Low-energy elastic (anti)neutrino−nucleon scattering in covariant baryon chiral perturbation theory
Jin-Man Chen, Ze-Rui Liang, De-Liang Yao
Low-energy elastic (anti)neutrino−nucleon scattering in covariant baryon chiral perturbation theory
The low-energy antineutrino- and neutrino−nucleon neutral current elastic scattering is studied within the framework of the relativistic SU(2) baryon chiral perturbation theory up to the order of . We have derived the model-independent hadronic amplitudes and extracted the form factors from them. It is found that differential cross sections for the processes of (anti)neutrino−proton scattering are in good agreement with the existing MiniBooNE data in the region GeV2, where nuclear effects are expected to be negligible. For GeV2, large deviation is observed, which is mainly owing to the sizeable Pauli blocking effect. Comparisons with the simulation data produced by the NuWro and GENIE Mento Carlo events generators are also discussed. The chiral results obtained in this work can be utilized as inputs in various nuclear models to achieve the goal of precise determination of the strangeness axial vector form factor, in particular when the low-energy MicroBooNE data are available in the near future.
chiral perturbation theory / neutrino−nucleon scattering / form factors / chiral Lagrangians / one-loop amplitude / neutral weak current
[1] |
K. Abe, Y. Hayato, T. Iida, M. Ikeda, C. Ishihara.
CrossRef
ADS
Google scholar
|
[2] |
A. Abusleme, T. Adam, S. Ahmad, R. Ahmed, S. Aiello.
CrossRef
ADS
Google scholar
|
[3] |
P. Adamson, C. Andreopoulos, R. Armstrong, D. J. Auty, D. S. Ayres.
CrossRef
ADS
Google scholar
|
[4] |
A. A. Aguilar-Arevalo, C. E. Anderson, A. O. Bazarko, S. J. Brice, B. C. Brown.
CrossRef
ADS
Google scholar
|
[5] |
A. A. Aguilar-Arevalo, B. C. Brown, L. Bugel, G. Cheng, E. D. Church.
CrossRef
ADS
Google scholar
|
[6] |
L. A. Ahrens, S. H. Aronson, P. L. Connolly, B. G. Gibbard, M. J. Murtagh.
CrossRef
ADS
Google scholar
|
[7] |
L. Alvarez-Ruso, M. Sajjad Athar, M. B. Barbaro, D. Cherdack, M. E. Christy.
CrossRef
ADS
Google scholar
|
[8] |
L.Alvarez-Ruso, Neutrinos and their interactions in the Standard Model, Acta Phys. Pol. B Proc. Suppl. 9(4 Supp.), 669 (2016)
|
[9] |
F. P. An, J. Z. Bai, A. B. Balantekin, H. R. Band, D. Beavis.
CrossRef
ADS
Google scholar
|
[10] |
C. Andreopoulos, A. Bell, D. Bhattacharya, F. Cavanna, J. Dobson, S. Dytman, H. Gallagher, P. Guzowski, R. Hatcher, P. Kehayias, A. Meregaglia, D. Naples, G. Pearce, A. Rubbia, M. Whalley, T. Yang. The GENIE neutrino monte carlo generator. Nucl. Instrum. Methods Phys. Res. A, 2010, 614(1): 87
CrossRef
ADS
Google scholar
|
[11] |
J.AshmanB. BadelekG.BaumJ.BeaufaysC.P. Bee,
|
[12] |
T. Bauer, J. C. Bernauer, S. Scherer. Electromagnetic form factors of the nucleon in effective field theory. Phys. Rev. C Nucl. Phys., 2012, 86(6): 065206
CrossRef
ADS
Google scholar
|
[13] |
J. F. Beacom, S. Chen, J. Cheng, S. N. Doustimotlagh, Y. Gao.
CrossRef
ADS
Google scholar
|
[14] |
O. Benhar, P. Huber, C. Mariani, D. Meloni. Neutrino–nucleus interactions and the determination of oscillation parameters. Phys. Rep., 2017, 700: 1
CrossRef
ADS
Google scholar
|
[15] |
V. Bernard, N. Kaiser, U. G. Meißner. Low-energy theorems for weak pion production. Phys. Lett. B, 1994, 331(1−2): 137
CrossRef
ADS
Google scholar
|
[16] |
V. Bernard, N. Kaiser, U. G. MEIßNER. Chiral dynamics in nucleons and nuclei. Int. J. Mod. Phys. E, 1995, 4(2): 193
CrossRef
ADS
Google scholar
|
[17] |
V. Bernard. Chiral perturbation theory and baryon properties. Prog. Part. Nucl. Phys., 2008, 60(1): 82
CrossRef
ADS
Google scholar
|
[18] |
V. Bernard, L. Elouadrhiri, U. G. Meißner. Axial structure of the nucleon. J. Phys. G, 2002, 28(1): R1
CrossRef
ADS
Google scholar
|
[19] |
C. A. Bertulani, A. Gade. Nuclear astrophysics with radioactive beams. Phys. Rep., 2010, 485(6): 195
CrossRef
ADS
Google scholar
|
[20] |
D. Casper. The Nuance neutrino physics simulation, and the future. Nucl. Phys. B Proc. Suppl., 2002, 112(1−3): 161
CrossRef
ADS
Google scholar
|
[21] |
Y. H. Chen, D. L. Yao, H. Q. Zheng. Analyses of pion-nucleon elastic scattering amplitudes up to O(p4) in extended-on-mass-shell subtraction scheme. Phys. Rev. D, 2013, 87(5): 054019
CrossRef
ADS
Google scholar
|
[22] |
A. Denner, S. Dittmaier. Reduction schemes for one-loop tensor integrals. Nucl. Phys. B, 2006, 734(1-2): 62
CrossRef
ADS
Google scholar
|
[23] |
N. Fettes, U. G. Meißner, M. Mojžiš, S. Steininger. The chiral effective pion nucleon Lagrangian of order p**4. Ann. Phys., 2000, 283(2): 273
CrossRef
ADS
Google scholar
|
[24] |
J. A. Formaggio, G. P. Zeller. From eV to EeV: Neutrino cross sections across energy scales. Rev. Mod. Phys., 2012, 84(3): 1307
CrossRef
ADS
Google scholar
|
[25] |
T. Fuchs, J. Gegelia, G. Japaridze, S. Scherer. Renormalization of relativistic baryon chiral perturbation theory and power counting. Phys. Rev. D, 2003, 68(5): 056005
CrossRef
ADS
Google scholar
|
[26] |
T. Fuchs, J. Gegelia, S. Scherer. Electromagnetic form factors of the nucleon in chiral perturbation theory. J. Phys. G, 2004, 30(10): 1407
CrossRef
ADS
Google scholar
|
[27] |
G. T. Garvey, W. C. Louis, D. H. White. Determination of proton strange form-factors from neutrino p elastic scattering. Phys. Rev. C, 1993, 48(2): 761
CrossRef
ADS
Google scholar
|
[28] |
J. Gasser, H. Leutwyler. Chiral perturbation theory to one loop. Ann. Phys., 1984, 158(1): 142
CrossRef
ADS
Google scholar
|
[29] |
J. Gasser, H. Leutwyler. Chiral perturbation theory: Expansions in the mass of the strange quark. Nucl. Phys. B, 1985, 250(1-4): 465
CrossRef
ADS
Google scholar
|
[30] |
J. Gasser, M. E. Sainio, A. Svarc. Nucleons with chiral loops. Nucl. Phys. B, 1988, 307(4): 779
CrossRef
ADS
Google scholar
|
[31] |
L. Geng. Recent developments in SU(3) covariant baryon chiral perturbation theory. Front. Phys. (Beijing), 2013, 8(3): 328
CrossRef
ADS
Google scholar
|
[32] |
T.GolanJ. T. SobczykJ.Zmuda, NuWro: the Wroclaw Monte Carlo generator of neutrino interactions, Nucl. Phys. B Proc. Suppl. 229–232, 499 (2012)
|
[33] |
L. N. Hand, D. G. Miller, R. Wilson. Electric and magnetic form factors of the nucleon. Rev. Mod. Phys., 1963, 35(2): 335
CrossRef
ADS
Google scholar
|
[34] |
J. Horstkotte, A. Entenberg, R. S. Galik, A. K. Mann, H. H. Williams, W. Kozanecki, C. Rubbia, J. Strait, L. Sulak, P. Wanderer. Measurement of neutrino−proton and anti-neutrinos−proton elastic scattering. Phys. Rev. D, 1982, 25(11): 2743
CrossRef
ADS
Google scholar
|
[35] |
H. T. Janka. Explosion mechanisms of core-collapse supernovae. Annu. Rev. Nucl. Part. Sci., 2012, 62(1): 407
CrossRef
ADS
Google scholar
|
[36] |
C. Juszczak, J. A. Nowak, J. T. Sobczyk. Simulations from a new neutrino event generator. Nucl. Phys. B Proc. Suppl., 2006, 159: 211
CrossRef
ADS
Google scholar
|
[37] |
C.L. KorpaM. F. M. LutzX.Y. GuoY.Heo. Coupled-channel system with anomalous thresholds and unitarity, Phys. Rev. D 107(3), L031505 (2023)
|
[38] |
J. Liang, Y. B. Yang, T. Draper, M. Gong, K. F. Liu. Quark spins and anomalous ward identity. Phys. Rev. D, 2018, 98(7): 074505
CrossRef
ADS
Google scholar
|
[39] |
Z. R. Liang, P. C. Qiu, D. L. Yao. One-loop analysis of the interactions between doubly charmed baryons and Nambu−Goldstone bosons. J. High Energy Phys., 2023, 07(7): 124
CrossRef
ADS
Google scholar
|
[40] |
C. H. Llewellyn Smith. Neutrino reactions at accelerator energies. Phys. Rep., 1972, 3(5): 261
CrossRef
ADS
Google scholar
|
[41] |
G. Passarino, M. J. G. Veltman. One loop corrections for e+e− annihilation into μ+μ− in the Weinberg Model. Nucl. Phys. B, 1979, 160(1): 151
CrossRef
ADS
Google scholar
|
[42] |
S.F. PateV. PapavassiliouJ.P. SchaubD.P. TrujilloM.V. IvanovM.B. BarbaroC.Giusti, Global fit of electron and neutrino elastic scattering data to determine the strange quark contribution to the vector and axial form factors of the nucleon, arXiv: 2402.10854 [hep-ph] (2024)
|
[43] |
C. Patrignani.
CrossRef
ADS
Google scholar
|
[44] |
D.Perevalov, Neutrino−nucleus neutral current elastic interactions measurement in Mini-BooNE, PhD thesis, Alabama University, 2009
|
[45] |
L. Ren. Studies of neutral current neutrino-nucleon scattering with the MicroBooNE Detector. JPS Conf. Proc., 2022, 37: 020309
CrossRef
ADS
Google scholar
|
[46] |
M. S. Athar, S. W. Barwick, T. Brunner, J. Cao, M. Danilov.
CrossRef
ADS
Google scholar
|
[47] |
S. Scherer. Introduction to chiral perturbation theory. Adv. Nucl. Phys., 2003, 27: 277
CrossRef
ADS
Google scholar
|
[48] |
M. R. Schindler, T. Fuchs, J. Gegelia, S. Scherer. Axial, induced pseudoscalar, and pion−nucleon form-factors in manifestly Lorentz-invariant chiral perturbation theory. Phys. Rev. C, 2007, 75(2): 025202
CrossRef
ADS
Google scholar
|
[49] |
R. A. Smith, E. J. Moniz. Neutrino reactions on nuclear targets. Nucl. Phys. B, 1972, 43: 605
CrossRef
ADS
Google scholar
|
[50] |
R. S. Sufian, K. F. Liu, D. G. Richards. Weak neutral current axial form factor using (ν)ν−nucleon scattering and lattice QCD inputs. J. High Energy Phys., 2020, 2020(1): 136
CrossRef
ADS
Google scholar
|
[51] |
S. Weinberg. Phenomenological Lagrangians. Physica A, 1979, 96(1−2): 327
CrossRef
ADS
Google scholar
|
[52] |
R. L. Workman.
CrossRef
ADS
Google scholar
|
[53] |
D. L. Yao, L. Alvarez-Ruso, M. J. Vicente-Vacas. Extraction of nucleon axial charge and radius from lattice QCD results using baryon chiral perturbation theory. Phys. Rev. D, 2017, 96(11): 116022
CrossRef
ADS
Google scholar
|
[54] |
D. L. Yao, L. Alvarez-Ruso, A. N. H. Blin, M. J. V. Vacas. Weak pion production off the nucleon in covariant chiral perturbation theory. Phys. Rev. D, 2018, 98(7): 076004
CrossRef
ADS
Google scholar
|
[55] |
D. L. Yao, L. Alvarez-Ruso, M. J. Vicente Vacas. Neutral-current weak pion production off the nucleon in covariant chiral perturbation theory. Phys. Lett. B, 2019, 794: 109
CrossRef
ADS
Google scholar
|
[56] |
D.L. YaoL. Y. DaiH.Q. ZhengZ.Y. Zhou, A review on partial-wave dynamics with chiral effective field theory and dispersion relation, Rep. Prog. Phys. 84(7), 076201 (2021)
|
/
〈 | 〉 |