Temperature dependence of positive and negative magnetoresistances of tantalum-covered multiwalled carbon nanotubes

Julienne Impundu, Wenxiang Wang, Zheng Wei, Yushi Xu, Yu Wang, Jiawang You, Wenbin Huang, Yong Jun Li, Lianfeng Sun

PDF(11187 KB)
PDF(11187 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (6) : 63208. DOI: 10.1007/s11467-024-1432-5
LETTER

Temperature dependence of positive and negative magnetoresistances of tantalum-covered multiwalled carbon nanotubes

Author information +
History +

Abstract

Carbon nanotubes (CNTs) have garnered significant attention due to their remarkable electronic and magnetic properties. In this research, we introduced multiwalled carbon nanotubes covered with tantalum (MWNTs/Ta) to systematically modulate the magnetoresistive properties of the MWNTs/Ta hybrid nanostructures. We observed distinct changes in both positive and negative magnetoresistances of MWNTs/Ta across a broad temperature range using a physical property measurement system and a four-terminal method. This study on temperature-dependent magnetoresistive behavior of the MWNTs/Ta sheds light on the fundamental properties of carbon-based materials and holds promise for practical applications in the field of spintronic devices.

Graphical abstract

Keywords

multiwalled carbon nanotubes / tantalum / magnetoresistance / temperature dependence / physical property measurement system / four-terminal method

Cite this article

Download citation ▾
Julienne Impundu, Wenxiang Wang, Zheng Wei, Yushi Xu, Yu Wang, Jiawang You, Wenbin Huang, Yong Jun Li, Lianfeng Sun. Temperature dependence of positive and negative magnetoresistances of tantalum-covered multiwalled carbon nanotubes. Front. Phys., 2024, 19(6): 63208 https://doi.org/10.1007/s11467-024-1432-5

References

[1]
T. W. Odom , J. L. Huang , P. Kim , and C. M. Lieber , Structure and electronic properties of carbon nanotubes, J. Phys. Chem. B 104(13), 2794 (2000)
CrossRef ADS Google scholar
[2]
T. W. Ebbesen , H. J. Lezec , H. Hiura , J. W. Bennett , H. F. Ghaemi , and T. Thio , Electrical conductivity of individual carbon nanotubes, Nature 382(6586), 54 (1996)
CrossRef ADS Google scholar
[3]
M. R. Falvo , G. J. Clary , V. II Taylor , F. P. Jr Chi , S. Jr Brooks , S. Washburn , and R. Superfine , Bending and buckling of carbon nanotubes under large strain, Nature 389(6651), 582 (1997)
CrossRef ADS Google scholar
[4]
P. Avouris , M. Freitag , and V. Perebeinos , Carbon-nanotube photonics and optoelectronics, Nat. Photonics 2(6), 341 (2008)
CrossRef ADS Google scholar
[5]
P. Avouris and R. Martel , Progress in carbon nanotube electronics and photonics, MRS Bull. 35(4), 306 (2010)
CrossRef ADS Google scholar
[6]
F. Kuemmeth , S. Ilani , D. C. Ralph , and P. L. McEuen , Coupling of spin and orbital motion of electrons in carbon nanotubes, Nature 452(7186), 448 (2008)
CrossRef ADS Google scholar
[7]
J. Guo , H. Jiang , Y. Teng , Y. Xiong , Z. Chen , L. You , and D. Xiao , Recent advances in magnetic carbon nanotubes: Synthesis, challenges and highlighted applications, J. Mater. Chem. B 9(44), 9076 (2021)
CrossRef ADS Google scholar
[8]
W. Wang , J. Impundu , J. Jin , Z. Peng , H. Liu , Z. Wei , Y. Xu , Y. Wang , J. You , W. Fan , Y. J. Li , and L. Sun , Ferromagnetism in sp2 carbon, Nano Res. 16, 12883 (2023)
CrossRef ADS Google scholar
[9]
Z. Li , S. Li , Y. Xu , and N. Tang , Recent advances in magnetism of graphene from 0D to 2D, Chem. Commun. (Camb.) 59(42), 6286 (2023)
CrossRef ADS Google scholar
[10]
K. F. Mak , J. Shan , and D. C. Ralph , Probing and controlling magnetic states in 2D layered magnetic materials, Nat. Rev. Phys. 1(11), 646 (2019)
CrossRef ADS Google scholar
[11]
J. Impundu , S. Hussain , E. Minani , H. Liu , Y. J. Li , and L. Sun , Local magnetic characterization of 1D and 2D carbon nanomaterials with magnetic force microscopy techniques: A review, Mater. Today Commun. 35, 106103 (2023)
CrossRef ADS Google scholar
[12]
Z.ChenJ.LiT.LiT.FanC.MengC.LiJ.KangL.ChaiY.HaoY.TangO.A. Al-HartomyS.WagehA.G. Al-SehemiZ.LuoJ.YuY.ShaoD.LiS.FengW.J. LiuY.HeX.MaZ.XieH.Zhang, A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2, Natl. Sci. Rev. 9(8), nwac104 (2022)
[13]
F.ZhengZ.ChenJ.LiR.WuB.ZhangG.NieZ.XieH.Zhang, A highly sensitive CRISPR‐empowered surface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification, Adv. Sci. (Weinh.) 9(14), 2105231 (2022)
[14]
Y. Gu , Z. Qiu , and K. Müllen , Nanographenes and graphene nanoribbons as multitalents of present and future materials science, J. Am. Chem. Soc. 144(26), 11499 (2022)
CrossRef ADS Google scholar
[15]
Y. Liu , C. Zeng , J. Zhong , J. Ding , Z. M. Wang , and Z. Liu , Spintronics in two-dimensional materials, Nano-Micro Lett. 12(1), 93 (2020)
CrossRef ADS Google scholar
[16]
E.C. Ahn, 2D materials for spintronic devices, npj 2D Mater. Appl. 4(1), 17 (2020)
[17]
P. Ghising , C. Biswas , and Y. H. Lee , Graphene spin valves for spin logic devices, Adv. Mater. 35(23), 2209137 (2023)
CrossRef ADS Google scholar
[18]
E. A. Laird , F. Kuemmeth , G. A. Steele , K. Grove-Rasmussen , J. Nygård , K. Flensberg , and L. P. Kouwenhoven , Quantum transport in carbon nanotubes, Rev. Mod. Phys. 87(3), 703 (2015)
CrossRef ADS Google scholar
[19]
W. D. Rice , R. T. Weber , P. Nikolaev , S. Arepalli , V. Berka , A. L. Tsai , and J. Kono , Spin relaxation times of single-wall carbon nanotubes, Phys. Rev. B 88(4), 041401 (2011)
CrossRef ADS Google scholar
[20]
B. G. Márkus , M. Gmitra , B. Dóra , G. Csősz , T. Fehér , P. Szirmai , B. Náfrádi , V. Zólyomi , L. Forró , J. Fabian , and F. Simon , Ultralong 100 ns spin relaxation time in graphite at room temperature, Nat. Commun. 14(1), 2831 (2023)
CrossRef ADS Google scholar
[21]
H.IdzuchiM.B. MartinY.OtaniB.DlubakP.SeneorA.AnaneH.JaffresA.Fert, Handbook of Spintronics, Dordrecht, Springer, 2015
[22]
X. Gu , L. Guo , Y. Qin , T. Yang , K. Meng , S. Hu , and X. Sun , Challenges and prospects of molecular spintronics, Precis. Chem. 2(1), 1 (2024)
CrossRef ADS Google scholar
[23]
Y. Liu , C. Zeng , J. Zhong , J. Ding , Z. M. Wang , and Z. Liu , Spintronics in two-dimensional materials, Nano-Micro Lett. 12(1), 93 (2020)
CrossRef ADS Google scholar
[24]
J. W. McClure , Diamagnetism of graphite, Phys. Rev. 104(3), 666 (1956)
CrossRef ADS Google scholar
[25]
E. C. Lee , Y. S. Kim , Y. G. Jin , and K. J. Chang , First-principles study of hydrogen adsorption on carbon nanotube surfaces, Phys. Rev. B 66(7), 073415 (2002)
CrossRef ADS Google scholar
[26]
H. Liu , H. Wang , Z. Peng , J. Jin , Z. Wang , K. Peng , W. Wang , Y. Xu , Y. Wang , Z. Wei , D. Zhang , Y. J. Li , W. Chu , and L. Sun , An anomalous Hall effect in edge-bonded monolayer graphene, Nanoscale Horiz. 8(9), 1235 (2023)
CrossRef ADS Google scholar
[27]
J.LiuZ.PengJ.CaiJ.YueH.WeiJ.ImpunduH.LiuJ.JinZ.YangW.ChuY.J. LiG.WangL.Sun, A room-temperature four-terminal spin field effect transistor, Nano Today 38, 101138 (2021)
[28]
P. Kapitza and E. Rutherford , The study of the specific resistance of bismuth crystals and its change in strong magnetic fields and some allied problems, Proc. R. Soc. Lond. A 119(782), 358 (1928)
CrossRef ADS Google scholar
[29]
P. Kapitza , The change of electrical conductivity in strong magnetic fields (Part II): The analysis and the interpretation of the experimental results, Proc. R. Soc. Lond. 123, 292 (1929)
[30]
R. V. Coleman and A. Isin , Magnetoresistance in iron single crystals, J. Appl. Phys. 37(3), 1028 (1966)
CrossRef ADS Google scholar
[31]
Y. Li , Y. F. Cao , G. N. Wei , Y. Li , Y. Ji , K. Y. Wang , K. W. Edmonds , R. P. Campion , A. W. Rush-forth , C. T. Foxon , B. L. Gallagher , and Anisotropic current-controlled magnetization reversal in the ferromagnetic semiconductor (Ga , Mn)As, Appl. Phys. Lett. 103(2), 022401 (2013)
CrossRef ADS Google scholar
[32]
P. Esquinazi , J. Barzola-Quiquia , D. Spemann , M. Rothermel , H. Ohldag , N. García , A. Setzer , and T. Butz , Magnetic order in graphite: Experimental evidence, intrinsic and extrinsic difficulties, J. Magn. Magn. Mater. 322(9−12), 1156 (2010)
CrossRef ADS Google scholar
[33]
L. Chen , X. Yang , F. Yang , J. Zhao , J. Misuraca , P. Xiong , S. von Molnár , and Enhancing the Curie temperature of ferromagnetic semiconductor (Ga , Mn)As to 200 K via nanostructure engineering, Nano Lett. 11(7), 2584 (2011)
CrossRef ADS Google scholar
[34]
X.LiJ.W. LiJ.Y. YouG.SuB.Gu, High Curie temperature and high hole mobility in diluted magnetic semiconductors (B, Mn)X (X = N, P, As, Sb), cond-mat/2311.11283 (2023)
[35]
L. Malter and D. B. Langmuir , Resistance, emissivities and melting point of tantalum, Phys. Rev. 55(8), 743 (1939)
CrossRef ADS Google scholar
[36]
Z. Wang , Y. Zuo , Y. Li , X. Han , X. Guo , J. Wang , B. Cao , L. Xi , and D. Xue , Improved field emission properties of carbon nanotubes decorated with Ta layer, Carbon 73, 114 (2014)
CrossRef ADS Google scholar
[37]
O. V. Yazyev and L. Helm , Defect-induced magnetism in graphene, Phys. Rev. B 75(12), 125408 (2007)
CrossRef ADS Google scholar
[38]
G. Wang , M. J. Chen , F. Yu , L. J. Xue , Y. Deng , J. Zhang , X. Y. Qi , Y. Gao , W. G. Chu , G. T. Liu , H. F. Yang , C. Z. Gu , and L. F. Sun , Giant magnetic moment at open ends of multiwalled carbon nanotubes, Chin. Phys. B 24(1), 016202 (2015)
CrossRef ADS Google scholar
[39]
J. Zhang , Y. Deng , T. T. Hao , X. Hu , Y. Y. Liu , Z. S. Peng , J. P. Nshimiyimana , X. N. Chi , P. Wu , S. Y. Liu , Z. Zhang , J. J. Li , G. T. Wang , W. G. Chu , C. Z. Gu , and L. F. Sun , Large magnetic moment at sheared ends of single-walled carbon nanotubes, Chin. Phys. B 27(12), 128101 (2018)
CrossRef ADS Google scholar
[40]
W. Z. Zhuo , B. Lei , S. Wu , F. H. Yu , C. S. Zhu , J. H. Cui , Z. L. Sun , D. H. Ma , M. Z. Shi , H. H. Wang , W. X. Wang , T. Wu , J. J. Ying , S. W. Wu , Z. Y. Wang , and X. H. Chen , Manipulating ferromagnetism in few-layered Cr2Ge2Te6, Adv. Mater. 33(31), 2008586 (2021)
CrossRef ADS Google scholar
[41]
K. L. Jiang , Q. Li , and S. Fan , Spinning continuous carbon nanotube yarns, Nature 419(6909), 801 (2002)
CrossRef ADS Google scholar
[42]
M. Zhang , K. R. Atkinson , and R. H. Baughman , Multifunctional carbon nanotube yarns by downsizing an ancient technology, Science 306(5700), 1358 (2004)
CrossRef ADS Google scholar
[43]
X. Lepró , M. D. Lima , and R. H. Baughman , Spinnable carbon nanotube forests grown on thin, flexible metallic substrates, Carbon 48(12), 3621 (2010)
CrossRef ADS Google scholar
[44]
S. Zhang , L. Zhu , M. L. Minus , H. G. Chae , S. Jagannathan , C. P. Wong , J. Kowalik , L. B. Roberson , and S. Kumar , Solid-state spun fibers and yarns from 1-mm long carbon nanotube forests synthesized by water-assisted chemical vapor deposition, J. Mater. Sci. 43(13), 4356 (2008)
CrossRef ADS Google scholar
[45]
C. D. Tran , W. Humphries , S. M. Smith , C. Huynh , and S. Lucas , Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process, Carbon 47(11), 2662 (2009)
CrossRef ADS Google scholar
[46]
N. Xin , J. Lourembam , P. Kumaravadivel , A. E. Kazantsev , Z. Wu , C. Mullan , J. Barrier , A. A. Geim , I. V. Grigorieva , A. Mishchenko , A. Principi , V. I. Fal’ko , L. A. Ponomarenko , A. K. Geim , and A. I. Berdyugin , Giant magnetoresistance of Dirac plasma in high-mobility graphene, Nature 616(7956), 270 (2023)
CrossRef ADS Google scholar
[47]
S. S. Alexandre , M. S. C. Mazzoni , and H. Chacham , Edge states and magnetism in carbon nanotubes with line defects, Phys. Rev. Lett. 100(14), 146801 (2008)
CrossRef ADS Google scholar
[48]
M. E. Khan , Q. Wali , M. Aamir , and Y. H. Kim , Spin transport properties of carbon nanotubes by ferromagnetic zigzag triangular defects: A first-principles study, Mater. Today Commun. 32, 104074 (2022)
CrossRef ADS Google scholar
[49]
C. Zhang , E. Zhang , W. Wang , Y. Liu , Z. G. Chen , S. Lu , S. Liang , J. Cao , X. Yuan , L. Tang , Q. Li , C. Zhou , T. Gu , Y. Wu , J. Zou , and F. Xiu , Room-temperature chiral charge pumping in Dirac semimetals, Nat. Commun. 8(1), 13741 (2017)
CrossRef ADS Google scholar
[50]
Q. Li , D. E. Kharzeev , C. Zhang , Y. Huang , I. Pletikosić , A. V. Fedorov , R. D. Zhong , J. A. Schneeloch , G. D. Gu , and T. Valla , Chiral magnetic effect in ZrTe5, Nat. Phys. 12(6), 550 (2016)
CrossRef ADS Google scholar
[51]
N. Ong and S. Liang , Experimental signatures of the chiral anomaly in Dirac–Weyl semimetals, Nat. Rev. Phys. 3(6), 394 (2021)
CrossRef ADS Google scholar
[52]
X. Huang , L. Zhao , Y. Long , P. Wang , D. Chen , Z. Yang , H. Liang , M. Xue , H. Weng , Z. Fang , X. Dai , and G. Chen , Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs, Phys. Rev. X 5(3), 031023 (2015)
CrossRef ADS Google scholar
[53]
J. Wu and F. Hagelberg , Magnetism in finite-sized single-walled carbon nanotubes of the zigzag type, Phys. Rev. B 79(11), 115436 (2009)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

J. Impundu gratefully acknowledges the financial support provided by the Organization for Women in Science for the Developing World (OWSD) Postgraduate Fellowship Program and the Swedish International Development Cooperation Agency (SIDA), the National Natural Science Foundation of China (No. 52372256), the CAS Project for Young Scientists in Basic Research (YSBR-030), the Major Nanoprojects of Ministry of Science and Technology of China (Grant No. 2018YFA0208403), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB36000000).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(11187 KB)

Accesses

Citations

Detail

Sections
Recommended

/