. Szirmai , B. Náfrádi , V. Zólyomi , L. Forró , J. Fabian , and F. Simon , Ultralong 100 ns spin relaxation time in graphite at room temperature, Nat. Commun. 14(1), 2831 (2023)
CrossRef
ADS
Google scholar
|
[21] |
H.IdzuchiM.B. MartinY.OtaniB.DlubakP.SeneorA.AnaneH.JaffresA.Fert, Handbook of Spintronics, Dordrecht, Springer, 2015
|
[22] |
X. Gu , L. Guo , Y. Qin , T. Yang , K. Meng , S. Hu , and X. Sun , Challenges and prospects of molecular spintronics, Precis. Chem. 2(1), 1 (2024)
CrossRef
ADS
Google scholar
|
[23] |
Y. Liu , C. Zeng , J. Zhong , J. Ding , Z. M. Wang , and Z. Liu , Spintronics in two-dimensional materials, Nano-Micro Lett. 12(1), 93 (2020)
CrossRef
ADS
Google scholar
|
[24] |
J. W. McClure , Diamagnetism of graphite, Phys. Rev. 104(3), 666 (1956)
CrossRef
ADS
Google scholar
|
[25] |
E. C. Lee , Y. S. Kim , Y. G. Jin , and K. J. Chang , First-principles study of hydrogen adsorption on carbon nanotube surfaces, Phys. Rev. B 66(7), 073415 (2002)
CrossRef
ADS
Google scholar
|
[26] |
H. Liu , H. Wang , Z. Peng , J. Jin , Z. Wang , K. Peng , W. Wang , Y. Xu , Y. Wang , Z. Wei , D. Zhang , Y. J. Li , W. Chu , and L. Sun , An anomalous Hall effect in edge-bonded monolayer graphene, Nanoscale Horiz. 8(9), 1235 (2023)
CrossRef
ADS
Google scholar
|
[27] |
J.LiuZ.PengJ.CaiJ.YueH.WeiJ.ImpunduH.LiuJ.JinZ.YangW.ChuY.J. LiG.WangL.Sun, A room-temperature four-terminal spin field effect transistor, Nano Today 38, 101138 (2021)
|
[28] |
P. Kapitza and E. Rutherford , The study of the specific resistance of bismuth crystals and its change in strong magnetic fields and some allied problems, Proc. R. Soc. Lond. A 119(782), 358 (1928)
CrossRef
ADS
Google scholar
|
[29] |
P. Kapitza , The change of electrical conductivity in strong magnetic fields (Part II): The analysis and the interpretation of the experimental results, Proc. R. Soc. Lond. 123, 292 (1929)
|
[30] |
R. V. Coleman and A. Isin , Magnetoresistance in iron single crystals, J. Appl. Phys. 37(3), 1028 (1966)
CrossRef
ADS
Google scholar
|
[31] |
Y. Li , Y. F. Cao , G. N. Wei , Y. Li , Y. Ji , K. Y. Wang , K. W. Edmonds , R. P. Campion , A. W. Rush-forth , C. T. Foxon , B. L. Gallagher , and Anisotropic current-controlled magnetization reversal in the ferromagnetic semiconductor (Ga , Mn)As, Appl. Phys. Lett. 103(2), 022401 (2013)
CrossRef
ADS
Google scholar
|
[32] |
P. Esquinazi , J. Barzola-Quiquia , D. Spemann , M. Rothermel , H. Ohldag , N. García , A. Setzer , and T. Butz , Magnetic order in graphite: Experimental evidence, intrinsic and extrinsic difficulties, J. Magn. Magn. Mater. 322(9−12), 1156 (2010)
CrossRef
ADS
Google scholar
|
[33] |
L. Chen , X. Yang , F. Yang , J. Zhao , J. Misuraca , P. Xiong , S. von Molnár , and Enhancing the Curie temperature of ferromagnetic semiconductor (Ga , Mn)As to 200 K via nanostructure engineering, Nano Lett. 11(7), 2584 (2011)
CrossRef
ADS
Google scholar
|
[34] |
X.LiJ.W. LiJ.Y. YouG.SuB.Gu, High Curie temperature and high hole mobility in diluted magnetic semiconductors (B, Mn)X (X = N, P, As, Sb), cond-mat/2311.11283 (2023)
|
[35] |
L. Malter and D. B. Langmuir , Resistance, emissivities and melting point of tantalum, Phys. Rev. 55(8), 743 (1939)
CrossRef
ADS
Google scholar
|
[36] |
Z. Wang , Y. Zuo , Y. Li , X. Han , X. Guo , J. Wang , B. Cao , L. Xi , and D. Xue , Improved field emission properties of carbon nanotubes decorated with Ta layer, Carbon 73, 114 (2014)
CrossRef
ADS
Google scholar
|
[37] |
O. V. Yazyev and L. Helm , Defect-induced magnetism in graphene, Phys. Rev. B 75(12), 125408 (2007)
CrossRef
ADS
Google scholar
|
[38] |
G. Wang , M. J. Chen , F. Yu , L. J. Xue , Y. Deng , J. Zhang , X. Y. Qi , Y. Gao , W. G. Chu , G. T. Liu , H. F. Yang , C. Z. Gu , and L. F. Sun , Giant magnetic moment at open ends of multiwalled carbon nanotubes, Chin. Phys. B 24(1), 016202 (2015)
CrossRef
ADS
Google scholar
|
[39] |
J. Zhang , Y. Deng , T. T. Hao , X. Hu , Y. Y. Liu , Z. S. Peng , J. P. Nshimiyimana , X. N. Chi , P. Wu , S. Y. Liu , Z. Zhang , J. J. Li , G. T. Wang , W. G. Chu , C. Z. Gu , and L. F. Sun , Large magnetic moment at sheared ends of single-walled carbon nanotubes, Chin. Phys. B 27(12), 128101 (2018)
CrossRef
ADS
Google scholar
|
[40] |
W. Z. Zhuo , B. Lei , S. Wu , F. H. Yu , C. S. Zhu , J. H. Cui , Z. L. Sun , D. H. Ma , M. Z. Shi , H. H. Wang , W. X. Wang , T. Wu , J. J. Ying , S. W. Wu , Z. Y. Wang , and X. H. Chen , Manipulating ferromagnetism in few-layered Cr2Ge2Te6, Adv. Mater. 33(31), 2008586 (2021)
CrossRef
ADS
Google scholar
|
[41] |
K. L. Jiang , Q. Li , and S. Fan , Spinning continuous carbon nanotube yarns, Nature 419(6909), 801 (2002)
CrossRef
ADS
Google scholar
|
[42] |
M. Zhang , K. R. Atkinson , and R. H. Baughman , Multifunctional carbon nanotube yarns by downsizing an ancient technology, Science 306(5700), 1358 (2004)
CrossRef
ADS
Google scholar
|
[43] |
X. Lepró , M. D. Lima , and R. H. Baughman , Spinnable carbon nanotube forests grown on thin, flexible metallic substrates, Carbon 48(12), 3621 (2010)
CrossRef
ADS
Google scholar
|
[44] |
S. Zhang , L. Zhu , M. L. Minus , H. G. Chae , S. Jagannathan , C. P. Wong , J. Kowalik , L. B. Roberson , and S. Kumar , Solid-state spun fibers and yarns from 1-mm long carbon nanotube forests synthesized by water-assisted chemical vapor deposition, J. Mater. Sci. 43(13), 4356 (2008)
CrossRef
ADS
Google scholar
|
[45] |
C. D. Tran , W. Humphries , S. M. Smith , C. Huynh , and S. Lucas , Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process, Carbon 47(11), 2662 (2009)
CrossRef
ADS
Google scholar
|
[46] |
N. Xin , J. Lourembam , P. Kumaravadivel , A. E. Kazantsev , Z. Wu , C. Mullan , J. Barrier , A. A. Geim , I. V. Grigorieva , A. Mishchenko , A. Principi , V. I. Fal’ko , L. A. Ponomarenko , A. K. Geim , and A. I. Berdyugin , Giant magnetoresistance of Dirac plasma in high-mobility graphene, Nature 616(7956), 270 (2023)
CrossRef
ADS
Google scholar
|
[47] |
S. S. Alexandre , M. S. C. Mazzoni , and H. Chacham , Edge states and magnetism in carbon nanotubes with line defects, Phys. Rev. Lett. 100(14), 146801 (2008)
CrossRef
ADS
Google scholar
|
[48] |
M. E. Khan , Q. Wali , M. Aamir , and Y. H. Kim , Spin transport properties of carbon nanotubes by ferromagnetic zigzag triangular defects: A first-principles study, Mater. Today Commun. 32, 104074 (2022)
CrossRef
ADS
Google scholar
|
[49] |
C. Zhang , E. Zhang , W. Wang , Y. Liu , Z. G. Chen , S. Lu , S. Liang , J. Cao , X. Yuan , L. Tang , Q. Li , C. Zhou , T. Gu , Y. Wu , J. Zou , and F. Xiu , Room-temperature chiral charge pumping in Dirac semimetals, Nat. Commun. 8(1), 13741 (2017)
CrossRef
ADS
Google scholar
|
[50] |
Q. Li , D. E. Kharzeev , C. Zhang , Y. Huang , I. Pletikosić , A. V. Fedorov , R. D. Zhong , J. A. Schneeloch , G. D. Gu , and T. Valla , Chiral magnetic effect in ZrTe5, Nat. Phys. 12(6), 550 (2016)
CrossRef
ADS
Google scholar
|
[51] |
N. Ong and S. Liang , Experimental signatures of the chiral anomaly in Dirac–Weyl semimetals, Nat. Rev. Phys. 3(6), 394 (2021)
CrossRef
ADS
Google scholar
|
[52] |
X. Huang , L. Zhao , Y. Long , P. Wang , D. Chen , Z. Yang , H. Liang , M. Xue , H. Weng , Z. Fang , X. Dai , and G. Chen , Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs, Phys. Rev. X 5(3), 031023 (2015)
CrossRef
ADS
Google scholar
|
[53] |
J. Wu and F. Hagelberg , Magnetism in finite-sized single-walled carbon nanotubes of the zigzag type, Phys. Rev. B 79(11), 115436 (2009)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |