Magnon, doublon and quarton excitations in 2D S=1/2 trimerized Heisenberg models
Yue-Yue Chang, Jun-Qing Cheng, Hui Shao, Dao-Xin Yao, Han-Qing Wu
Magnon, doublon and quarton excitations in 2D S=1/2 trimerized Heisenberg models
We investigate the magnetic excitations of the two-dimensional (2D) = 1/2 trimerized Heisenberg models with intratrimer interaction and intertrimer interaction on four different lattices using a combination of stochastic series expansion quantum Monte Carlo (SSE QMC) and stochastic analytic continuation methods (SAC), complemented by cluster perturbation theory (CPT). These models exhibit quasi-particle-like excitations when is weak, characterized by low-energy magnons, intermediate-energy doublons, and high-energy quartons. The low-energy magnons are associated with the magnetic ground states. They can be described by the linear spin wave theory (LSWT) of the effective block spin model and the original spin model. Doublons and quartons emerge from the corresponding internal excitations of the trimers with distinct energy levels, which can be effectively analyzed using perturbative calculation when the ratio of exchange interactions is weak. In this weak regime, we observe a clear separation between the magnon and higher-energy spectra. As increases, doublon and quarton gradually merge into the magnon modes or some continua. Notably, in the Collinear II and trimerized Hexagon lattice, a broad continuum emerges above the single-magnon spectrum, originating from the quasi-1D physics due to the dilute connections between chains. In addition, we also compare our numerical results to the experimental RIXS spectrum and analyze the difference. Our numerical analysis of these 2D trimers yields valuable theoretical predictions and explanations for the inelastic neutron scattering (INS) spectra of 2D magnetic materials featuring trimerized lattices.
quantum Monte Carlo / trimerized Heisenberg model
[1] |
D.Pines, Elementary Excitations in Solids, CRC Press, 2018
|
[2] |
L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P. Hill, and J. van den Brink, Resonant inelastic X-ray scattering studies of elementary excitations, Rev. Mod. Phys. 83(2), 705 (2011)
CrossRef
ADS
Google scholar
|
[3] |
A.ChumakH. Schultheiss, Magnonics: Spin waves connecting charges, spins and photons, arXiv: 1901.07021 (2019)
|
[4] |
D. Wulferding, Y. Choi, S. H. Do, C. H. Lee, P. Lemmens, C. Faugeras, Y. Gallais, and K. Y. Choi, Magnon bound states versus anyonic Majorana excitations in the Kitaev honeycomb magnet α-RuCl3, Nat. Commun. 11(1), 1603 (2020)
CrossRef
ADS
Google scholar
|
[5] |
R. Coldea, S. M. Hayden, G. Aeppli, T. G. Perring, C. D. Frost, T. E. Mason, S. W. Cheong, and Z. Fisk, Spin waves and electronic interactions in La2CuO4, Phys. Rev. Lett. 86(23), 5377 (2001)
CrossRef
ADS
Google scholar
|
[6] |
N. M. R. Peres and M. A. N. Araújo, Spin-wave dispersion in La2CuO4, Phys. Rev. B 65(13), 132404 (2002)
CrossRef
ADS
Google scholar
|
[7] |
N. Peres and M. Araújo, Spin waves in La2CuO4: Band structure and correlation effects, physica status solidi (b) 236, 523 (2003)
CrossRef
ADS
Google scholar
|
[8] |
N. S. Headings, S. M. Hayden, R. Coldea, and T. G. Perring, Anomalous high-energy spin excitations in the high Tc superconductor-parent antiferromagnet La2CuO4, Phys. Rev. Lett. 105(24), 247001 (2010)
CrossRef
ADS
Google scholar
|
[9] |
B. Dalla Piazza, M. Mourigal, N. B. Christensen, G. Nilsen, P. Tregenna-Piggott, T. Perring, M. Enderle, D. F. McMorrow, D. Ivanov, and H. M. Rønnow, Fractional excitations in the square-lattice quantum antiferromagnet, Nat. Phys. 11(1), 62 (2015)
CrossRef
ADS
Google scholar
|
[10] |
H. Shao, Y. Q. Qin, S. Capponi, S. Chesi, Z. Y. Meng, and A. W. Sandvik, Nearly deconfined spinon excitations in the square-lattice spin-1/2 Heisenberg antiferromagnet, Phys. Rev. X 7(4), 041072 (2017)
CrossRef
ADS
Google scholar
|
[11] |
R. R. P. Singh and M. P. Gelfand, Spin-wave excitation spectra and spectral weights in square lattice antiferromagnets, Phys. Rev. B 52(22), R15695 (1995)
CrossRef
ADS
Google scholar
|
[12] |
A. W. Sandvik and R. R. P. Singh, High-energy magnon dispersion and multimagnon continuum in the two-dimensional Heisenberg antiferromagnet, Phys. Rev. Lett. 86(3), 528 (2001)
CrossRef
ADS
Google scholar
|
[13] |
L. Yang and A. E. Feiguin, From deconfined spinons to coherent magnons in an antiferromagnetic Heisenberg chain with long-range interactions, SciPost Phys. 10(5), 110 (2021)
CrossRef
ADS
Google scholar
|
[14] |
M. Powalski, K. P. Schmidt, and G. S. Uhrig, Mutually attracting spin waves in the square-lattice quantum antiferromagnet, SciPost Phys. 4, 001 (2018)
CrossRef
ADS
Google scholar
|
[15] |
M. Powalski, G. S. Uhrig, and K. P. Schmidt, Roton minimum as a fingerprint of Magnon‒Higgs scattering in ordered quantum antiferromagnets, Phys. Rev. Lett. 115(20), 207202 (2015)
CrossRef
ADS
Google scholar
|
[16] |
G. Y. Sun, Y. C. Wang, C. Fang, Y. Qi, M. Cheng, and Z. Y. Meng, Dynamical signature of symmetry fractionalization in frustrated magnets, Phys. Rev. Lett. 121(7), 077201 (2018)
CrossRef
ADS
Google scholar
|
[17] |
Y. Q. Qin, B. Normand, A. W. Sandvik, and Z. Y. Meng, Amplitude mode in three-dimensional dimerized antiferromagnets, Phys. Rev. Lett. 118(14), 147207 (2017)
CrossRef
ADS
Google scholar
|
[18] |
M. Lohöfer and S. Wessel, Excitation-gap scaling near quantum critical three-dimensional antiferromagnets, Phys. Rev. Lett. 118(14), 147206 (2017)
CrossRef
ADS
Google scholar
|
[19] |
J. K. Fang, J. H. Huang, H. Q. Wu, and D. X. Yao, Dynamical properties of the Haldane chain with bond disorder, Front. Phys. 17(3), 33503 (2022)
CrossRef
ADS
Google scholar
|
[20] |
Y. Shen, C. Liu, Y. Qin, S. Shen, Y. D. Li, R. Bewley, A. Schneidewind, G. Chen, and J. Zhao, Intertwined dipolar and multipolar order in the triangular-lattice magnet TmMgGaO4, Nat. Commun. 10(1), 4530 (2019)
CrossRef
ADS
Google scholar
|
[21] |
Z. Zhou, C. Liu, Z. Yan, Y. Chen, and X. F. Zhang, Quantum dynamics of topological strings in a frustrated Ising antiferromagnet, npj Quantum Mater. 7, 60 (2022)
CrossRef
ADS
Google scholar
|
[22] |
M. Majumder, S. Kanungo, A. Ghoshray, M. Ghosh, and K. Ghoshray, Magnetism of the spin-trimer compound CaNi3(P2O7)2: Microscopic insight from combined 31P NMR and first-principles studies, Phys. Rev. B 91(10), 104422 (2015)
CrossRef
ADS
Google scholar
|
[23] |
Y. Shen, J. Sears, G. Fabbris, A. Weichselbaum, W. Yin, H. Zhao, D. G. Mazzone, H. Miao, M. H. Upton, D. Casa, R. Acevedo-Esteves, C. Nelson, A. M. Barbour, C. Mazzoli, G. Cao, and M. P. M. Dean, Emergence of spinons in layered trimer iridate Ba4Ir3O10, Phys. Rev. Lett. 129(20), 207201 (2022)
CrossRef
ADS
Google scholar
|
[24] |
G. Cao, H. Zheng, H. Zhao, Y. Ni, C. A. Pocs,
CrossRef
ADS
Google scholar
|
[25] |
G. Cao, H. Zhao, B. Hu, N. Pellatz, D. Reznik, P. Schlottmann, and I. Kimchi, Quest for quantum states via field-altering technology, npj Quantum Mater. 5, 83 (2020)
CrossRef
ADS
Google scholar
|
[26] |
X. Chen, Y. He, S. Wu, Y. Song, D. Yuan, E. Bourret-Courchesne, J. P. C. Ruff, Z. Islam, A. Frano, and R. J. Birgeneau, Structural and magnetic transitions in the planar antiferromagnet Ba4Ir3O10, Phys. Rev. B 103(22), 224420 (2021)
CrossRef
ADS
Google scholar
|
[27] |
A. Sokolik, S. Hakani, S. Roy, N. Pellatz, H. Zhao, G. Cao, I. Kimchi, and D. Reznik, Spinons and damped phonons in the spin-1/2 quantum liquid Ba4Ir3O10 observed by Raman scattering, Phys. Rev. B 106(7), 075108 (2022)
CrossRef
ADS
Google scholar
|
[28] |
Q. Jiang and D. X. Yao, Magnetic order driven by orbital ordering in the semiconducting KFe1.5Se2, Front. Phys. 11(2), 117401 (2016)
CrossRef
ADS
Google scholar
|
[29] |
X.NieJ. LiT.DattaD.X. Yao, A spin–rotation mechanism of Einstein–de Haas effect based on a ferromagnetic disk, Front. Phys. 19(5), 53201 (2024)
|
[30] |
Y. Xu, Z. Xiong, H. Q. Wu, and D. X. Yao, Spin excitation spectra of the two-dimensional S = 1/2 Heisenberg model with a checkerboard structure, Phys. Rev. B 99(8), 085112 (2019)
CrossRef
ADS
Google scholar
|
[31] |
T. Yan, S. Jin, Z. Xiong, J. Li, and D. X. Yao, Magnetic excitations of diagonally coupled checkerboards, Chin. Phys. B 30(10), 107505 (2021)
CrossRef
ADS
Google scholar
|
[32] |
N. Ma, G. Y. Sun, Y. Z. You, C. Xu, A. Vishwanath, A. W. Sandvik, and Z. Y. Meng, Dynamical signature of fractionalization at a deconfined quantum critical point, Phys. Rev. B 98(17), 174421 (2018)
CrossRef
ADS
Google scholar
|
[33] |
X. Ran, N. Ma, and D. X. Yao, Criticality and scaling corrections for two-dimensional Heisenberg models in plaquette patterns with strong and weak couplings, Phys. Rev. B 99(17), 174434 (2019)
CrossRef
ADS
Google scholar
|
[34] |
Y. Tan and D. X. Yao, Spin waves and phase transition on a magnetically frustrated square lattice with long-range interactions, Front. Phys. 18(3), 33309 (2023)
CrossRef
ADS
Google scholar
|
[35] |
J. Q. Cheng, J. Li, Z. Xiong, H. Q. Wu, A. W. Sandvik, and D. X. Yao, Fractional and composite excitations of antiferromagnetic quantum spin trimer chains, npj Quantum Mater. 7, 3 (2022)
CrossRef
ADS
Google scholar
|
[36] |
N. Strohmaier, D. Greif, R. Jördens, L. Tarruell, H. Moritz, T. Esslinger, R. Sensarma, D. Pekker, E. Altman, and E. Demler, Observation of elastic doublon decay in the Fermi‒Hubbard model, Phys. Rev. Lett. 104(8), 080401 (2010)
CrossRef
ADS
Google scholar
|
[37] |
T. Terashige, T. Ono, T. Miyamoto, T. Morimoto, H. Yamakawa, N. Kida, T. Ito, T. Sasagawa, T. Tohyama, and H. Okamoto, Doublon‒Holon pairing mechanism via exchange interaction in two-dimensional cuprate Mott insulators, Sci. Adv. 5(6), eaav2187 (2019)
CrossRef
ADS
Google scholar
|
[38] |
Y. Ye, K. Peng, M. Naghiloo, G. Cunningham, and K. P. O’Brien, Engineering purely nonlinear coupling between superconducting qubits using a quarton, Phys. Rev. Lett. 127(5), 050502 (2021)
CrossRef
ADS
Google scholar
|
[39] |
A. K. Bera, S. Yusuf, S. K. Saha, M. Kumar, D. Voneshen, Y. Skourski, and S. A. Zvyagin, Emergent many-body composite excitations of interacting spin-1/2 trimers, Nat. Commun. 13(1), 6888 (2022)
CrossRef
ADS
Google scholar
|
[40] |
J.Q. ChengZ. Y. NingH.Q. WuD.X. Yao, Quantum phase transitions and composite excitations of antiferromagnetic quantum spin trimer chains in a magnetic field, arXiv: 2402.00272 (2024)
|
[41] |
Y. Klein, G. Rousse, F. Damay, F. Porcher, G. André, and I. Terasaki, Antiferromagnetic order and consequences on the transport properties of Ba4Ru3O10, Phys. Rev. B 84, 054439 (2011)
CrossRef
ADS
Google scholar
|
[42] |
T. Igarashi, R. Okazaki, H. Taniguchi, Y. Yasui, and I. Terasaki, Effects of the Ir impurity on the thermodynamic and transport properties of Ba4Ru3O10, J. Phys. Soc. Jpn. 84(9), 094601 (2015)
CrossRef
ADS
Google scholar
|
[43] |
L. Weber, A. Honecker, B. Normand, P. Corboz, F. Mila, and S. Wessel, Quantum Monte Carlo simulations in the trimer basis: First-order transitions and thermal critical points in frustrated trilayer magnets, SciPost Phys. 12, 054 (2022)
CrossRef
ADS
Google scholar
|
[44] |
H. Yang, J. Zeng, S. You, Y. Han, and Z. Qiao, Equipartition of current in metallic armchair nanoribbon of graphene-based device, Front. Phys. 17(6), 63508 (2022)
CrossRef
ADS
Google scholar
|
[45] |
A. Bolens and N. Nagaosa, Topological states on the breathing kagomé lattice, Phys. Rev. B 99(16), 165141 (2019)
CrossRef
ADS
Google scholar
|
[46] |
D. Farnell, Emergence of magnetic order in kagomé antiferromagnets, Front. Phys. 14(2), 23302 (2019)
CrossRef
ADS
Google scholar
|
[47] |
Y. Chen, W. Wu, G. Liu, H. Tao, and W. Liu, Quantum phase transition of cold atoms trapped in optical lattices, Front. Phys. 7(2), 223 (2012)
CrossRef
ADS
Google scholar
|
[48] |
A. Weichselbaum, W. Yin, and A. M. Tsvelik, Dimerization and spin decoupling in a two-leg Heisenberg ladder with frustrated trimer rungs, Phys. Rev. B 103(12), 125120 (2021)
CrossRef
ADS
Google scholar
|
[49] |
S. F. Gull and J. Skilling, Maximum entropy method in image processing, IEE Proceedings F 131(6), 646 (1984)
CrossRef
ADS
Google scholar
|
[50] |
D. Bergeron and A. M. S. Tremblay, Algorithms for optimized maximum entropy and diagnostic tools for analytic continuation, Phys. Rev. E 94(2), 023303 (2016)
CrossRef
ADS
Google scholar
|
[51] |
A. W. Sandvik, Stochastic method for analytic continuation of quantum Monte Carlo data, Phys. Rev. B 57(17), 10287 (1998)
CrossRef
ADS
Google scholar
|
[52] |
A. W. Sandvik, Constrained sampling method for analytic continuation, Phys. Rev. E 94(6), 063308 (2016)
CrossRef
ADS
Google scholar
|
[53] |
K.S. D. Beach, Identifying the maximum entropy method as a special limit of stochastic analytic continuation, arXiv: cond-mat/0403055 (2004)
|
[54] |
P.O. Löwdin, A note on the quantum-mechanical perturbation theory, J. Chem. Phys. 19(11), 1396 (1951)
|
[55] |
A. L. Chernyshev and M. E. Zhitomirsky, Magnon decay in noncollinear quantum antiferromagnets, Phys. Rev. Lett. 97(20), 207202 (2006)
CrossRef
ADS
Google scholar
|
[56] |
T.Kato, Perturbation Theory for Linear Operators, Vol. 132, Springer Science & Business Media, 2013
|
[57] |
J. H. Huang, Z. Liu, H. Q. Wu, and D. X. Yao, Ground states and dynamical properties of the S > 1/2 quantum Heisenberg model on the 1/5-depleted square lattice, Phys. Rev. B 106(8), 085101 (2022)
CrossRef
ADS
Google scholar
|
[58] |
K. Vafayi and O. Gunnarsson, Analytical continuation of spectral data from imaginary time axis to real frequency axis using statistical sampling, Phys. Rev. B 76(3), 035115 (2007)
CrossRef
ADS
Google scholar
|
[59] |
D. R. Reichman and E. Rabani, Analytic continuation average spectrum method for quantum liquids, J. Chem. Phys. 131(5), 054502 (2009)
CrossRef
ADS
Google scholar
|
[60] |
O. F. Syljuåsen, Using the average spectrum method to extract dynamics from quantum Monte Carlo simulations, Phys. Rev. B 78(17), 174429 (2008)
CrossRef
ADS
Google scholar
|
[61] |
S. Fuchs, T. Pruschke, and M. Jarrell, Analytic continuation of quantum Monte Carlo data by stochastic analytical inference, Phys. Rev. E 81(5), 056701 (2010)
CrossRef
ADS
Google scholar
|
[62] |
K. Ghanem and E. Koch, Average spectrum method for analytic continuation: Efficient blocked-mode sampling and dependence on the discretization grid, Phys. Rev. B 101(8), 085111 (2020)
CrossRef
ADS
Google scholar
|
[63] |
K. Ghanem and E. Koch, Extending the average spectrum method: Grid point sampling and density averaging, Phys. Rev. B 102(3), 035114 (2020)
CrossRef
ADS
Google scholar
|
[64] |
H. Shao and A. W. Sandvik, Progress on stochastic analytic continuation of quantum Monte Carlo data, Phys. Rep. 1003, 1 (2023)
CrossRef
ADS
Google scholar
|
[65] |
S. L. Yu, W. Wang, Z. Y. Dong, Z. J. Yao, and J. X. Li, Deconfinement of spinons in frustrated spin systems: Spectral perspective, Phys. Rev. B 98(13), 134410 (2018)
CrossRef
ADS
Google scholar
|
[66] |
D. Sénéchal, D. Perez, and M. Pioro-Ladriere, Spectral weight of the Hubbard model through cluster perturbation theory, Phys. Rev. Lett. 84(3), 522 (2000)
CrossRef
ADS
Google scholar
|
[67] |
A. S. Ovchinnikov, I. G. Bostrem, and V. E. Sinitsyn, Cluster perturbation theory for spin Hamiltonians, Theor. Math. Phys. 162(2), 179 (2010)
CrossRef
ADS
Google scholar
|
[68] |
J. Wu, J. P. L. Faye, D. Sénéchal, and J. Maciejko, Quantum cluster approach to the spinful Haldane‒Hubbard model, Phys. Rev. B 93(7), 075131 (2016)
CrossRef
ADS
Google scholar
|
[69] |
C. Dahnken, M. Aichhorn, W. Hanke, E. Arrigoni, and M. Potthoff, Variational cluster approach to spontaneous symmetry breaking: The itinerant antiferromagnet in two dimensions, Phys. Rev. B 70(24), 245110 (2004)
CrossRef
ADS
Google scholar
|
[70] |
T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Quantum cluster theories, Rev. Mod. Phys. 77(3), 1027 (2005)
CrossRef
ADS
Google scholar
|
[71] |
A. W. Sandvik and H. G. Evertz, Loop updates for variational and projector quantum Monte Carlo simulations in the valence-bond basis, Phys. Rev. B 82(2), 024407 (2010)
CrossRef
ADS
Google scholar
|
[72] |
U. Gerber, C. P. Hofmann, F. J. Jiang, M. Nyfeler, and U. J. Wiese, The constraint effective potential of the staggered magnetization in an antiferromagnet, J. Stat. Mech-theory E 2009, P03021 (2009)
CrossRef
ADS
Google scholar
|
[73] |
B. B. Beard, R. J. Birgeneau, M. Greven, and U. J. Wiese, Square-lattice Heisenberg antiferromagnet at very large correlation lengths, Phys. Rev. Lett. 80(8), 1742 (1998)
CrossRef
ADS
Google scholar
|
[74] |
A. K. Bera, S. M. Yusuf, A. Kumar, M. Majumder, K. Ghoshray, and L. Keller, Long-range and shortrange magnetic correlations, and microscopic origin of net magnetization in the spin-1 trimer chain compound CaNi3P4O14, Phys. Rev. B 93(18), 184409 (2016)
CrossRef
ADS
Google scholar
|
[75] |
A. K. Bera, S. M. Yusuf, and D. T. Adroja, Excitations in the spin-1 trimer chain compound CaNi3P4O14: From gapped dispersive spin waves to gapless magnetic excitations, Phys. Rev. B 97(22), 224413 (2018)
CrossRef
ADS
Google scholar
|
[76] |
M. Hase, H. Kitazawa, N. Tsujii, K. Ozawa, M. Kohno, and G. Kido, Ferrimagnetic long-range order caused by periodicity of exchange interactions in the spin-1 trimer chain compounds ANi3P4O14 (A = Ca, Sr, Pb, Ba), Phys. Rev. B 74(2), 024430 (2006)
CrossRef
ADS
Google scholar
|
[77] |
C. Zhou, Z. Yan, H. Q. Wu, K. Sun, O. A. Starykh, and Z. Y. Meng, Amplitude mode in quantum magnets via dimensional crossover, Phys. Rev. Lett. 126(22), 227201 (2021)
CrossRef
ADS
Google scholar
|
[78] |
Z. Lin, J. H. Choi, Q. Zhang, W. Qin, S. Yi, P. Wang, L. Li, Y. Wang, H. Zhang, Z. Sun, L. Wei, S. Zhang, T. Guo, Q. Lu, J. H. Cho, C. Zeng, and Z. Zhang, Flatbands and emergent ferromagnetic ordering in Fe3Sn2 kagomé lattices, Phys. Rev. Lett. 121(9), 096401 (2018)
CrossRef
ADS
Google scholar
|
[79] |
C. Wu, D. Bergman, L. Balents, and S. Das Sarma, Flat bands and Wigner crystallization in the honeycomb optical lattice, Phys. Rev. Lett. 99(7), 070401 (2007)
CrossRef
ADS
Google scholar
|
[80] |
J. X. Yin, S. S. Zhang, G. Chang, Q. Wang, S. S. Tsirkin, Z. Guguchia, B. Lian, H. Zhou, K. Jiang, I. Belopolski, N. Shumiya, D. Multer, M. Litskevich, T. A. Cochran, H. Lin, Z. Wang, T. Neupert, S. Jia, H. Lei, and M. Z. Hasan, Negative flat band magnetism in a spin–orbit coupled correlated kagomé magnet, Nat. Phys. 15(5), 443 (2019)
CrossRef
ADS
Google scholar
|
[81] |
M. Li, Q. Wang, G. Wang, Z. Yuan, W. Song, R. Lou, Z. Liu, Y. Huang, Z. Liu, H. Lei, Z. Yin, and S. Wang, Dirac cone, flat band and saddle point in kagomé magnet YMn6Sn6, Nat. Commun. 12(1), 3129 (2021)
CrossRef
ADS
Google scholar
|
[82] |
C. Luo, T. Datta, Z. Huang, and D. X. Yao, Signatures of indirect k-edge resonant inelastic X-ray scattering on magnetic excitations in a triangular-lattice antiferromagnet, Phys. Rev. B 92(3), 035109 (2015)
CrossRef
ADS
Google scholar
|
[83] |
C. Luo, T. Datta, and D. X. Yao, Spectrum splitting of bimagnon excitations in a spatially frustrated Heisenberg antiferromagnet revealed by resonant inelastic X-ray scat tering, Phys. Rev. B 89(16), 165103 (2014)
CrossRef
ADS
Google scholar
|
[84] |
Y. R. Shu, D. X. Yao, C. W. Ke, Y. C. Lin, and A. W. Sandvik, Properties of the random-singlet phase: From the disordered Heisenberg chain to an amorphous valence-bond solid, Phys. Rev. B 94, 174442 (2016)
CrossRef
ADS
Google scholar
|
[85] |
H. Q. Wu, S. S. Gong, and D. N. Sheng, Randomness-induced spin-liquid-like phase in the spin-1/2 J1−J2 triangular Heisenberg model, Phys. Rev. B 99, 085141 (2019)
CrossRef
ADS
Google scholar
|
[86] |
R. Jullien, P. Pfeuty, J. N. Fields, and S. Doniach, Zerotemperature renormalization method for quantum systems. I. Ising model in a transverse field in one dimension, Phys. Rev. B 18(7), 3568 (1978)
CrossRef
ADS
Google scholar
|
[87] |
M. A. Martín-Delgado and G. Sierra, Real space renormalization group methods and quantum groups, Phys. Rev. Lett. 76(7), 1146 (1996)
CrossRef
ADS
Google scholar
|
[88] |
M. Kargarian, R. Jafari, and A. Langari, Renormalization of entanglement in the anisotropic Heisenberg XXZ model, Phys. Rev. A 77(3), 032346 (2008)
CrossRef
ADS
Google scholar
|
[89] |
J. Q. Cheng, W. Wu, and J. B. Xu, Multipartite entanglement in an XXZ spin chain with Dzyaloshinskii–Moriya interaction and quantum phase transition, Quantum Inform. Process. 16(9), 231 (2017)
CrossRef
ADS
Google scholar
|
[90] |
M. Usman, A. Ilyas, and K. Khan, Quantum renormalization group of the XY model in two dimensions, Phys. Rev. A 92(3), 032327 (2015)
CrossRef
ADS
Google scholar
|
[91] |
J. Q. Cheng and J. B. Xu, Multipartite entanglement, quantum coherence, and quantum criticality in triangular and Sierpiński fractal lattices, Phys. Rev. E 97(6), 062134 (2018)
CrossRef
ADS
Google scholar
|
[92] |
S. Wessel, B. Normand, F. Mila, and A. Honecker, Efficient quantum Monte Carlo simulations of highly frustrated magnets: The frustrated spin-1/2 ladder, SciPost Phys. 3, 005 (2017)
CrossRef
ADS
Google scholar
|
[93] |
A. Honecker, L. Weber, P. Corboz, F. Mila, and S. Wessel, Quantum Monte Carlo simulations of highly frustrated magnets in a cluster basis: The two-dimensional Shastry−Sutherland model, J. Phys. Conf. Ser. 2207(1), 012032 (2022)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |