Emerging single-photon detection technique for high-performance photodetector

Jinxiu Liu, Zhenghan Peng, Chao Tan, Lei Yang, Ruodan Xu, Zegao Wang

Front. Phys. ›› 2024, Vol. 19 ›› Issue (6) : 62502.

PDF(8007 KB)
PDF(8007 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (6) : 62502. DOI: 10.1007/s11467-024-1428-1
TOPICAL REVIEW

Emerging single-photon detection technique for high-performance photodetector

Author information +
History +

Abstract

Single-photon detections (SPDs) represent a highly sensitive light detection technique capable of detecting individual photons at extremely low light intensity levels. This technology mainly relies on the mainstream SPDs, such as photomultiplier tubes (PMTs), avalanche photodiodes (SAPD), superconducting nanowire single-photon detectors (SNSPDs), superconducting transition-edge sensor (TES), and hybrid lead halide perovskite. However, the complexity and high manufacturing cost, coupled with the requirement of special conditions like a low-temperature environment, pose significant challenges to the wide adoption of SPDs. To address the challenges faced by SPDs, significant efforts have been devoted to enhancing their performance. In this review, we first summarize the principles and technical challenges of several SPDs. Conductors, superconductors, semiconductors, 3D bulk materials, 2D film materials, 1D nanowires, and 0D quantum dots have all been discussed for single-photon detectors. Methods such as special optical structure, waveguide integration, and strain engineering have been employed to elevate the performance of single-photon detectors. These techniques enhance light absorption and modulate the band structure of the material, thereby improving the single-photon sensitivity. By providing an overview of the current situation and future challenges of SPDs, this review aims to propose potential solutions for photon detection technology.

Graphical abstract

Keywords

single-photon detection / superconductor / semiconductor / low dimensional materials / optical structure / waveguide integration / strain engineering

Cite this article

Download citation ▾
Jinxiu Liu, Zhenghan Peng, Chao Tan, Lei Yang, Ruodan Xu, Zegao Wang. Emerging single-photon detection technique for high-performance photodetector. Front. Phys., 2024, 19(6): 62502 https://doi.org/10.1007/s11467-024-1428-1

References

[1]
Y. F. Yan, L. Zhou, W. Zhong, and Y. B. Sheng, Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon, Front. Phys. 16(1), 11501 (2021)
CrossRef ADS Google scholar
[2]
J. P. Chen, C. Zhang, Y. Liu, C. Jiang, D. F. Zhao, W. J. Zhang, F. X. Chen, H. Li, L. X. You, Z. Wang, Y. Chen, X. B. Wang, Q. Zhang, and J. W. Pan, Quantum key distribution over 658 km fiber with distributed vibration sensing, Phys. Rev. Lett. 128(18), 180502 (2022)
CrossRef ADS Google scholar
[3]
Y. Ma, Y. Z. Ma, Z. Q. Zhou, C. F. Li, and G. C. Guo, One-hour coherent optical storage in an atomic frequency comb memory, Nat. Commun. 12(1), 2381 (2021)
CrossRef ADS Google scholar
[4]
M.GreinA. KermanE.DaulerM.WillisB.Romkey R.MolnarB. RobinsonD.MurphyD.Boroson, An optical receiver for the Lunar Laser Communication Demonstration based on photon-counting superconducting nanowires, SPIE, Vol. 9492 CSI, 2015
[5]
B. Wang, M. Y. Zheng, J. J. Han, X. Huang, X. P. Xie, F. Xu, Q. Zhang, and J. W. Pan, Non-line-of-sight imaging with picosecond temporal resolution, Phys. Rev. Lett. 127(5), 053602 (2021)
CrossRef ADS Google scholar
[6]
Z. P. Li, J. T. Ye, X. Huang, P. Y. Jiang, Y. Cao, Y. Hong, C. Yu, J. Zhang, Q. Zhang, C. Z. Peng, F. Xu, and J. W. Pan, Single-photon imaging over 200 km, Optica 8(3), 344 (2021)
CrossRef ADS Google scholar
[7]
W. He, Z. Feng, J. Lin, S. Shen, Q. Chen, G. Gu, B. Zhou, and P. Zhang, Adaptive depth imaging with single-photon detectors, IEEE Photonics J. 9(2), 7801812 (2017)
CrossRef ADS Google scholar
[8]
S. Scholes, G. Mora-Martín, F. Zhu, I. Gyongy, P. Soan, and J. Leach, Fundamental limits to depth imaging with single-photon detector array sensors, Sci. Rep. 13(1), 176 (2023)
CrossRef ADS Google scholar
[9]
Y. Wang, K. Huang, J. Fang, M. Yan, E. Wu, and H. Zeng, Mid-infrared single-pixel imaging at the single-photon level, Nat. Commun. 14(1), 1073 (2023)
CrossRef ADS Google scholar
[10]
K. Rajendran, M. Petersilka, A. Henning, E. R. Shanblatt, B. Schmidt, T. G. Flohr, A. Ferrero, F. Baffour, F. E. Diehn, L. Yu, P. Rajiah, J. G. Fletcher, S. Leng, and C. H. McCollough, First clinical photon-counting detector CT system: Technical evaluation, Radiology 303(1), 130 (2022)
CrossRef ADS Google scholar
[11]
A. S. Kowligy, H. Timmers, A. J. Lind, U. Elu, F. C. Cruz, P. G. Schunemann, J. Biegert, and S. A. Diddams, Infrared electric field sampled frequency comb spectroscopy, Sci. Adv. 5(6), eaaw8794 (2019)
CrossRef ADS Google scholar
[12]
I. Pupeza, M. Huber, M. Trubetskov, W. Schweinberger, S. A. Hussain, C. Hofer, K. Fritsch, M. Poetzlberger, L. Vamos, E. Fill, T. Amotchkina, K. V. Kepesidis, A. Apolonski, N. Karpowicz, V. Pervak, O. Pronin, F. Fleischmann, A. Azzeer, M. Žigman, and F. Krausz, Field-resolved infrared spectroscopy of biological systems, Nature 577(7788), 52 (2020)
CrossRef ADS Google scholar
[13]
C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, Single-photon synchronous detection, IEEE J. Solid-State Circuits 44(7), 1977 (2009)
CrossRef ADS Google scholar
[14]
B. Zhang, Y. Q. Guan, L. Xia, D. Dong, Q. Chen, C. Xu, C. Wu, H. Huang, L. Zhang, L. Kang, J. Chen, and P. Wu, An all-day lidar for detecting soft targets over 100 km based on superconducting nanowire single-photon detectors, Supercond. Sci. Technol. 34(3), 034005 (2021)
CrossRef ADS Google scholar
[15]
Q. Chen, R. Ge, L. Zhang, F. Li, B. Zhang, F. Jin, H. Han, Y. Dai, G. He, Y. Fei, X. Wang, H. Wang, X. Jia, Q. Zhao, X. Tu, L. Kang, J. Chen, and P. Wu, Mid-infrared single photon detector with superconductor Mo0.8Si0.2 nanowire, Sci. Bull. (Beijing) 66(10), 965 (2021)
CrossRef ADS Google scholar
[16]
F. T. Jaeckel, A. Roy, D. Wulf, S. Zhang, Y. Zhou, J. S. Adams, S. R. Bandler, J. A. Chervenak, A. M. Datesman, M. E. Eckart, A. J. Ewin, C. V. Ambarish, F. M. Finkbeiner, R. Kelley, C. A. Kilbourne, A. R. Miniussi, F. S. Porter, J. E. Sadleir, K. Sakai, S. J. Smith, N. Wakeham, E. Wassell, N. Christensen, W. Yoon, K. M. Morgan, D. R. Schmidt, D. S. Swetz, J. N. Ullom, R. Gruenke, L. Hu, D. McCammon, M. McPheron, M. Meyer, and K. L. Nelms, Energy calibration of high-resolution X-ray TES microcalorimeters with 3 eV optical photons, IEEE Trans. Appl. Supercond. 29(5), 1 (2019)
CrossRef ADS Google scholar
[17]
A. Incoronato, I. Cusini, K. Pasquinelli, and F. Zappa, Single-shot pulsed-LiDAR SPAD sensor with on-chip peak detection for background rejection, IEEE J. Sel. Top. Quantum Electron. 28, 3804210 (2022)
CrossRef ADS Google scholar
[18]
G. C. Shan, Z. Q. Yin, C. H. Shek, and W. Huang, Single photon sources with single semiconductor quantum dots, Front. Phys. 9(2), 170 (2014)
CrossRef ADS Google scholar
[19]
P. Martyniuk, P. Wang, A. Rogalski, Y. Gu, R. Jiang, F. Wang, and W. Hu, Infrared avalanche photodiodes from bulk to 2D materials, Light Sci. Appl. 12(1), 212 (2023)
CrossRef ADS Google scholar
[20]
A. Gallivanoni, I. Rech, and M. Ghioni, Progress in quenching circuits for single photon avalanche diodes, IEEE Trans. Nucl. Sci. 57, 3815 (2010)
CrossRef ADS Google scholar
[21]
A. Maccarone, G. Acconcia, U. Steinlehner, I. Labanca, D. Newborough, I. Rech, and G. S. Buller, Custom-technology single-photon avalanche diode linear detector array for underwater depth imaging, Sensors (Basel) 21(14), 4850 (2021)
CrossRef ADS Google scholar
[22]
H. Lee, H. Choi, and I. Yun, Junction engineering-based modeling and optimization of deep junction silicon single-photon avalanche diodes for device scaling, IEEE Trans. Electron Dev. 69(9), 4970 (2022)
CrossRef ADS Google scholar
[23]
M. Sanzaro, N. Calandri, A. Ruggeri, and A. Tosi, InGaAs/InP SPAD with monolithically integrated zinc-diffused resistor, IEEE J. Quantum Electron. 52(7), 1 (2016)
CrossRef ADS Google scholar
[24]
F. Telesca, F. Signorelli, and A. Tosi, Temperature-dependent photon detection efficiency model for InGaAs/InP SPADs, Opt. Express 30(3), 4504 (2022)
CrossRef ADS Google scholar
[25]
Y. Tian, Q. Li, W. Ding, D. Wu, Z. Lin, X. Feng, H. Zhang, X. Yu, and Y. Zhao, High speed and high sensitivity InGaAs/InAlAs single photon avalanche diodes for photon counting communication, J. Lightwave Technol. 40(15), 5245 (2022)
CrossRef ADS Google scholar
[26]
X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, InGaAs/InAlAs single photon avalanche diode for 1550 nm photons, R. Soc. Open Sci. 3(3), 150584 (2016)
CrossRef ADS Google scholar
[27]
J. Rothman, Physics and limitations of HgCdTe APDs: A review, J. Electron. Mater. 47(10), 5657 (2018)
CrossRef ADS Google scholar
[28]
R. H. Haitz, Model for the electrical behavior of a microplasma, J. Appl. Phys. 35(5), 1370 (1964)
CrossRef ADS Google scholar
[29]
S. K. Liao, H. L. Yong, C. Liu, G. L. Shentu, D. D. Li, J. Lin, H. Dai, S. Q. Zhao, B. Li, J. Y. Guan, W. Chen, Y. H. Gong, Y. Li, Z. H. Lin, G. S. Pan, J. S. Pelc, M. M. Fejer, W. Z. Zhang, W. Y. Liu, J. Yin, J. G. Ren, X. B. Wang, Q. Zhang, C. Z. Peng, and J. W. Pan, Long-distance free-space quantum key distribution in daylight towards inter-satellite communication, Nat. Photonics 11(8), 509 (2017)
CrossRef ADS Google scholar
[30]
M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion, Nat. Photonics 4(11), 786 (2010)
CrossRef ADS Google scholar
[31]
Y. S. Lee, Y. M. Liao, P. L. Wu, C. E. Chen, Y. J. Teng, Y. Y. Hung, and J. W. Shi, In0.52Al0.48As based single photon avalanche diodes with stepped E-field in multiplication layers and high efficiency beyond 60%, IEEE J. Sel. Top. Quantum Electron. 28(2), 1 (2022)
CrossRef ADS Google scholar
[32]
D. Wu, J. Guo, C. Wang, X. Ren, Y. Chen, P. Lin, L. Zeng, Z. Shi, X. J. Li, C. X. Shan, and J. Jie, Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation, ACS Nano 15(6), 10119 (2021)
CrossRef ADS Google scholar
[33]
D. Wu, C. Guo, L. Zeng, X. Ren, Z. Shi, L. Wen, Q. Chen, M. Zhang, X. J. Li, C. X. Shan, and J. Jie, Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection, Light Sci. Appl. 12(1), 5 (2023)
CrossRef ADS Google scholar
[34]
D. Wu, J. Guo, J. Du, C. Xia, L. Zeng, Y. Tian, Z. Shi, Y. Tian, X. J. Li, Y. H. Tsang, and J. Jie, Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction, ACS Nano 13(9), 9907 (2019)
CrossRef ADS Google scholar
[35]
L. Zeng, D. Wu, J. Jie, X. Ren, X. Hu, S. P. Lau, Y. Chai, and Y. H. Tsang, Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm, Adv. Mater. 32(52), 2004412 (2020)
CrossRef ADS Google scholar
[36]
L. Zeng, W. Han, S. E. Wu, D. Wu, S. P. Lau, and Y. H. Tsang, Graphene/PtSe2/pyramid Si van der Waals Schottky junction for room-temperature broadband infrared light detection, IEEE Trans. Electron Dev. 69(11), 6212 (2022)
CrossRef ADS Google scholar
[37]
S. Zeng, M. Zhao, F. Li, Z. Yang, H. Wu, C. Tan, Q. Sun, L. Yang, L. Lei, and Z. Wang, Crystalline orientation-tunable growth of hexagonal and tetragonal 2H-PtSe2 single-crystal flakes, Adv. Funct. Mater. 34(6), 2308681 (2024)
CrossRef ADS Google scholar
[38]
L. Zeng, W. Han, X. Ren, X. Li, D. Wu, S. Liu, H. Wang, S. P. Lau, Y. H. Tsang, C. X. Shan, and J. Jie, Uncooled mid-infrared sensing enabled by chip-integrated low-temperature-grown 2D PdTe2 Dirac semimetal, Nano Lett. 23(17), 8241 (2023)
CrossRef ADS Google scholar
[39]
M. Zavvari and V. Ahmadi, Self-quenched quantum dot avalanche photodetector for mid-infrared single photon detection, Infrared Phys. Technol. 62, 7 (2014)
CrossRef ADS Google scholar
[40]
E. J. Gansen, M. A. Rowe, M. B. Greene, D. Rosenberg, T. E. Harvey, M. Y. Su, R. H. Hadfield, S. W. Nam, and R. P. Mirin, Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor, Nat. Photonics 1(10), 585 (2007)
CrossRef ADS Google scholar
[41]
W. Luo, Q. Weng, M. Long, P. Wang, F. Gong, H. Fang, M. Luo, W. Wang, Z. Wang, D. Zheng, W. Hu, X. Chen, and W. Lu, Room-temperature single-photon detector based on single nanowire, Nano Lett. 18(9), 5439 (2018)
CrossRef ADS Google scholar
[42]
C. Tan, Z. Yang, H. Wu, Y. Yang, L. Yang, and Z. Wang, Electrically tunable interlayer recombination and tunneling behavior in WSe2/MoS2 heterostructure for broadband photodetector, Nanoscale 16(12), 6241 (2024)
CrossRef ADS Google scholar
[43]
Z. Ye, C. Tan, X. Huang, Y. Ouyang, L. Yang, Z. Wang, and M. Dong, Emerging MoS2 wafer-scale technique for integrated circuits, Nano-Micro Lett. 15(1), 38 (2023)
CrossRef ADS Google scholar
[44]
C. Tan, R. Tao, Z. Yang, L. Yang, X. Huang, Y. Yang, F. Qi, and Z. Wang, Tune the photoresponse of monolayer MoS2 by decorating CsPbBr3 perovskite nanoparticles, Chin. Chem. Lett. 34(7), 107979 (2023)
CrossRef ADS Google scholar
[45]
O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Ultrasensitive photodetectors based on monolayer MoS2, Nat. Nanotechnol. 8(7), 497 (2013)
CrossRef ADS Google scholar
[46]
Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, Broadband high photoresponse from pure monolayer graphene photodetector, Nat. Commun. 4(1), 1811 (2013)
CrossRef ADS Google scholar
[47]
K. Roy, T. Ahmed, H. Dubey, T. P. Sai, R. Kashid, S. Maliakal, K. Hsieh, S. Shamim, and A. Ghosh, Number-resolved single-photon detection with ultralow noise van der Waals hybrid, Adv. Mater. 30(2), 1704412 (2018)
CrossRef ADS Google scholar
[48]
Y. Liu, T. Gong, Y. Zheng, X. Wang, J. Xu, Q. Ai, J. Guo, W. Huang, S. Zhou, Z. Liu, Y. Lin, T. L. Ren, and B. Yu, Ultra-sensitive and plasmon-tunable graphene photodetectors for micro-spectrometry, Nanoscale 10(42), 20013 (2018)
CrossRef ADS Google scholar
[49]
A. Gao, J. Lai, Y. Wang, Z. Zhu, J. Zeng, G. Yu, N. Wang, W. Chen, T. Cao, W. Hu, D. Sun, X. Chen, F. Miao, Y. Shi, and X. Wang, Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures, Nat. Nanotechnol. 14(3), 217 (2019)
CrossRef ADS Google scholar
[50]
R. Cheng, J. Wright, H. G. Xing, D. Jena, and H. X. Tang, Epitaxial niobium nitride superconducting nanowire single-photon detectors, Appl. Phys. Lett. 117(13), 132601 (2020)
CrossRef ADS Google scholar
[51]
P. Hu, H. Li, L. You, H. Wang, Y. Xiao, J. Huang, X. Yang, W. Zhang, Z. Wang, and X. Xie, Detecting single infrared photons toward optimal system detection efficiency, Opt. Express 28(24), 36884 (2020)
CrossRef ADS Google scholar
[52]
X. Yang, L. You, L. Zhang, C. Lv, H. Li, X. Liu, H. Zhou, and Z. Wang, Comparison of superconducting nanowire single-photon detectors made of NbTiN and NbN thin films, IEEE Trans. Appl. Supercond. 28(1), 2200106 (2018)
CrossRef ADS Google scholar
[53]
A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, and W. H. P. Pernice, Cavity-enhanced and ultrafast superconducting single-photon detectors, Nano Lett. 16(11), 7085 (2016)
CrossRef ADS Google scholar
[54]
G. Z. Xu, W. J. Zhang, L. X. You, J. M. Xiong, X. Q. Sun, H. Huang, X. Ou, Y. M. Pan, C. L. Lv, H. Li, Z. Wang, and X. M. Xie, Superconducting microstrip single-photon detector with system detection efficiency over 90% at 1550 nm, Photon. Res. 9(6), 958 (2021)
CrossRef ADS Google scholar
[55]
M. Ejrnaes, C. Cirillo, D. Salvoni, F. Chianese, C. Bruscino, P. Ercolano, A. Cassinese, C. Attanasio, G. P. Pepe, and L. Parlato, Single photon detection in NbRe superconducting microstrips, Appl. Phys. Lett. 121(26), 262601 (2022)
CrossRef ADS Google scholar
[56]
I. Esmaeil Zadeh, J. Chang, J. W. N. Los, S. Gyger, A. W. Elshaari, S. Steinhauer, S. N. Dorenbos, and V. Zwiller, Superconducting nanowire single-photon detectors: A perspective on evolution, state-of-the-art, future developments, and applications, Appl. Phys. Lett. 118(19), 190502 (2021)
CrossRef ADS Google scholar
[57]
W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature, Sci. China Phys. Mech. Astron. 60(12), 120314 (2017)
CrossRef ADS Google scholar
[58]
B. Korzh, Q. Y. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Pena, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector, Nat. Photonics 14(4), 250 (2020)
CrossRef ADS Google scholar
[59]
W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering, Phys. Rev. Appl. 12(4), 044040 (2019)
CrossRef ADS Google scholar
[60]
D.Fukuda, Single-photon measurement techniques with a superconducting transition edge sensor, in: IEICE Transactions on Electronics 2019, E102. C, pp 230–234
[61]
A. E. Lita, D. V. Reddy, V. B. Verma, R. P. Mirin, and S. W. Nam, Development of superconducting single-photon and photon-number resolving detectors for quantum applications, J. Lightwave Technol. 40(23), 7578 (2022)
CrossRef ADS Google scholar
[62]
K.IrwinG. Hilton, Transition-edge sensors, in: Cryogenic Particle Detection, Berlin: Springer, 2005, pp 63–150
[63]
Y. Geng, P. Z. Li, J. Q. Zhong, W. Zhang, Z. Wang, W. Miao, Y. Ren, and S. C. Shi, Temperature and current sensitivity extraction of optical superconducting transition-edge sensors based on a two-fluid model, Chin. Phys. B 30(9), 098501 (2021)
CrossRef ADS Google scholar
[64]
M. de Wit, L. Gottardi, E. Taralli, K. Nagayoshi, M. L. Ridder, H. Akamatsu, M. P. Bruijn, M. D’Andrea, J. van der Kuur, K. Ravensberg, D. Vaccaro, S. Visser, J. R. Gao, and J. W. A. den Herder, High aspect ratio transition edge sensors for X-ray spectrometry, J. Appl. Phys. 128(22), 224501 (2020)
CrossRef ADS Google scholar
[65]
M. L. Ridder, P. Khosropanah, R. A. Hijmering, T. Suzuki, M. P. Bruijn, H. F. C. Hoevers, J. R. Gao, and M. R. Zuiddam, Fabrication of low-noise TES arrays for the SAFARI instrument on SPICA, J. Low Temp. Phys. 184(1−2), 60 (2016)
CrossRef ADS Google scholar
[66]
J. Chen, J. Li, X. Xu, Z. Wang, S. Guo, Z. Jiang, H. Gao, Q. Zhong, Y. Zhong, J. Zeng, and X. Wang, Electroplating deposition of bismuth absorbers for X-ray superconducting transition edge sensors, Materials (Basel) 14(23), 7169 (2021)
CrossRef ADS Google scholar
[67]
E. Taralli, L. Gottardi, K. Nagayoshi, M. Ridder, S. Visser, P. Khosropanah, H. Akamatsu, J. van der Kuur, M. Bruijn, and J. R. Gao, Characterization of high aspect-ratio TiAu TES X-ray microcalorimeter array under AC bias, J. Low Temp. Phys. 199(1-2), 80 (2020)
CrossRef ADS Google scholar
[68]
X. Xu, M. Rajteri, J. Li, S. Zhang, E. Monticone, J. Chen, C. Pepe, H. Gao, W. Li, X. Li, Q. Li, Y. Gao, Z. Liu, and X. Wang, Investigation of the superconducting Ti/PdAu bilayer films for transition edge sensors, IEEE Trans. Appl. Supercond. 32(4), 1 (2022)
CrossRef ADS Google scholar
[69]
X.XuJ.Li X.WangQ. ZhongY.ZhongW.CaoW.Li J.ChenZ. ZhaoY.GaoZ.LiuQ.He, in: 2020 Conference on Precision Electromagnetic Measurements (CPEM), pp 1–2
[70]
X. Xu, M. Rajteri, J. Li, S. Zhang, J. Chen, E. Monticone, Q. Zhong, H. Gao, W. Li, X. Li, Q. Li, Y. Zhong, W. Cao, S. Wang, Y. Gao, Z. Liu, and X. Wang, Influence of the interface composition to the superconductivity of Ti/PdAu films, Nanomaterials (Basel) 11(1), 39 (2020)
CrossRef ADS Google scholar
[71]
F.ShiraziE. GauM.A. HossenD.BeckerD.Schmidt D.SwetzD. BennettD.BraunF.KislatJ.Gard J.MatesJ. WeberN.Rodriguez CaveroS.ChunL.Lisalda A.WestB. DevF.FerrerR.BoseJ.Ullom H.Krawczynski, 511-CAM mission: A pointed 511 keV gamma-ray telescope with a focal plane detector made of stacked transition edge sensor microcalorimeter arrays, J. Astron. Telesc. Instrum. Syst. 9(2), 024006 (2023)
[72]
T. Kikuchi, G. Fujii, R. Hayakawa, R. Smith, F. Hirayama, Y. Sato, S. Kohjiro, M. Ukibe, M. Ohno, A. Sato, and H. Yamamori, Gamma-ray transition edge sensor with a thick SiO2/SixNy/SiO2 membrane, Appl. Phys. Lett. 119(22), 222602 (2021)
CrossRef ADS Google scholar
[73]
M.OhnoT. IrimatsugawaHTakahashiCOtaniTYasumuneKTakasakiC.Ito T.OhnishiS. -I. KoyamaS.HatakeyamaR.M. T. Damayanthi, Superconducting transition edge sensor for gamma-ray spectroscopy, in: IEICE Transactions on Electronics 2017, E100. C, pp 283–290
[74]
B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors, Appl. Phys. Lett. 73(6), 735 (1998)
CrossRef ADS Google scholar
[75]
K. Hattori, T. Konno, Y. Miura, S. Takasu, and D. Fukuda, An optical transition-edge sensor with high energy resolution, Supercond. Sci. Technol. 35(9), 095002 (2022)
CrossRef ADS Google scholar
[76]
D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling, Opt. Express 19(2), 870 (2011)
CrossRef ADS Google scholar
[77]
A. E. Lita, A. J. Miller, and S. W. Nam, Counting near-infrared single-photons with 95% efficiency, Opt. Express 16(5), 3032 (2008)
CrossRef ADS Google scholar
[78]
Z.DengL. LingY.DengC.HanL.Yu G.CaoY. Wang, A novel visible light communication system prototype based on SiPM receiver, in: Proceedings of the 4th International Conference on Telecommunications and Communication Engineering, 2019
[79]
N. J. D. Martinez, M. Gehl, C. T. Derose, A. L. Starbuck, A. T. Pomerene, A. L. Lentine, D. C. Trotter, and P. S. Davids, Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode, Opt. Express 25(14), 16130 (2017)
CrossRef ADS Google scholar
[80]
D. A. Kalashnikov, S. H. Tan, M. V. Chekhova, and L. A. Krivitsky, Accessing photon bunching with a photon number resolving multi-pixel detector, Opt. Express 19(10), 9352 (2011)
CrossRef ADS Google scholar
[81]
M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, Progress in silicon single-photon avalanche diodes, IEEE J. Sel. Top. Quantum Electron. 13(4), 852 (2007)
CrossRef ADS Google scholar
[82]
Y. S. Lee, Y. M. Liao, P. L. Wu, C. E. Chen, Y. J. Teng, Y. Y. Hung, and J. W. Shi, In0.52Al0.48As based single photon avalanche diodes with stepped E-field in multiplication layers and high efficiency beyond 60%, IEEE J. Selected Topics Quantum Electron. 28(2), 3802107 (2022)
CrossRef ADS Google scholar
[83]
W. Ding, X. Feng, Y. Tian, Q. Li, X. Yu, Z. Lin, H. Zhang, X. Zeng, and Y. Zhao, InGaAs/InAlAs single photon avalanche photodiodes for X-ray detection, IEEE Sens. J. 23(18), 21254 (2023)
CrossRef ADS Google scholar
[84]
F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, Detecting single infrared photons with 93% system efficiency, Nat. Photonics 7(3), 210 (2013)
CrossRef ADS Google scholar
[85]
V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films, Opt. Express 23(26), 33792 (2015)
CrossRef ADS Google scholar
[86]
D. V. Reddy, R. R. Nerem, S. W. Nam, R. P. Mirin, and V. B. Verma, Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm, Optica 7(12), 1649 (2020)
CrossRef ADS Google scholar
[87]
J. Chang, J. W. N. Los, J. O. Tenorio-Pearl, N. Noordzij, R. Gourgues, A. Guardiani, J. R. Zichi, S. F. Pereira, H. P. Urbach, V. Zwiller, S. N. Dorenbos, and I. Esmaeil Zadeh, Detecting telecom single photons with 99.5−2.07+0.5% system detection efficiency and high time resolution, APL Photonics 6(3), 036114 (2021)
CrossRef ADS Google scholar
[88]
B.KorzhQ. Y. ZhaoS.FrascaD.ZhuE.Ramirez E.BersinM. ColangeloA.E. DaneA.D. BeyerJ.Allmaras E.E. WollmanK.K. BerggrenM.D. Shaw, in: 2018 Conference on Lasers and Electro-Optics (CLEO), pp 1–3
[89]
E.TaralliM. de WitL.GottardiK.NagayoshiS.Visser M.L. RidderH. AkamatsuD.VaccaroM.P. BruijnJ.R. Gao J.W. den Herder, Small size transition-edge sensors for future X-ray applications, J. Low Temp. Phys. 209(3–4), 256 (2022)
[90]
X. Xu, M. Rajteri, J. Li, S. Zhang, C. Pepe, J. Chen, H. Gao, Q. Li, W. Li, X. Li, M. Zhang, Y. Ouyang, and X. Wang, Investigation of Ti/Au transition-edge sensors for single-photon detection, J. Low Temp. Phys. 209(3−4), 372 (2022)
CrossRef ADS Google scholar
[91]
M. Guerra, M. Manso, S. Longelin, S. Pessanha, and M. L. Carvalho, Performance of three different Si X-ray detectors for portable XRF spectrometers in cultural heritage applications, J. Instrum. 7(10), C10004 (2012)
CrossRef ADS Google scholar
[92]
L. Brombal, S. Donato, F. Brun, P. Delogu, V. Fanti, P. Oliva, L. Rigon, V. Di Trapani, R. Longo, and B. Golosio, Large-area single-photon-counting CdTe detector for synchrotron radiation computed tomography: A dedicated pre-processing procedure, J. Synchrotron Radiat. 25(4), 1068 (2018)
CrossRef ADS Google scholar
[93]
Y. M. Ivanov, V. M. Kanevsky, V. F. Dvoryankin, V. V. Artemov, A. N. Polyakov, A. A. Kudryashov, E. M. Pashaev, and Z. J. Horvath, The possibilities of using semi-insulating CdTe crystals as detecting material for X-ray imaging radiography, physica status solidi (c) 0(3), 840 (2003)
CrossRef ADS Google scholar
[94]
C. Szeles, CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications, physica status solidi (b) 241(3), 783 (2004)
CrossRef ADS Google scholar
[95]
H. Wu, Y. Ge, G. Niu, and J. Tang, Metal halide perovskites for X-ray detection and imaging, Matter 4(1), 144 (2021)
CrossRef ADS Google scholar
[96]
Y. Zhou, J. Chen, O. M. Bakr, and O. F. Mohammed, Metal halide perovskites for X-ray imaging scintillators and detectors, ACS Energy Lett. 6(2), 739 (2021)
CrossRef ADS Google scholar
[97]
Y. Wu, J. Feng, Z. Yang, Y. Liu, and S. Liu, Halide perovskite: A promising candidate for next-generation X-ray detectors, Adv. Sci. (Weinh.) 10(1), 2205536 (2023)
CrossRef ADS Google scholar
[98]
K. Sakhatskyi, B. Turedi, G. J. Matt, E. Wu, A. Sakhatska, V. Bartosh, M. N. Lintangpradipto, R. Naphade, I. Shorubalko, O. F. Mohammed, S. Yakunin, O. M. Bakr, and M. V. Kovalenko, Stable perovskite single-crystal X-ray imaging detectors with single-photon sensitivity, Nat. Photonics 17(6), 510 (2023)
CrossRef ADS Google scholar
[99]
S.ShresthaH. TsaiW.Nie, A perspective on the device physics of lead halide perovskite semiconducting detector for gamma and X-ray sensing, Appl. Phys. Lett. 122(8), 080501 (2023)
[100]
F. Zhang, C. Herman, Z. He, G. De Geronimo, E. Vernon, and J. Fried, Characterization of the H3D ASIC readout system and 6.0 cm3 3-D position sensitive CdZnTe detectors, IEEE Trans. Nucl. Sci. 59(1), 236 (2012)
CrossRef ADS Google scholar
[101]
F. Wang, T. Zhang, R. Xie, Z. Wang, and W. Hu, How to characterize figures of merit of two-dimensional photodetectors, Nat. Commun. 14(1), 2224 (2023)
CrossRef ADS Google scholar
[102]
M. A. Wolff, S. Vogel, L. Splitthoff, and C. Schuck, Superconducting nanowire single-photon detectors integrated with tantalum pentoxide waveguides, Sci. Rep. 10(1), 17170 (2020)
CrossRef ADS Google scholar
[103]
Z. Zhou, J. Lv, C. Tan, L. Yang, and Z. Wang, Emerging frontiers of 2D transition metal dichalcogenides in photovoltaics solar cell, Adv. Funct. Mater. 34, 2316175 (2024)
CrossRef ADS Google scholar
[104]
G. Z. Xu, W. J. Zhang, L. X. You, J. M. Xiong, X. Q. Sun, H. Huang, X. Ou, Y. M. Pan, C. L. Lv, H. Li, Z. Wang, and X. M. Xie, Superconducting microstrip single-photon detector with system detection efficiency over 90% at 1550 nm, Photon. Res. 9(6), 958 (2021)
CrossRef ADS Google scholar
[105]
H. Wang, P. Hu, Y. Xiao, X. Zhang, H. Zhou, W. Zhang, H. Li, L. You, and Z. Wang, Multispectral superconducting nanowire single-photon detector based on thickness-modulated optical film stack, IEEE Photonics J. 14(2), 6816304 (2022)
CrossRef ADS Google scholar
[106]
S. Das, D. Pandey, J. Thomas, and T. Roy, The role of graphene and other 2D materials in solar photovoltaics, Adv. Mater. 31(1), 1802722 (2019)
CrossRef ADS Google scholar
[107]
D. Salvoni, M. Ejrnaes, A. Gaggero, F. Mattioli, F. Martini, H. G. Ahmad, L. Di Palma, R. Satariano, X. Y. Yang, L. You, F. Tafuri, G. P. Pepe, D. Massarotti, D. Montemurro, and L. Parlato, , Phys. Rev. Applied 18(1), 014006 (2022)
CrossRef ADS Google scholar
[108]
Y.GengW. ZhangP.Z. LiJ.Q. ZhongZ.Wang W.MiaoY. RenJ.F. WangQ.J. YaoS.C. Shi, Improving energy detection efficiency of Ti-based superconducting transition-edge sensors with optical cavity, J. Low Temp. Phys. 199(1–2), 556 (2020)
[109]
X. Hu, D. Wu, H. Zhang, W. Li, D. Chen, L. Wang, X. Xiao, and S. Yu, High-speed and high-power germanium photodetector with a lateral silicon nitride waveguide, Photon. Res. 9(5), 749 (2021)
CrossRef ADS Google scholar
[110]
D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J. M. Fédéli, J. M. Hartmann, J. H. Schmid, D. X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, Roadmap on silicon photonics, J. Opt. 18(7), 073003 (2016)
CrossRef ADS Google scholar
[111]
M. R. Karim, N. Al Kayed, N. Jahan, M. S. Alam, and B. M. A. Rahman, Study of highly coherent mid-infrared supercontinuum generation in CMOS compatible Si-rich SiN tapered waveguide, J. Lightwave Technol. 40(13), 4300 (2022)
CrossRef ADS Google scholar
[112]
W. C. Hsu, N. Nujhat, B. Kupp, J. F. Jr Conley, and A. X. Wang, On-chip wavelength division multiplexing filters using extremely efficient gate-driven silicon microring resonator array, Sci. Rep. 13(1), 5269 (2023)
CrossRef ADS Google scholar
[113]
S. Schuler, J. E. Muench, A. Ruocco, O. Balci, D. Thourhout, V. Sorianello, M. Romagnoli, K. Watanabe, T. Taniguchi, I. Goykhman, A. C. Ferrari, and T. Mueller, High-responsivity graphene photodetectors integrated on silicon microring resonators, Nat. Commun. 12(1), 3733 (2021)
CrossRef ADS Google scholar
[114]
J. Mu, M. Dijkstra, J. Korterik, H. Offerhaus, and S. M. García-Blanco, High-gain waveguide amplifiers in Si3N4 technology via double-layer monolithic integration, Photon. Res. 8(10), 1634 (2020)
CrossRef ADS Google scholar
[115]
D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, Silicon nitride in silicon photonics, Proc. IEEE 106(12), 2209 (2018)
CrossRef ADS Google scholar
[116]
J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides, Nat. Commun. 10(1), 432 (2019)
CrossRef ADS Google scholar
[117]
L. Feng, M. Zhang, J. Wang, X. Zhou, X. Qiang, G. Guo, and X. Ren, Silicon photonic devices for scalable quantum information applications, Photon. Res. 10(10), A135 (2022)
CrossRef ADS Google scholar
[118]
J. T. Kim and C. G. Choi, Graphene-based polymer waveguide polarizer, Opt. Express 20(4), 3556 (2012)
CrossRef ADS Google scholar
[119]
M. Kleinert, F. Herziger, P. Reinke, C. Zawadzki, D. de Felipe, W. Brinker, H. G. Bach, N. Keil, J. Maultzsch, and M. Schell, Graphene-based electro-absorption modulator integrated in a passive polymer waveguide platform, Opt. Mater. Express 6(6), 1800 (2016)
CrossRef ADS Google scholar
[120]
R. Hatai, F. Nakazaki, T. Nakayama, and T. Ishigure, Fabrication of Y-branched GI core polymer waveguide and its application to CWDM MUX device for multimode fiber, J. Lightwave Technol. 40(9), 2915 (2022)
CrossRef ADS Google scholar
[121]
Z. Ding, H. Wang, T. Li, X. Ouyang, Y. Shi, and A. P. Zhang, Fabrication of polymer optical waveguides by digital ultraviolet lithography, J. Lightwave Technol. 40(1), 163 (2022)
CrossRef ADS Google scholar
[122]
D. Sahin, A. Gaggero, Z. Zhou, S. Jahanmirinejad, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, and A. Fiore, Waveguide photon-number-resolving detectors for quantum photonic integrated circuits, Appl. Phys. Lett. 103(11), 111116 (2013)
CrossRef ADS Google scholar
[123]
T. Gerrits, N. Thomas-Peter, J. C. Gates, A. E. Lita, B. J. Metcalf, B. Calkins, N. A. Tomlin, A. E. Fox, A. L. Linares, J. B. Spring, N. K. Langford, R. P. Mirin, P. G. R. Smith, I. A. Walmsley, and S. W. Nam, On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing, Phys. Rev. A 84(6), 060301 (2011)
CrossRef ADS Google scholar
[124]
H. Wang, Y. Shi, Y. Zuo, Y. Yu, L. Lei, X. Zhang, and Z. Qian, High-performance waveguide coupled Germanium-on-silicon single-photon avalanche diode with independently controllable absorption and multiplication, Nanophotonics 12(4), 705 (2023)
CrossRef ADS Google scholar
[125]
J. Wu, H. Ma, C. Zhong, M. Wei, C. Sun, Y. Ye, Y. Xu, B. Tang, Y. Luo, B. Sun, J. Jian, H. Dai, H. Lin, and L. Li, Waveguide-integrated PdSe2 photodetector over a broad infrared wavelength range, Nano Lett. 22(16), 6816 (2022)
CrossRef ADS Google scholar
[126]
N. Youngblood, C. Chen, S. J. Koester, and M. Li, Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current, Nat. Photonics 9(4), 247 (2015)
CrossRef ADS Google scholar
[127]
Y. Yin, R. Cao, J. Guo, C. Liu, J. Li, X. Feng, H. Wang, W. Du, A. Qadir, H. Zhang, Y. Ma, S. Gao, Y. Xu, Y. Shi, L. Tong, and D. Dai, High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 µm, Laser Photonics Rev. 13(6), 1900032 (2019)
CrossRef ADS Google scholar
[128]
N. Flöry, P. Ma, Y. Salamin, A. Emboras, T. Taniguchi, K. Watanabe, J. Leuthold, and L. Novotny, Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity, Nat. Nanotechnol. 15(2), 118 (2020)
CrossRef ADS Google scholar
[129]
P. L. Chen, Y. Chen, T. Y. Chang, W. Q. Li, J. X. Li, S. Lee, Z. Fang, M. Li, A. Majumdar, and C. H. Liu, Waveguide-integrated van der Waals heterostructure mid-infrared photodetector with high performance, ACS Appl. Mater. Interfaces 14(21), 24856 (2022)
CrossRef ADS Google scholar
[130]
J. Wu, M. Wei, J. Mu, H. Ma, C. Zhong, Y. Ye, C. Sun, B. Tang, L. Wang, J. Li, X. Xu, B. Liu, L. Li, and H. Lin, High-performance waveguide-integrated Bi2O2Se photodetector for Si photonic integrated circuits, ACS Nano 15(10), 15982 (2021)
CrossRef ADS Google scholar
[131]
L. H. Zeng, D. Wu, S. H. Lin, C. Xie, H. Y. Yuan, W. Lu, S. P. Lau, Y. Chai, L. B. Luo, Z. J. Li, and Y. H. Tsang, Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications, Adv. Funct. Mater. 29(1), 1806878 (2019)
CrossRef ADS Google scholar
[132]
S. Deng, A. V. Sumant, and V. Berry, Strain engineering in two-dimensional nanomaterials beyond graphene, Nano Today 22, 14 (2018)
CrossRef ADS Google scholar
[133]
R. Frisenda, M. Drüppel, R. Schmidt, S. Michaelis de Vasconcellos, D. Perez de Lara, R. Bratschitsch, M. Rohlfing, and A. Castellanos-Gomez, Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides, npj 2D Mater. Appl. 1, 10 (2017)
CrossRef ADS Google scholar
[134]
N. Tang, C. Du, Q. Wang, and H. Xu, Strain engineering in bilayer WSe2 over a large strain range, Microelectron. Eng. 223, 111202 (2020)
CrossRef ADS Google scholar
[135]
W. Xu, J. D. Zheng, W. Y. Tong, J. L. Wang, Y. P. Shao, Y. K. Zhang, Y. F. Tan, and C. G. Duan, Strain-induced ferroelectric phase transition in group-V monolayer black phosphorus, Adv. Quantum Technol. 6(4), 2200169 (2023)
CrossRef ADS Google scholar
[136]
L. L. Li, R. Gillen, M. Palummo, M. V. Milošević, and F. M. Peeters, Strain tunable interlayer and intralayer excitons in vertically stacked MoSe2/WSe2 heterobilayers, Appl. Phys. Lett. 123(3), 033102 (2023)
CrossRef ADS Google scholar
[137]
D. Nayak and R. Thangavel, Tailoring the electronic and photocatalytic properties of Mo1−xWxS2 monolayers via biaxial strain, J. Mater. Sci. 57(6), 4283 (2022)
CrossRef ADS Google scholar
[138]
S. Tareq, A. O. M. Almayyali, and H. R. Jappor, Prediction of two-dimensional AlBrSe monolayer as a highly efficient photocatalytic for water splitting, Surf. Interfaces 31, 102020 (2022)
CrossRef ADS Google scholar
[139]
R. Roldán, A. Castellanos-Gomez, E. Cappelluti, and F. Guinea, Strain engineering in semiconducting two-dimensional crystals, J. Phys.: Condens. Matter 27(31), 313201 (2015)
CrossRef ADS Google scholar
[140]
J. O. Island, A. Kuc, E. H. Diependaal, R. Bratschitsch, H. S. J. van der Zant, T. Heine, and A. Castellanos-Gomez, Precise and reversible band gap tuning in single-layer MoSe2 by uniaxial strain, Nanoscale 8(5), 2589 (2016)
CrossRef ADS Google scholar
[141]
M. Hayashi, H. Yoshioka, H. Tomori, and A. Kanda, Theory of the strain engineering of graphene nanoconstrictions, J. Phys. Soc. Jpn. 90(2), 023701 (2021)
CrossRef ADS Google scholar
[142]
M. Chen, J. Xia, J. Zhou, Q. Zeng, K. Li, K. Fujisawa, W. Fu, T. Zhang, J. Zhang, Z. Wang, Z. Wang, X. Jia, M. Terrones, Z. X. Shen, Z. Liu, and L. Wei, Ordered and atomically perfect fragmentation of layered transition metal dichalcogenides via mechanical instabilities, ACS Nano 11(9), 9191 (2017)
CrossRef ADS Google scholar
[143]
C. Cho, J. Wong, A. Taqieddin, S. Biswas, N. R. Aluru, S. Nam, and H. A. Atwater, Highly strain-tunable interlayer excitons in MoS2/WSe2 heterobilayers, Nano Lett. 21(9), 3956 (2021)
CrossRef ADS Google scholar
[144]
Y. K. Ryu, F. Carrascoso, R. López-Nebreda, N. Agraït, R. Frisenda, and A. Castellanos-Gomez, Microheater actuators as a versatile platform for strain engineering in 2D materials, Nano Lett. 20(7), 5339 (2020)
CrossRef ADS Google scholar
[145]
Z. Chen, W. Luo, L. Liang, X. Ling, and A. K. Swan, Charge separation in monolayer WSe2 by strain engineering: implications for strain-induced diode action, ACS Appl. Nano Mater. 5(10), 15095 (2022)
CrossRef ADS Google scholar
[146]
S. Manzeli, A. Allain, A. Ghadimi, and A. Kis, Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2, Nano Lett. 15(8), 5330 (2015)
CrossRef ADS Google scholar
[147]
J.Y. JuoB. G. ShinW.StiepanyM.MemmlerK.Kern S.J. Jung, In-situ atomic level observation of the strain response of graphene lattice, Sci. Rep. 13(1), 2451 (2023)
[148]
P. Nemes-Incze, G. Kukucska, J. Koltai, J. Kürti, C. Hwang, L. Tapasztó, and L. P. Biró, Preparing local strain patterns in graphene by atomic force microscope based indentation, Sci. Rep. 7(1), 3035 (2017)
CrossRef ADS Google scholar
[149]
K. Wang, A. A. Puretzky, Z. Hu, B. R. Srijanto, X. Li, N. Gupta, H. Yu, M. Tian, M. Mahjouri-Samani, X. Gao, A. Oyedele, C. M. Rouleau, G. Eres, B. I. Yakobson, M. Yoon, K. Xiao, and D. B. Geohegan, Strain tolerance of two-dimensional crystal growth on curved surfaces, Sci. Adv. 5(5), eaav4028 (2019)
CrossRef ADS Google scholar
[150]
J. W. Christopher, M. Vutukuru, D. Lloyd, J. S. Bunch, B. B. Goldberg, D. J. Bishop, and A. K. Swan, Monolayer MoS2 strained to 1.3% with a microelectromechanical system, J. Microelectromech. Syst. 28(2), 254 (2019)
CrossRef ADS Google scholar
[151]
Y. Y. Hui, X. Liu, W. Jie, N. Y. Chan, J. Hao, Y. T. Hsu, L. J. Li, W. Guo, and S. P. Lau, Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet, ACS Nano 7(8), 7126 (2013)
CrossRef ADS Google scholar
[152]
R. Maiti, C. Patil, M. A. S. R. Saadi, T. Xie, J. G. Azadani, B. Uluutku, R. Amin, A. F. Briggs, M. Miscuglio, D. Van Thourhout, S. D. Solares, T. Low, R. Agarwal, S. R. Bank, and V. J. Sorger, Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits, Nat. Photonics 14(9), 578 (2020)
CrossRef ADS Google scholar
[153]
H. He, P. F. Yang, P. F. Zhang, G. Li, and T. C. Zhang, Single-photon source with sub-MHz linewidth for cesium-based quantum information processing, Front. Phys. 18(6), 61303 (2023)
CrossRef ADS Google scholar
[154]
A. Maccarone, K. Drummond, A. McCarthy, U. K. Steinlehner, J. Tachella, D. A. Garcia, A. Pawlikowska, R. A. Lamb, R. K. Henderson, S. McLaughlin, Y. Altmann, and G. S. Buller, Submerged single-photon LiDAR imaging sensor used for real-time 3D scene reconstruction in scattering underwater environments, Opt. Express 31(10), 16690 (2023)
CrossRef ADS Google scholar
[155]
X. Liu, J. Wang, L. Xiao, Z. Shi, X. Fu, and L. Qiu, Non-line-of-sight imaging with arbitrary illumination and detection pattern, Nat. Commun. 14(1), 3230 (2023)
CrossRef ADS Google scholar
[156]
R. Moya, A. C. Norris, T. Kondo, and G. S. Schlau-Cohen, Observation of robust energy transfer in the photosynthetic protein allophycocyanin using single-molecule pump–probe spectroscopy, Nat. Chem. 14(2), 153 (2022)
CrossRef ADS Google scholar
[157]
Q. Li, K. Orcutt, R. L. Cook, J. Sabines-Chesterking, A. L. Tong, G. S. Schlau-Cohen, X. Zhang, G. R. Fleming, and K. B. Whaley, Single-photon absorption and emission from a natural photosynthetic complex, Nature 619(7969), 300 (2023)
CrossRef ADS Google scholar
[158]
Z.DuY.Hu N.Ali ButtarA.Mahmood, X-ray computed tomography for quality inspection of agricultural products: A review, Food Sci. Nutr. 7(10), 3146 (2019)
[159]
J. Jiang, M. Xiong, K. Fan, C. Bao, D. Xin, Z. Pan, L. Fei, H. Huang, L. Zhou, K. Yao, X. Zheng, L. Shen, and F. Gao, Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring, Nat. Photonics 16(8), 575 (2022)
CrossRef ADS Google scholar
[160]
G.H. ZuoY. C. ZhangG.LiP.F. ZhangP.F. Yang Y.Q. GuoS. Y. ZhuT.C. Zhang, 10-Hertz squeezed light source generation on the cesium D2 line using single photon modulation, Front. Phys. 18(3), 32301 (2023)
[161]
Z. P. Li, X. Huang, Y. Cao, B. Wang, Y. H. Li, W. Jin, C. Yu, J. Zhang, Q. Zhang, C. Z. Peng, F. Xu, and J. W. Pan, Single-photon computational 3D imaging at 45 km, Photon. Res. 8(9), 1532 (2020)
CrossRef ADS Google scholar
[162]
X. T. Fang, P. Zeng, H. Liu, M. Zou, W. Wu, Y. L. Tang, Y. J. Sheng, Y. Xiang, W. Zhang, H. Li, Z. Wang, L. You, M. J. Li, H. Chen, Y. A. Chen, Q. Zhang, C. Z. Peng, X. Ma, T. Y. Chen, and J. W. Pan, Implementation of quantum key distribution surpassing the linear rate-transmittance bound, Nat. Photonics 14(7), 422 (2020)
CrossRef ADS Google scholar
[163]
J. P. Chen, C. Zhang, Y. Liu, C. Jiang, W. Zhang, X. L. Hu, J. Y. Guan, Z. W. Yu, H. Xu, J. Lin, M. J. Li, H. Chen, H. Li, L. You, Z. Wang, X. B. Wang, Q. Zhang, and J. W. Pan, Sending-or-not-sending with independent lasers: Secure twin-field quantum key distribution over 509 km, Phys. Rev. Lett. 124(7), 070501 (2020)
CrossRef ADS Google scholar
[164]
S. Wang, Z. Q. Yin, D. Y. He, W. Chen, R. Q. Wang, P. Ye, Y. Zhou, G. J. Fan-Yuan, F. X. Wang, W. Chen, Y. G. Zhu, P. V. Morozov, A. V. Divochiy, Z. Zhou, G. C. Guo, and Z. F. Han, Twin-field quantum key distribution over 830-km fibre, Nat. Photonics 16(2), 154 (2022)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 52272160, U2330112, and 52002254), the Sichuan Science and Technology Foundation (Grant Nos. 2023YFSY0002, 2020YJ0262, 2021YFH0127, 2022YFH0083, and 2022YFSY0045), the Chunhui Plan of Ministry of Education of China, Fundamental Research Funds for the Central Universities, China (Grant No. YJ201893), and the Open-Foundation of Key Laboratory of Laser Device Technology, China North Industries Group Corporation Limited (Grant No. LLDT2023-006).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(8007 KB)

Accesses

Citations

Detail

Sections
Recommended

/