Magnon, doublon and quarton excitations in 2D S=1/2 trimerized Heisenberg models

Yue-Yue Chang, Jun-Qing Cheng, Hui Shao, Dao-Xin Yao, Han-Qing Wu

PDF(11589 KB)
PDF(11589 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (6) : 63202. DOI: 10.1007/s11467-024-1418-3
RESEARCH ARTICLE

Magnon, doublon and quarton excitations in 2D S=1/2 trimerized Heisenberg models

Author information +
History +

Abstract

We investigate the magnetic excitations of the two-dimensional (2D) S = 1/2 trimerized Heisenberg models with intratrimer interaction J1 and intertrimer interaction J2 on four different lattices using a combination of stochastic series expansion quantum Monte Carlo (SSE QMC) and stochastic analytic continuation methods (SAC), complemented by cluster perturbation theory (CPT). These models exhibit quasi-particle-like excitations when g=J2/J 1 is weak, characterized by low-energy magnons, intermediate-energy doublons, and high-energy quartons. The low-energy magnons are associated with the magnetic ground states. They can be described by the linear spin wave theory (LSWT) of the effective block spin model and the original spin model. Doublons and quartons emerge from the corresponding internal excitations of the trimers with distinct energy levels, which can be effectively analyzed using perturbative calculation when the ratio of exchange interactions g is weak. In this weak g regime, we observe a clear separation between the magnon and higher-energy spectra. As g increases, doublon and quarton gradually merge into the magnon modes or some continua. Notably, in the Collinear II and trimerized Hexagon lattice, a broad continuum emerges above the single-magnon spectrum, originating from the quasi-1D physics due to the dilute connections between chains. In addition, we also compare our numerical results to the experimental RIXS spectrum and analyze the difference. Our numerical analysis of these 2D trimers yields valuable theoretical predictions and explanations for the inelastic neutron scattering (INS) spectra of 2D magnetic materials featuring trimerized lattices.

Graphical abstract

Keywords

quantum Monte Carlo / trimerized Heisenberg model

Cite this article

Download citation ▾
Yue-Yue Chang, Jun-Qing Cheng, Hui Shao, Dao-Xin Yao, Han-Qing Wu. Magnon, doublon and quarton excitations in 2D S=1/2 trimerized Heisenberg models. Front. Phys., 2024, 19(6): 63202 https://doi.org/10.1007/s11467-024-1418-3

References

[1]
D.Pines, Elementary Excitations in Solids, CRC Press, 2018
[2]
L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P. Hill, and J. van den Brink, Resonant inelastic X-ray scattering studies of elementary excitations, Rev. Mod. Phys. 83(2), 705 (2011)
CrossRef ADS Google scholar
[3]
A.ChumakH. Schultheiss, Magnonics: Spin waves connecting charges, spins and photons, arXiv: 1901.07021 (2019)
[4]
D. Wulferding, Y. Choi, S. H. Do, C. H. Lee, P. Lemmens, C. Faugeras, Y. Gallais, and K. Y. Choi, Magnon bound states versus anyonic Majorana excitations in the Kitaev honeycomb magnet α-RuCl3, Nat. Commun. 11(1), 1603 (2020)
CrossRef ADS Google scholar
[5]
R. Coldea, S. M. Hayden, G. Aeppli, T. G. Perring, C. D. Frost, T. E. Mason, S. W. Cheong, and Z. Fisk, Spin waves and electronic interactions in La2CuO4, Phys. Rev. Lett. 86(23), 5377 (2001)
CrossRef ADS Google scholar
[6]
N. M. R. Peres and M. A. N. Araújo, Spin-wave dispersion in La2CuO4, Phys. Rev. B 65(13), 132404 (2002)
CrossRef ADS Google scholar
[7]
N. Peres and M. Araújo, Spin waves in La2CuO4: Band structure and correlation effects, physica status solidi (b) 236, 523 (2003)
CrossRef ADS Google scholar
[8]
N. S. Headings, S. M. Hayden, R. Coldea, and T. G. Perring, Anomalous high-energy spin excitations in the high Tc superconductor-parent antiferromagnet La2CuO4, Phys. Rev. Lett. 105(24), 247001 (2010)
CrossRef ADS Google scholar
[9]
B. Dalla Piazza, M. Mourigal, N. B. Christensen, G. Nilsen, P. Tregenna-Piggott, T. Perring, M. Enderle, D. F. McMorrow, D. Ivanov, and H. M. Rønnow, Fractional excitations in the square-lattice quantum antiferromagnet, Nat. Phys. 11(1), 62 (2015)
CrossRef ADS Google scholar
[10]
H. Shao, Y. Q. Qin, S. Capponi, S. Chesi, Z. Y. Meng, and A. W. Sandvik, Nearly deconfined spinon excitations in the square-lattice spin-1/2 Heisenberg antiferromagnet, Phys. Rev. X 7(4), 041072 (2017)
CrossRef ADS Google scholar
[11]
R. R. P. Singh and M. P. Gelfand, Spin-wave excitation spectra and spectral weights in square lattice antiferromagnets, Phys. Rev. B 52(22), R15695 (1995)
CrossRef ADS Google scholar
[12]
A. W. Sandvik and R. R. P. Singh, High-energy magnon dispersion and multimagnon continuum in the two-dimensional Heisenberg antiferromagnet, Phys. Rev. Lett. 86(3), 528 (2001)
CrossRef ADS Google scholar
[13]
L. Yang and A. E. Feiguin, From deconfined spinons to coherent magnons in an antiferromagnetic Heisenberg chain with long-range interactions, SciPost Phys. 10(5), 110 (2021)
CrossRef ADS Google scholar
[14]
M. Powalski, K. P. Schmidt, and G. S. Uhrig, Mutually attracting spin waves in the square-lattice quantum antiferromagnet, SciPost Phys. 4, 001 (2018)
CrossRef ADS Google scholar
[15]
M. Powalski, G. S. Uhrig, and K. P. Schmidt, Roton minimum as a fingerprint of Magnon‒Higgs scattering in ordered quantum antiferromagnets, Phys. Rev. Lett. 115(20), 207202 (2015)
CrossRef ADS Google scholar
[16]
G. Y. Sun, Y. C. Wang, C. Fang, Y. Qi, M. Cheng, and Z. Y. Meng, Dynamical signature of symmetry fractionalization in frustrated magnets, Phys. Rev. Lett. 121(7), 077201 (2018)
CrossRef ADS Google scholar
[17]
Y. Q. Qin, B. Normand, A. W. Sandvik, and Z. Y. Meng, Amplitude mode in three-dimensional dimerized antiferromagnets, Phys. Rev. Lett. 118(14), 147207 (2017)
CrossRef ADS Google scholar
[18]
M. Lohöfer and S. Wessel, Excitation-gap scaling near quantum critical three-dimensional antiferromagnets, Phys. Rev. Lett. 118(14), 147206 (2017)
CrossRef ADS Google scholar
[19]
J. K. Fang, J. H. Huang, H. Q. Wu, and D. X. Yao, Dynamical properties of the Haldane chain with bond disorder, Front. Phys. 17(3), 33503 (2022)
CrossRef ADS Google scholar
[20]
Y. Shen, C. Liu, Y. Qin, S. Shen, Y. D. Li, R. Bewley, A. Schneidewind, G. Chen, and J. Zhao, Intertwined dipolar and multipolar order in the triangular-lattice magnet TmMgGaO4, Nat. Commun. 10(1), 4530 (2019)
CrossRef ADS Google scholar
[21]
Z. Zhou, C. Liu, Z. Yan, Y. Chen, and X. F. Zhang, Quantum dynamics of topological strings in a frustrated Ising antiferromagnet, npj Quantum Mater. 7, 60 (2022)
CrossRef ADS Google scholar
[22]
M. Majumder, S. Kanungo, A. Ghoshray, M. Ghosh, and K. Ghoshray, Magnetism of the spin-trimer compound CaNi3(P2O7)2: Microscopic insight from combined 31P NMR and first-principles studies, Phys. Rev. B 91(10), 104422 (2015)
CrossRef ADS Google scholar
[23]
Y. Shen, J. Sears, G. Fabbris, A. Weichselbaum, W. Yin, H. Zhao, D. G. Mazzone, H. Miao, M. H. Upton, D. Casa, R. Acevedo-Esteves, C. Nelson, A. M. Barbour, C. Mazzoli, G. Cao, and M. P. M. Dean, Emergence of spinons in layered trimer iridate Ba4Ir3O10, Phys. Rev. Lett. 129(20), 207201 (2022)
CrossRef ADS Google scholar
[24]
G. Cao, H. Zheng, H. Zhao, Y. Ni, C. A. Pocs, . Quantum liquid from strange frustration in the trimer magnet Ba4Ir3O10, npj Quantum Mater. 5, 26 (2020)
CrossRef ADS Google scholar
[25]
G. Cao, H. Zhao, B. Hu, N. Pellatz, D. Reznik, P. Schlottmann, and I. Kimchi, Quest for quantum states via field-altering technology, npj Quantum Mater. 5, 83 (2020)
CrossRef ADS Google scholar
[26]
X. Chen, Y. He, S. Wu, Y. Song, D. Yuan, E. Bourret-Courchesne, J. P. C. Ruff, Z. Islam, A. Frano, and R. J. Birgeneau, Structural and magnetic transitions in the planar antiferromagnet Ba4Ir3O10, Phys. Rev. B 103(22), 224420 (2021)
CrossRef ADS Google scholar
[27]
A. Sokolik, S. Hakani, S. Roy, N. Pellatz, H. Zhao, G. Cao, I. Kimchi, and D. Reznik, Spinons and damped phonons in the spin-1/2 quantum liquid Ba4Ir3O10 observed by Raman scattering, Phys. Rev. B 106(7), 075108 (2022)
CrossRef ADS Google scholar
[28]
Q. Jiang and D. X. Yao, Magnetic order driven by orbital ordering in the semiconducting KFe1.5Se2, Front. Phys. 11(2), 117401 (2016)
CrossRef ADS Google scholar
[29]
X.NieJ. LiT.DattaD.X. Yao, A spin–rotation mechanism of Einstein–de Haas effect based on a ferromagnetic disk, Front. Phys. 19(5), 53201 (2024)
[30]
Y. Xu, Z. Xiong, H. Q. Wu, and D. X. Yao, Spin excitation spectra of the two-dimensional S = 1/2 Heisenberg model with a checkerboard structure, Phys. Rev. B 99(8), 085112 (2019)
CrossRef ADS Google scholar
[31]
T. Yan, S. Jin, Z. Xiong, J. Li, and D. X. Yao, Magnetic excitations of diagonally coupled checkerboards, Chin. Phys. B 30(10), 107505 (2021)
CrossRef ADS Google scholar
[32]
N. Ma, G. Y. Sun, Y. Z. You, C. Xu, A. Vishwanath, A. W. Sandvik, and Z. Y. Meng, Dynamical signature of fractionalization at a deconfined quantum critical point, Phys. Rev. B 98(17), 174421 (2018)
CrossRef ADS Google scholar
[33]
X. Ran, N. Ma, and D. X. Yao, Criticality and scaling corrections for two-dimensional Heisenberg models in plaquette patterns with strong and weak couplings, Phys. Rev. B 99(17), 174434 (2019)
CrossRef ADS Google scholar
[34]
Y. Tan and D. X. Yao, Spin waves and phase transition on a magnetically frustrated square lattice with long-range interactions, Front. Phys. 18(3), 33309 (2023)
CrossRef ADS Google scholar
[35]
J. Q. Cheng, J. Li, Z. Xiong, H. Q. Wu, A. W. Sandvik, and D. X. Yao, Fractional and composite excitations of antiferromagnetic quantum spin trimer chains, npj Quantum Mater. 7, 3 (2022)
CrossRef ADS Google scholar
[36]
N. Strohmaier, D. Greif, R. Jördens, L. Tarruell, H. Moritz, T. Esslinger, R. Sensarma, D. Pekker, E. Altman, and E. Demler, Observation of elastic doublon decay in the Fermi‒Hubbard model, Phys. Rev. Lett. 104(8), 080401 (2010)
CrossRef ADS Google scholar
[37]
T. Terashige, T. Ono, T. Miyamoto, T. Morimoto, H. Yamakawa, N. Kida, T. Ito, T. Sasagawa, T. Tohyama, and H. Okamoto, Doublon‒Holon pairing mechanism via exchange interaction in two-dimensional cuprate Mott insulators, Sci. Adv. 5(6), eaav2187 (2019)
CrossRef ADS Google scholar
[38]
Y. Ye, K. Peng, M. Naghiloo, G. Cunningham, and K. P. O’Brien, Engineering purely nonlinear coupling between superconducting qubits using a quarton, Phys. Rev. Lett. 127(5), 050502 (2021)
CrossRef ADS Google scholar
[39]
A. K. Bera, S. Yusuf, S. K. Saha, M. Kumar, D. Voneshen, Y. Skourski, and S. A. Zvyagin, Emergent many-body composite excitations of interacting spin-1/2 trimers, Nat. Commun. 13(1), 6888 (2022)
CrossRef ADS Google scholar
[40]
J.Q. ChengZ. Y. NingH.Q. WuD.X. Yao, Quantum phase transitions and composite excitations of antiferromagnetic quantum spin trimer chains in a magnetic field, arXiv: 2402.00272 (2024)
[41]
Y. Klein, G. Rousse, F. Damay, F. Porcher, G. André, and I. Terasaki, Antiferromagnetic order and consequences on the transport properties of Ba4Ru3O10, Phys. Rev. B 84, 054439 (2011)
CrossRef ADS Google scholar
[42]
T. Igarashi, R. Okazaki, H. Taniguchi, Y. Yasui, and I. Terasaki, Effects of the Ir impurity on the thermodynamic and transport properties of Ba4Ru3O10, J. Phys. Soc. Jpn. 84(9), 094601 (2015)
CrossRef ADS Google scholar
[43]
L. Weber, A. Honecker, B. Normand, P. Corboz, F. Mila, and S. Wessel, Quantum Monte Carlo simulations in the trimer basis: First-order transitions and thermal critical points in frustrated trilayer magnets, SciPost Phys. 12, 054 (2022)
CrossRef ADS Google scholar
[44]
H. Yang, J. Zeng, S. You, Y. Han, and Z. Qiao, Equipartition of current in metallic armchair nanoribbon of graphene-based device, Front. Phys. 17(6), 63508 (2022)
CrossRef ADS Google scholar
[45]
A. Bolens and N. Nagaosa, Topological states on the breathing kagomé lattice, Phys. Rev. B 99(16), 165141 (2019)
CrossRef ADS Google scholar
[46]
D. Farnell, Emergence of magnetic order in kagomé antiferromagnets, Front. Phys. 14(2), 23302 (2019)
CrossRef ADS Google scholar
[47]
Y. Chen, W. Wu, G. Liu, H. Tao, and W. Liu, Quantum phase transition of cold atoms trapped in optical lattices, Front. Phys. 7(2), 223 (2012)
CrossRef ADS Google scholar
[48]
A. Weichselbaum, W. Yin, and A. M. Tsvelik, Dimerization and spin decoupling in a two-leg Heisenberg ladder with frustrated trimer rungs, Phys. Rev. B 103(12), 125120 (2021)
CrossRef ADS Google scholar
[49]
S. F. Gull and J. Skilling, Maximum entropy method in image processing, IEE Proceedings F 131(6), 646 (1984)
CrossRef ADS Google scholar
[50]
D. Bergeron and A. M. S. Tremblay, Algorithms for optimized maximum entropy and diagnostic tools for analytic continuation, Phys. Rev. E 94(2), 023303 (2016)
CrossRef ADS Google scholar
[51]
A. W. Sandvik, Stochastic method for analytic continuation of quantum Monte Carlo data, Phys. Rev. B 57(17), 10287 (1998)
CrossRef ADS Google scholar
[52]
A. W. Sandvik, Constrained sampling method for analytic continuation, Phys. Rev. E 94(6), 063308 (2016)
CrossRef ADS Google scholar
[53]
K.S. D. Beach, Identifying the maximum entropy method as a special limit of stochastic analytic continuation, arXiv: cond-mat/0403055 (2004)
[54]
P.O. Löwdin, A note on the quantum-mechanical perturbation theory, J. Chem. Phys. 19(11), 1396 (1951)
[55]
A. L. Chernyshev and M. E. Zhitomirsky, Magnon decay in noncollinear quantum antiferromagnets, Phys. Rev. Lett. 97(20), 207202 (2006)
CrossRef ADS Google scholar
[56]
T.Kato, Perturbation Theory for Linear Operators, Vol. 132, Springer Science & Business Media, 2013
[57]
J. H. Huang, Z. Liu, H. Q. Wu, and D. X. Yao, Ground states and dynamical properties of the S > 1/2 quantum Heisenberg model on the 1/5-depleted square lattice, Phys. Rev. B 106(8), 085101 (2022)
CrossRef ADS Google scholar
[58]
K. Vafayi and O. Gunnarsson, Analytical continuation of spectral data from imaginary time axis to real frequency axis using statistical sampling, Phys. Rev. B 76(3), 035115 (2007)
CrossRef ADS Google scholar
[59]
D. R. Reichman and E. Rabani, Analytic continuation average spectrum method for quantum liquids, J. Chem. Phys. 131(5), 054502 (2009)
CrossRef ADS Google scholar
[60]
O. F. Syljuåsen, Using the average spectrum method to extract dynamics from quantum Monte Carlo simulations, Phys. Rev. B 78(17), 174429 (2008)
CrossRef ADS Google scholar
[61]
S. Fuchs, T. Pruschke, and M. Jarrell, Analytic continuation of quantum Monte Carlo data by stochastic analytical inference, Phys. Rev. E 81(5), 056701 (2010)
CrossRef ADS Google scholar
[62]
K. Ghanem and E. Koch, Average spectrum method for analytic continuation: Efficient blocked-mode sampling and dependence on the discretization grid, Phys. Rev. B 101(8), 085111 (2020)
CrossRef ADS Google scholar
[63]
K. Ghanem and E. Koch, Extending the average spectrum method: Grid point sampling and density averaging, Phys. Rev. B 102(3), 035114 (2020)
CrossRef ADS Google scholar
[64]
H. Shao and A. W. Sandvik, Progress on stochastic analytic continuation of quantum Monte Carlo data, Phys. Rep. 1003, 1 (2023)
CrossRef ADS Google scholar
[65]
S. L. Yu, W. Wang, Z. Y. Dong, Z. J. Yao, and J. X. Li, Deconfinement of spinons in frustrated spin systems: Spectral perspective, Phys. Rev. B 98(13), 134410 (2018)
CrossRef ADS Google scholar
[66]
D. Sénéchal, D. Perez, and M. Pioro-Ladriere, Spectral weight of the Hubbard model through cluster perturbation theory, Phys. Rev. Lett. 84(3), 522 (2000)
CrossRef ADS Google scholar
[67]
A. S. Ovchinnikov, I. G. Bostrem, and V. E. Sinitsyn, Cluster perturbation theory for spin Hamiltonians, Theor. Math. Phys. 162(2), 179 (2010)
CrossRef ADS Google scholar
[68]
J. Wu, J. P. L. Faye, D. Sénéchal, and J. Maciejko, Quantum cluster approach to the spinful Haldane‒Hubbard model, Phys. Rev. B 93(7), 075131 (2016)
CrossRef ADS Google scholar
[69]
C. Dahnken, M. Aichhorn, W. Hanke, E. Arrigoni, and M. Potthoff, Variational cluster approach to spontaneous symmetry breaking: The itinerant antiferromagnet in two dimensions, Phys. Rev. B 70(24), 245110 (2004)
CrossRef ADS Google scholar
[70]
T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Quantum cluster theories, Rev. Mod. Phys. 77(3), 1027 (2005)
CrossRef ADS Google scholar
[71]
A. W. Sandvik and H. G. Evertz, Loop updates for variational and projector quantum Monte Carlo simulations in the valence-bond basis, Phys. Rev. B 82(2), 024407 (2010)
CrossRef ADS Google scholar
[72]
U. Gerber, C. P. Hofmann, F. J. Jiang, M. Nyfeler, and U. J. Wiese, The constraint effective potential of the staggered magnetization in an antiferromagnet, J. Stat. Mech-theory E 2009, P03021 (2009)
CrossRef ADS Google scholar
[73]
B. B. Beard, R. J. Birgeneau, M. Greven, and U. J. Wiese, Square-lattice Heisenberg antiferromagnet at very large correlation lengths, Phys. Rev. Lett. 80(8), 1742 (1998)
CrossRef ADS Google scholar
[74]
A. K. Bera, S. M. Yusuf, A. Kumar, M. Majumder, K. Ghoshray, and L. Keller, Long-range and shortrange magnetic correlations, and microscopic origin of net magnetization in the spin-1 trimer chain compound CaNi3P4O14, Phys. Rev. B 93(18), 184409 (2016)
CrossRef ADS Google scholar
[75]
A. K. Bera, S. M. Yusuf, and D. T. Adroja, Excitations in the spin-1 trimer chain compound CaNi3P4O14: From gapped dispersive spin waves to gapless magnetic excitations, Phys. Rev. B 97(22), 224413 (2018)
CrossRef ADS Google scholar
[76]
M. Hase, H. Kitazawa, N. Tsujii, K. Ozawa, M. Kohno, and G. Kido, Ferrimagnetic long-range order caused by periodicity of exchange interactions in the spin-1 trimer chain compounds ANi3P4O14 (A = Ca, Sr, Pb, Ba), Phys. Rev. B 74(2), 024430 (2006)
CrossRef ADS Google scholar
[77]
C. Zhou, Z. Yan, H. Q. Wu, K. Sun, O. A. Starykh, and Z. Y. Meng, Amplitude mode in quantum magnets via dimensional crossover, Phys. Rev. Lett. 126(22), 227201 (2021)
CrossRef ADS Google scholar
[78]
Z. Lin, J. H. Choi, Q. Zhang, W. Qin, S. Yi, P. Wang, L. Li, Y. Wang, H. Zhang, Z. Sun, L. Wei, S. Zhang, T. Guo, Q. Lu, J. H. Cho, C. Zeng, and Z. Zhang, Flatbands and emergent ferromagnetic ordering in Fe3Sn2 kagomé lattices, Phys. Rev. Lett. 121(9), 096401 (2018)
CrossRef ADS Google scholar
[79]
C. Wu, D. Bergman, L. Balents, and S. Das Sarma, Flat bands and Wigner crystallization in the honeycomb optical lattice, Phys. Rev. Lett. 99(7), 070401 (2007)
CrossRef ADS Google scholar
[80]
J. X. Yin, S. S. Zhang, G. Chang, Q. Wang, S. S. Tsirkin, Z. Guguchia, B. Lian, H. Zhou, K. Jiang, I. Belopolski, N. Shumiya, D. Multer, M. Litskevich, T. A. Cochran, H. Lin, Z. Wang, T. Neupert, S. Jia, H. Lei, and M. Z. Hasan, Negative flat band magnetism in a spin–orbit coupled correlated kagomé magnet, Nat. Phys. 15(5), 443 (2019)
CrossRef ADS Google scholar
[81]
M. Li, Q. Wang, G. Wang, Z. Yuan, W. Song, R. Lou, Z. Liu, Y. Huang, Z. Liu, H. Lei, Z. Yin, and S. Wang, Dirac cone, flat band and saddle point in kagomé magnet YMn6Sn6, Nat. Commun. 12(1), 3129 (2021)
CrossRef ADS Google scholar
[82]
C. Luo, T. Datta, Z. Huang, and D. X. Yao, Signatures of indirect k-edge resonant inelastic X-ray scattering on magnetic excitations in a triangular-lattice antiferromagnet, Phys. Rev. B 92(3), 035109 (2015)
CrossRef ADS Google scholar
[83]
C. Luo, T. Datta, and D. X. Yao, Spectrum splitting of bimagnon excitations in a spatially frustrated Heisenberg antiferromagnet revealed by resonant inelastic X-ray scat tering, Phys. Rev. B 89(16), 165103 (2014)
CrossRef ADS Google scholar
[84]
Y. R. Shu, D. X. Yao, C. W. Ke, Y. C. Lin, and A. W. Sandvik, Properties of the random-singlet phase: From the disordered Heisenberg chain to an amorphous valence-bond solid, Phys. Rev. B 94, 174442 (2016)
CrossRef ADS Google scholar
[85]
H. Q. Wu, S. S. Gong, and D. N. Sheng, Randomness-induced spin-liquid-like phase in the spin-1/2 J1J2 triangular Heisenberg model, Phys. Rev. B 99, 085141 (2019)
CrossRef ADS Google scholar
[86]
R. Jullien, P. Pfeuty, J. N. Fields, and S. Doniach, Zerotemperature renormalization method for quantum systems. I. Ising model in a transverse field in one dimension, Phys. Rev. B 18(7), 3568 (1978)
CrossRef ADS Google scholar
[87]
M. A. Martín-Delgado and G. Sierra, Real space renormalization group methods and quantum groups, Phys. Rev. Lett. 76(7), 1146 (1996)
CrossRef ADS Google scholar
[88]
M. Kargarian, R. Jafari, and A. Langari, Renormalization of entanglement in the anisotropic Heisenberg XXZ model, Phys. Rev. A 77(3), 032346 (2008)
CrossRef ADS Google scholar
[89]
J. Q. Cheng, W. Wu, and J. B. Xu, Multipartite entanglement in an XXZ spin chain with Dzyaloshinskii–Moriya interaction and quantum phase transition, Quantum Inform. Process. 16(9), 231 (2017)
CrossRef ADS Google scholar
[90]
M. Usman, A. Ilyas, and K. Khan, Quantum renormalization group of the XY model in two dimensions, Phys. Rev. A 92(3), 032327 (2015)
CrossRef ADS Google scholar
[91]
J. Q. Cheng and J. B. Xu, Multipartite entanglement, quantum coherence, and quantum criticality in triangular and Sierpiński fractal lattices, Phys. Rev. E 97(6), 062134 (2018)
CrossRef ADS Google scholar
[92]
S. Wessel, B. Normand, F. Mila, and A. Honecker, Efficient quantum Monte Carlo simulations of highly frustrated magnets: The frustrated spin-1/2 ladder, SciPost Phys. 3, 005 (2017)
CrossRef ADS Google scholar
[93]
A. Honecker, L. Weber, P. Corboz, F. Mila, and S. Wessel, Quantum Monte Carlo simulations of highly frustrated magnets in a cluster basis: The two-dimensional Shastry−Sutherland model, J. Phys. Conf. Ser. 2207(1), 012032 (2022)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

We would like to thank Anders W. Sandvik and Muwei Wu for the fruitful discussions. This project was supported by the NKRDPC-2022YFA1402802, NSFC-11804401, NSFC-11974432, NSFC-92165204, NSFC-12047562, NSFC-12122502, the Leading Talent Program of Guangdong Special Projects (No. 201626003), and Guangdong Basic and Applied Basic Research Foundation (No. 2023B1515120013). The calculations reported were performed on resources provided by the Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, No. 2022B1212010008. H. Q. W. also acknowledges the Youth S&T Talent Support Programme of Guangdong Provincial Association for Science and Technology (GDSTA) (No. SKXRC202404). J.Q.C. also acknowledges the financial support from the Special Project in Key Areas for Universities in Guangdong Province (No. 2023ZDZX3054) and the Dongguan Key Laboratory of Artificial Intelligence Design for Advanced Materials.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(11589 KB)

Accesses

Citations

Detail

Sections
Recommended

/