Bayesian method for fitting the low-energy constants in chiral perturbation theory
Hao-Xiang Pan, De-Kai Kong, Qiao-Yi Wen, Shao-Zhou Jiang
Bayesian method for fitting the low-energy constants in chiral perturbation theory
The values of the low-energy constants (LECs) are very important in the chiral perturbation theory. This paper adopts a Bayesian method with the truncation errors to globally fit eight next-to-leading order (NLO) LECs and next-to-next-leading order (NNLO) LECs . With the estimation of the truncation errors, the fitting results of in the NLO and NNLO are very close. The posterior distributions of indicate the boundary-dependent relations of these . Ten are weakly dependent on the boundaries and their values are reliable. The other are required more experimental data to constrain their boundaries. Some linear combinations of are also fitted with more reliable posterior distributions. If one knows some more precise values of , some other can be obtained by these values. With these fitting LECs, most observables provide a good convergence, except for the scattering lengths and . An example is also introduced to test the improvement of the method. All the computations indicate that considering the truncation errors can improve the global fit greatly, and more prior information can obtain better fitting results. This fitting method can be extended to the other effective field theories and the perturbation theory.
chiral perturbation theory / low-energy constants / Bayesian statistics
[1] |
S. Weinberg, Phenomenological Lagrangians, Physica A 96(1−2), 327 (1979)
CrossRef
ADS
Google scholar
|
[2] |
J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Ann. Phys. 158(1), 142 (1984)
CrossRef
ADS
Google scholar
|
[3] |
J. Gasser and H. Leutwyler, Chiral perturbation theory: Expansions in the mass of the strange quark, Nucl. Phys. B 250(1−4), 465 (1985)
CrossRef
ADS
Google scholar
|
[4] |
J. Bijnens, G. Colangelo, and G. Ecker, The mesonic chiral Lagrangian of order p6, J. High Energy Phys. 02, 020 (1999)
CrossRef
ADS
Google scholar
|
[5] |
J. Bijnens, N. Hermansson-Truedsson, and S. Wang, The order p8 mesonic chiral Lagrangian, J. High Energy Phys. 01(1), 102 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[6] |
J.BijnensI. Jemos, A new global fit of the Lr at next-to-next-to-leading order in chiral perturbation theory, Nucl. Phys. B 854(3), 631 (2012)
|
[7] |
J. Bijnens and G. Ecker, Mesonic low-energy constants, Annu. Rev. Nucl. Part. Sci. 64(1), 149 (2014)
CrossRef
ADS
arXiv
Google scholar
|
[8] |
Q. H. Yang, W. Guo, F. J. Ge, B. Huang, H. Liu, and S. Z. Jiang, New method for fitting the low-energy constants in chiral perturbation theory, Phys. Rev. D 102(9), 094009 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[9] |
K. U. Can, G. Erkol, M. Oka, and T. T. Takahashi, Look inside charmed-strange baryons from lattice QCD, Phys. Rev. D 92(11), 114515 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[10] |
K. U. Can, G. Erkol, B. Isildak, M. Oka, and T. T. Takahashi, Electromagnetic structure of charmed baryons in lattice QCD, J. High Energy Phys. 05(5), 125 (2014)
CrossRef
ADS
arXiv
Google scholar
|
[11] |
H.BahtiyarK. U. CanG.ErkolM.OkaT.T. Takahashi, Ξcγ → Ξc′ transition in lattice QCD, Phys. Lett. B 772, 121 (2017)
|
[12] |
T.M. YanH. Y. ChengC.Y. CheungG.L. LinY.C. Lin H.L. Yu, Heavy quark symmetry and chiral dynamics, Phys. Rev. D 46(3), 1148 (1992) [Erratum: Phys. Rev. D 55, 5851 (1997)]
|
[13] |
R.J. DowdallC.T. H. DaviesG.P. LepageC.McNeile, Vus from π and K decay constants in full lattice QCD with physical u, d, s and c quarks, Phys. Rev. D 88, 074504 (2013), arXiv:
|
[14] |
A. Bazavov, . (MILC),
|
[15] |
V. Bernard and E. Passemar, Chiral extrapolation of the strangeness changing Kπ form factor, J. High Energy Phys. 04, 001 (2010)
CrossRef
ADS
arXiv
Google scholar
|
[16] |
A.Bazavov. (MILC),
|
[17] |
A. Bazavov, D. Toussaint, C. Bernard, J. Laiho, C. DeTar, L. Levkova, M. B. Oktay, S. Gottlieb, U. M. Heller, J. E. Hetrick, P. B. Mackenzie, R. Sugar, and R. S. Van de Water, Nonperturbative QCD simulations with 2+1 flavors of improved staggered quarks, Rev. Mod. Phys. 82(2), 1349 (2010)
CrossRef
ADS
arXiv
Google scholar
|
[18] |
M.GoltermanK. MaltmanS.Peris, NNLO low-energy constants from flavor-breaking chiral sum rules based on hadronic τ-decay data, Phys. Rev. D 89(5), 054036 (2014)
|
[19] |
P. Colangelo, J. J. Sanz-Cillero, and F. Zuo, Holography, chiral Lagrangian and form factor relations, J. High Energy Phys. 11, 012 (2012)
|
[20] |
Z. H. Guo, J. J. Sanz Cillero, and H. Q. Zheng, Partial waves and large NC resonance sum rules, J. High Energy Phys. 06, 030 (2007)
|
[21] |
Z.H. GuoJ. J. Sanz-CilleroH.Q. Zheng, O(p6) extension of the large-NC partial wave dispersion relations, Phys. Lett. B 661, 342 (2008), arXiv:
|
[22] |
Z.H. GuoJ. J. Sanz-Cillero, ππ-scattering lengths at O(p6) revisited, Phys. Rev. D 79, 096006 (2009)
|
[23] |
J.BijnensG. ColangeloJ.Gasser, Kl4 decays beyond one loop, Nucl. Phys. B 427(3), 427 (1994)
|
[24] |
G.AmorósJ.BijnensP.Talavera, Kℓ4 form-factors and π‒π scattering, Nucl. Phys. B 585, 293 (2000) [Erratum: Nucl. Phys. B 598, 665(2001)], arXiv:
|
[25] |
G.ColangeloJ. GasserH.Leutwyler, ππ scattering, Nucl. Phys. B 603(1–2), 125 (2001)
|
[26] |
M.R. SchindlerD.R. Phillips, Bayesian methods for parameter estimation in effective field theories, Ann. Phys. 324, 682 (2009) [Erratum: Ann. Phys. 324, 2051 (2009)], arXiv:
|
[27] |
R.J. FurnstahlD.R. PhillipsS.Wesolowski, A recipe for EFT uncertainty quantification in nuclear physics, J. Phys. G 42(3), 034028 (2015)
|
[28] |
S. Wesolowski, N. Klco, R. J. Furnstahl, D. R. Phillips, and A. Thapaliya, Bayesian parameter estimation for effective field theories, J. Phys. G 43(7), 074001 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[29] |
J. A. Melendez, S. Wesolowski, and R. J. Furnstahl, Bayesian truncation errors in chiral effective field theory: Nucleon‒nucleon observables, Phys. Rev. C 96(2), 024003 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[30] |
I. Svensson, A. Ekström, and C. Forssén, Bayesian parameter estimation in chiral effective field theory using the Hamiltonian Monte Carlo method, Phys. Rev. C 105(1), 014004 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[31] |
A. Ekström, C. Forssén, C. Dimitrakakis, D. Dubhashi, H. T. Johansson, A. S. Muhammad, H. Salomonsson, and A. Schliep, Bayesian optimization in ab initio nuclear physics, J. Phys. G 46(9), 095101 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[32] |
S. Wesolowski, R. J. Furnstahl, J. A. Melendez, and D. R. Phillips, Exploring Bayesian parameter estimation for chiral effective field theory using nucleon–nucleon phase shifts, J. Phys. G 46(4), 045102 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[33] |
I. K. Alnamlah, E. A. C. Pérez, and D. R. Phillips, Effective field theory approach to rotational bands in odd-mass nuclei, Phys. Rev. C 104(6), 064311 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[34] |
C. J. Yang, A. Ekström, C. Forssén, and G. Hagen, Power counting in chiral effective field theory and nuclear binding, Phys. Rev. C 103(5), 054304 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[35] |
A. E. Lovell, F. M. Nunes, M. Catacora-Rios, and G. B. King, Recent advances in the quantification of uncertainties in reaction theory, J. Phys. G 48(1), 014001 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[36] |
D. R. Phillips, R. J. Furnstahl, U. Heinz, T. Maiti, W. Nazarewicz, F. M. Nunes, M. Plumlee, M. T. Pratola, S. Pratt, F. G. Viens, and S. M. Wild, Get on the BAND Wagon: A Bayesian framework for quantifying model uncertainties in nuclear dynamics, J. Phys. G 48(7), 072001 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[37] |
P.BedaqueA. BoehnleinM.CromazM.DiefenthalerL.ElouadrhiriT.HornM.KucheraD.Lawrence D.LeeS. LidiaR.McKeownW.MelnitchoukW.NazarewiczK.OrginosY.RoblinM.Scott SmithM.SchramX.N. Wang, A. I. for nuclear physics, Eur. Phys. J. A 57(3), 100 (2021)
|
[38] |
S. Wesolowski, I. Svensson, A. Ekström, C. Forssén, R. J. Furnstahl, J. A. Melendez, and D. R. Phillips, Rigorous constraints on three-nucleon forces in chiral effective field theory from fast and accurate calculations of few-body observables, Phys. Rev. C 104(6), 064001 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[39] |
M. A. Connell, I. Billig, and D. R. Phillips, Does Bayesian model averaging improve polynomial extrapolations? Two toy problems as tests, J. Phys. G 48(10), 104001 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[40] |
Y. H. Lin, H. W. Hammer, and U. G. Meißner, Dispersion-theoretical analysis of the electromagnetic form factors of the nucleon: Past, present and future, Eur. Phys. J. A 57(8), 255 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[41] |
T. Djärv, A. Ekström, C. Forssén, and H. T. Johansson, Bayesian predictions for A = 6 nuclei using eigenvector continuation emulators, Phys. Rev. C 105(1), 014005 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[42] |
B. Acharya and S. Bacca, Gaussian process error modeling for chiral effective-field-theory calculations of np↔dγ at low energies, Phys. Lett. B 827, 137011 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[43] |
D. Odell, C. R. Brune, D. R. Phillips, R. J. deBoer, and S. N. Paneru, Performing Bayesian analyses with AZURE2 using BRICK: An application to the 7Be system, Front. Phys. (Lausanne) 10, 888476 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[44] |
A. E. Lovell, A. T. Mohan, T. M. Sprouse, and M. R. Mumpower, Nuclear masses learned from a probabilistic neural network, Phys. Rev. C 106(1), 014305 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[45] |
G. Hagen, S. J. Novario, Z. H. Sun, T. Papenbrock, G. R. Jansen, J. G. Lietz, T. Duguet, and A. Tichai, Angular-momentum projection in coupled-cluster theory: Structure of 34Mg, Phys. Rev. C 105(6), 064311 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[46] |
T. Papenbrock, Effective field theory of pairing rotations, Phys. Rev. C 105(4), 044322 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[47] |
S. S. Li Muli, B. Acharya, O. J. Hernandez, and S. Bacca, Bayesian analysis of nuclear polarizability corrections to the Lamb shift of muonic H-atoms and He-ions, J. Phys. G 49(10), 105101 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[48] |
Q.Y. ZhaiM. Z. LiuJ.X. LuL.S. Geng, Zcs(3985) in next-to-leading-order chiral effective field theory: The first truncation uncertainty analysis, Phys. Rev. D 106(3), 034026 (2022)
|
[49] |
K. Fraboulet and J. P. Ebran, Addressing energy density functionals in the language of path-integrals I: Comparative study of diagrammatic techniques applied to the (0+0)D O(N)-symmetric φ4-theory, Eur. Phys. J. A 59(4), 91 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[50] |
W. Jiang and C. Forssén, Bayesian probability updates using sampling/importance resampling: Applications in nuclear theory, Front. Phys. (Lausanne) 10, 1058809 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[51] |
A. Ekström, C. Forssén, G. Hagen, G. R. Jansen, W. Jiang, and T. Papenbrock, What is ab initio in nuclear theory, Front. Phys. (Lausanne) 11, 1129094 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[52] |
W. I. Jay and E. T. Neil, Bayesian model averaging for analysis of lattice field theory results, Phys. Rev. D 103(11), 114502 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[53] |
M. Catacora-Rios, G. B. King, A. E. Lovell, and F. M. Nunes, Exploring experimental conditions to reduce uncertainties in the optical potential, Phys. Rev. C 100(6), 064615 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[54] |
A. Ekström and G. Hagen, Global sensitivity analysis of bulk properties of an atomic nucleus, Phys. Rev. Lett. 123(25), 252501 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[55] |
X.ZhangK. M. NollettD.R. Phillips, S-factor and scattering-parameter extractions from 3He + 4He → 7Be + γ, J. Phys. G 47, 054002 (2020)
|
[56] |
B. K. Luna and T. Papenbrock, Low-energy bound states, resonances, and scattering of light ions, Phys. Rev. C 100(5), 054307 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[57] |
E. Epelbaum, J. Golak, K. Hebeler, H. Kamada, H. Krebs, U. G. Meißner, A. Nogga, P. Reinert, R. Skibiński, K. Topolnicki, Y. Volkotrub, and H. Witała, Towards high-order calculations of three-nucleon scattering in chiral effective field theory, Eur. Phys. J. A 56(3), 92 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[58] |
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21(6), 1087 (1953)
CrossRef
ADS
Google scholar
|
[59] |
W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57(1), 97 (1970)
CrossRef
ADS
Google scholar
|
[60] |
S. Duane, A. Kennedy, B. J. Pendleton, and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B 195(2), 216 (1987)
CrossRef
ADS
Google scholar
|
[61] |
M. D. Homan and A. Gelman, The No-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo, J. Mach. Learn. Res. 15, 1593 (2014)
|
[62] |
J. Salvatier, T. V. Wiecki, and C. Fonnesbeck, Probabilistic programming in python using PyMC3, PeerJ Comput. Sci. 2, e55 (2016)
CrossRef
ADS
Google scholar
|
[63] |
P.Gregory, Bayesian Logical Data Analysis for the Physical Sciences, Cambridge: Cambridge University Press, 2005
|
[64] |
J. Bijnens, G. Colangelo, and G. Ecker, Renormalization of chiral perturbation theory to order p6, Ann. Phys. 280(1), 100 (2000)
CrossRef
ADS
Google scholar
|
[65] |
A.GelmanJ. B. CarlinH.S. SternD.B. DunsonA.Vehtari D.B. Rubin, Bayesian Data Analysis, 3rd Ed., Boca Raton: CPC Press, 2013
|
[66] |
A. Vehtari, A. Gelman, and J. Gabry, Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC, Stat. Comput. 27(5), 1413 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[67] |
G. Amoroós, J. Bijnens, and P. Talavera, Two-point functions at two loops in three flavor chiral perturbation theory, Nucl. Phys. B 568(1−2), 319 (2000)
CrossRef
ADS
Google scholar
|
[68] |
J.Bijnens, Chiral perturbation theory, URL: home.thep.lu.se/~bijnens/chpt/ (2019)
|
[69] |
J. Bijnens and P. Dhonte, Scalar form-factors in SU(3) chiral perturbation theory, J. High Energy Phys. 10, 061 (2003)
CrossRef
ADS
Google scholar
|
[70] |
J. Gasser, C. Haefeli, M. A. Ivanov, and M. Schmid, Integrating out strange quarks in ChPT, Phys. Lett. B 652(1), 21 (2007)
CrossRef
ADS
arXiv
Google scholar
|
[71] |
S. Z. Jiang, Z. L. Wei, Q. S. Chen, and Q. Wang, Computation of the O(p6) order low-energy constants: An update, Phys. Rev. D 92(2), 025014 (2015)
CrossRef
ADS
Google scholar
|
[72] |
S. Z. Jiang, Y. Zhang, C. Li, and Q. Wang, Computation of the p6 order chiral Lagrangian coefficients, Phys. Rev. D 81(1), 014001 (2010)
CrossRef
ADS
arXiv
Google scholar
|
[73] |
K. Kampf and B. Moussallam, Tests of the naturalness of the coupling constants in ChPT at order p6, Eur. Phys. J. C 47(3), 723 (2006)
CrossRef
ADS
Google scholar
|
[74] |
M. Jamin, J. A. Oller, and A. Pich, Order p6 chiral couplings from the scalar Kπ form-factor, J. High Energy Phys. 02, 047 (2004)
CrossRef
ADS
Google scholar
|
[75] |
J.BijnensP. Talavera, Kℓ3 decays in chiral perturbation theory, Nucl. Phys. B 669(1–2), 341 (2003)
|
[76] |
V. Cirigliano, G. Ecker, M. Eidemuüller, R. Kaiser, A. Pich, and J. Portolés, The ⟨ SPP⟩ Green function and SU(3) breaking in Kℓ3 decays, J. High Energy Phys. 04, 006 (2005)
|
[77] |
R. Unterdorfer and H. Pichl, On the radiative pion decay, Eur. Phys. J. C 55(2), 273 (2008)
CrossRef
ADS
arXiv
Google scholar
|
[78] |
V. Cirigliano, G. Ecker, M. Eidemüller, R. Kaiser, A. Pich, and J. Portolés, Towards a consistent estimate of the chiral low-energy constants, Nucl. Phys. B 753(1-2), 139 (2006)
CrossRef
ADS
Google scholar
|
[79] |
V. Bernard and E. Passemar, Matching chiral perturbation theory and the dispersive representation of the scalar Kπ form-factor, Phys. Lett. B 661(2−3), 95 (2008)
CrossRef
ADS
arXiv
Google scholar
|
[80] |
B. Moussallam, Flavor stability of the chiral vacuum and scalar meson dynamics, J. High Energy Phys. 08, 005 (2000)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |