Low-energy elastic (anti)neutrino−nucleon scattering in covariant baryon chiral perturbation theory

Jin-Man Chen, Ze-Rui Liang, De-Liang Yao

PDF(3828 KB)
PDF(3828 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (6) : 64202. DOI: 10.1007/s11467-024-1417-4
RESEARCH ARTICLE

Low-energy elastic (anti)neutrino−nucleon scattering in covariant baryon chiral perturbation theory

Author information +
History +

Abstract

The low-energy antineutrino- and neutrino−nucleon neutral current elastic scattering is studied within the framework of the relativistic SU(2) baryon chiral perturbation theory up to the order of O( p3). We have derived the model-independent hadronic amplitudes and extracted the form factors from them. It is found that differential cross sections dσ /d Q2 for the processes of (anti)neutrino−proton scattering are in good agreement with the existing MiniBooNE data in the Q2 region [ 0.13,0.20] GeV2, where nuclear effects are expected to be negligible. For Q2 0.13 GeV2, large deviation is observed, which is mainly owing to the sizeable Pauli blocking effect. Comparisons with the simulation data produced by the NuWro and GENIE Mento Carlo events generators are also discussed. The chiral results obtained in this work can be utilized as inputs in various nuclear models to achieve the goal of precise determination of the strangeness axial vector form factor, in particular when the low-energy MicroBooNE data are available in the near future.

Keywords

chiral perturbation theory / neutrino−nucleon scattering / form factors / chiral Lagrangians / one-loop amplitude / neutral weak current

Cite this article

Download citation ▾
Jin-Man Chen, Ze-Rui Liang, De-Liang Yao. Low-energy elastic (anti)neutrino−nucleon scattering in covariant baryon chiral perturbation theory. Front. Phys., 2024, 19(6): 64202 https://doi.org/10.1007/s11467-024-1417-4

References

[1]
K. Abe, Y. Hayato, T. Iida, M. Ikeda, C. Ishihara. . Solar neutrino results in Super-Kamiokande-III. Phys. Rev. D, 2011, 83(5): 052010
CrossRef ADS Google scholar
[2]
A. Abusleme, T. Adam, S. Ahmad, R. Ahmed, S. Aiello. . Sub-percent precision measurement of neutrino oscillation parameters with JUNO. Chin. Phys. C, 2022, 46(12): 123001
CrossRef ADS Google scholar
[3]
P. Adamson, C. Andreopoulos, R. Armstrong, D. J. Auty, D. S. Ayres. . Measurement of the neutrino mass splitting and flavor mixing by MINOS. Phys. Rev. Lett., 2011, 106(18): 181801
CrossRef ADS Google scholar
[4]
A. A. Aguilar-Arevalo, C. E. Anderson, A. O. Bazarko, S. J. Brice, B. C. Brown. . Measurement of the neutrino neutral-current elastic differential cross section on mineral oil at ~ 1 GeV. Phys. Rev. D, 2010, 82(9): 092005
CrossRef ADS Google scholar
[5]
A. A. Aguilar-Arevalo, B. C. Brown, L. Bugel, G. Cheng, E. D. Church. . Measurement of the antineutrino neutral-current elastic differential cross section. Phys. Rev. D, 2015, 91(1): 012004
CrossRef ADS Google scholar
[6]
L. A. Ahrens, S. H. Aronson, P. L. Connolly, B. G. Gibbard, M. J. Murtagh. . Measurement of neutrino−proton and anti-neutrino−proton elastic scattering. Phys. Rev. D, 1987, 35(3): 785
CrossRef ADS Google scholar
[7]
L. Alvarez-Ruso, M. Sajjad Athar, M. B. Barbaro, D. Cherdack, M. E. Christy. . NuSTEC White Paper: Status and challenges of neutrino–nucleus scattering. Prog. Part. Nucl. Phys., 2018, 100: 1
CrossRef ADS Google scholar
[8]
L.Alvarez-Ruso, Neutrinos and their interactions in the Standard Model, Acta Phys. Pol. B Proc. Suppl. 9(4 Supp.), 669 (2016)
[9]
F. P. An, J. Z. Bai, A. B. Balantekin, H. R. Band, D. Beavis. . Observation of electron−antineutrino disappearance at Daya Bay. Phys. Rev. Lett., 2012, 108(17): 171803
CrossRef ADS Google scholar
[10]
C. Andreopoulos, A. Bell, D. Bhattacharya, F. Cavanna, J. Dobson, S. Dytman, H. Gallagher, P. Guzowski, R. Hatcher, P. Kehayias, A. Meregaglia, D. Naples, G. Pearce, A. Rubbia, M. Whalley, T. Yang. The GENIE neutrino monte carlo generator. Nucl. Instrum. Methods Phys. Res. A, 2010, 614(1): 87
CrossRef ADS Google scholar
[11]
J.AshmanB. BadelekG.BaumJ.BeaufaysC.P. Bee, ., A measurement of the spin asymmetry and determination of the structure function g(1) in deep inelastic muon−proton scattering, Phys. Lett. B 206(2), 364 (1988)
[12]
T. Bauer, J. C. Bernauer, S. Scherer. Electromagnetic form factors of the nucleon in effective field theory. Phys. Rev. C Nucl. Phys., 2012, 86(6): 065206
CrossRef ADS Google scholar
[13]
J. F. Beacom, S. Chen, J. Cheng, S. N. Doustimotlagh, Y. Gao. . Physics prospects of the Jinping neutrino experiment. Chin. Phys. C, 2017, 41(2): 023002
CrossRef ADS Google scholar
[14]
O. Benhar, P. Huber, C. Mariani, D. Meloni. Neutrino–nucleus interactions and the determination of oscillation parameters. Phys. Rep., 2017, 700: 1
CrossRef ADS Google scholar
[15]
V. Bernard, N. Kaiser, U. G. Meißner. Low-energy theorems for weak pion production. Phys. Lett. B, 1994, 331(1−2): 137
CrossRef ADS Google scholar
[16]
V. Bernard, N. Kaiser, U. G. MEIßNER. Chiral dynamics in nucleons and nuclei. Int. J. Mod. Phys. E, 1995, 4(2): 193
CrossRef ADS Google scholar
[17]
V. Bernard. Chiral perturbation theory and baryon properties. Prog. Part. Nucl. Phys., 2008, 60(1): 82
CrossRef ADS Google scholar
[18]
V. Bernard, L. Elouadrhiri, U. G. Meißner. Axial structure of the nucleon. J. Phys. G, 2002, 28(1): R1
CrossRef ADS Google scholar
[19]
C. A. Bertulani, A. Gade. Nuclear astrophysics with radioactive beams. Phys. Rep., 2010, 485(6): 195
CrossRef ADS Google scholar
[20]
D. Casper. The Nuance neutrino physics simulation, and the future. Nucl. Phys. B Proc. Suppl., 2002, 112(1−3): 161
CrossRef ADS Google scholar
[21]
Y. H. Chen, D. L. Yao, H. Q. Zheng. Analyses of pion-nucleon elastic scattering amplitudes up to O(p4) in extended-on-mass-shell subtraction scheme. Phys. Rev. D, 2013, 87(5): 054019
CrossRef ADS Google scholar
[22]
A. Denner, S. Dittmaier. Reduction schemes for one-loop tensor integrals. Nucl. Phys. B, 2006, 734(1-2): 62
CrossRef ADS Google scholar
[23]
N. Fettes, U. G. Meißner, M. Mojžiš, S. Steininger. The chiral effective pion nucleon Lagrangian of order p**4. Ann. Phys., 2000, 283(2): 273
CrossRef ADS Google scholar
[24]
J. A. Formaggio, G. P. Zeller. From eV to EeV: Neutrino cross sections across energy scales. Rev. Mod. Phys., 2012, 84(3): 1307
CrossRef ADS Google scholar
[25]
T. Fuchs, J. Gegelia, G. Japaridze, S. Scherer. Renormalization of relativistic baryon chiral perturbation theory and power counting. Phys. Rev. D, 2003, 68(5): 056005
CrossRef ADS Google scholar
[26]
T. Fuchs, J. Gegelia, S. Scherer. Electromagnetic form factors of the nucleon in chiral perturbation theory. J. Phys. G, 2004, 30(10): 1407
CrossRef ADS Google scholar
[27]
G. T. Garvey, W. C. Louis, D. H. White. Determination of proton strange form-factors from neutrino p elastic scattering. Phys. Rev. C, 1993, 48(2): 761
CrossRef ADS Google scholar
[28]
J. Gasser, H. Leutwyler. Chiral perturbation theory to one loop. Ann. Phys., 1984, 158(1): 142
CrossRef ADS Google scholar
[29]
J. Gasser, H. Leutwyler. Chiral perturbation theory: Expansions in the mass of the strange quark. Nucl. Phys. B, 1985, 250(1-4): 465
CrossRef ADS Google scholar
[30]
J. Gasser, M. E. Sainio, A. Svarc. Nucleons with chiral loops. Nucl. Phys. B, 1988, 307(4): 779
CrossRef ADS Google scholar
[31]
L. Geng. Recent developments in SU(3) covariant baryon chiral perturbation theory. Front. Phys. (Beijing), 2013, 8(3): 328
CrossRef ADS Google scholar
[32]
T.GolanJ. T. SobczykJ.Zmuda, NuWro: the Wroclaw Monte Carlo generator of neutrino interactions, Nucl. Phys. B Proc. Suppl. 229–232, 499 (2012)
[33]
L. N. Hand, D. G. Miller, R. Wilson. Electric and magnetic form factors of the nucleon. Rev. Mod. Phys., 1963, 35(2): 335
CrossRef ADS Google scholar
[34]
J. Horstkotte, A. Entenberg, R. S. Galik, A. K. Mann, H. H. Williams, W. Kozanecki, C. Rubbia, J. Strait, L. Sulak, P. Wanderer. Measurement of neutrino−proton and anti-neutrinos−proton elastic scattering. Phys. Rev. D, 1982, 25(11): 2743
CrossRef ADS Google scholar
[35]
H. T. Janka. Explosion mechanisms of core-collapse supernovae. Annu. Rev. Nucl. Part. Sci., 2012, 62(1): 407
CrossRef ADS Google scholar
[36]
C. Juszczak, J. A. Nowak, J. T. Sobczyk. Simulations from a new neutrino event generator. Nucl. Phys. B Proc. Suppl., 2006, 159: 211
CrossRef ADS Google scholar
[37]
C.L. KorpaM. F. M. LutzX.Y. GuoY.Heo. Coupled-channel system with anomalous thresholds and unitarity, Phys. Rev. D 107(3), L031505 (2023)
[38]
J. Liang, Y. B. Yang, T. Draper, M. Gong, K. F. Liu. Quark spins and anomalous ward identity. Phys. Rev. D, 2018, 98(7): 074505
CrossRef ADS Google scholar
[39]
Z. R. Liang, P. C. Qiu, D. L. Yao. One-loop analysis of the interactions between doubly charmed baryons and Nambu−Goldstone bosons. J. High Energy Phys., 2023, 07(7): 124
CrossRef ADS Google scholar
[40]
C. H. Llewellyn Smith. Neutrino reactions at accelerator energies. Phys. Rep., 1972, 3(5): 261
CrossRef ADS Google scholar
[41]
G. Passarino, M. J. G. Veltman. One loop corrections for e+e annihilation into μ+μ in the Weinberg Model. Nucl. Phys. B, 1979, 160(1): 151
CrossRef ADS Google scholar
[42]
S.F. PateV. PapavassiliouJ.P. SchaubD.P. TrujilloM.V. IvanovM.B. BarbaroC.Giusti, Global fit of electron and neutrino elastic scattering data to determine the strange quark contribution to the vector and axial form factors of the nucleon, arXiv: 2402.10854 [hep-ph] (2024)
[43]
C. Patrignani. . Review of particle physics. Chin. Phys. C, 2016, 40(10): 100001
CrossRef ADS Google scholar
[44]
D.Perevalov, Neutrino−nucleus neutral current elastic interactions measurement in Mini-BooNE, PhD thesis, Alabama University, 2009
[45]
L. Ren. Studies of neutral current neutrino-nucleon scattering with the MicroBooNE Detector. JPS Conf. Proc., 2022, 37: 020309
CrossRef ADS Google scholar
[46]
M. S. Athar, S. W. Barwick, T. Brunner, J. Cao, M. Danilov. . Status and perspectives of neutrino physics. Prog. Part. Nucl. Phys., 2022, 124: 103947
CrossRef ADS Google scholar
[47]
S. Scherer. Introduction to chiral perturbation theory. Adv. Nucl. Phys., 2003, 27: 277
CrossRef ADS Google scholar
[48]
M. R. Schindler, T. Fuchs, J. Gegelia, S. Scherer. Axial, induced pseudoscalar, and pion−nucleon form-factors in manifestly Lorentz-invariant chiral perturbation theory. Phys. Rev. C, 2007, 75(2): 025202
CrossRef ADS Google scholar
[49]
R. A. Smith, E. J. Moniz. Neutrino reactions on nuclear targets. Nucl. Phys. B, 1972, 43: 605
CrossRef ADS Google scholar
[50]
R. S. Sufian, K. F. Liu, D. G. Richards. Weak neutral current axial form factor using (ν)ν−nucleon scattering and lattice QCD inputs. J. High Energy Phys., 2020, 2020(1): 136
CrossRef ADS Google scholar
[51]
S. Weinberg. Phenomenological Lagrangians. Physica A, 1979, 96(1−2): 327
CrossRef ADS Google scholar
[52]
R. L. Workman. . Review of particle physics. Prog. Theor. Exp. Phys., 2022, 2022(8): 083C01
CrossRef ADS Google scholar
[53]
D. L. Yao, L. Alvarez-Ruso, M. J. Vicente-Vacas. Extraction of nucleon axial charge and radius from lattice QCD results using baryon chiral perturbation theory. Phys. Rev. D, 2017, 96(11): 116022
CrossRef ADS Google scholar
[54]
D. L. Yao, L. Alvarez-Ruso, A. N. H. Blin, M. J. V. Vacas. Weak pion production off the nucleon in covariant chiral perturbation theory. Phys. Rev. D, 2018, 98(7): 076004
CrossRef ADS Google scholar
[55]
D. L. Yao, L. Alvarez-Ruso, M. J. Vicente Vacas. Neutral-current weak pion production off the nucleon in covariant chiral perturbation theory. Phys. Lett. B, 2019, 794: 109
CrossRef ADS Google scholar
[56]
D.L. YaoL. Y. DaiH.Q. ZhengZ.Y. Zhou, A review on partial-wave dynamics with chiral effective field theory and dispersion relation, Rep. Prog. Phys. 84(7), 076201 (2021)

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

We would like to thank Prof. M. J. Vicente-Vacas for comments. This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 12275076, 11905258, 12335002, and 12047503), the Science Fund for Distinguished Young Scholars of Hunan Province under Grant No. 2024JJ2007, and the Fundamental Research Funds for the Central Universities under Contract No. 531118010379. D. L. Y. appreciates the support of Peng Huan-Wu Visiting Professorship and the hospitality of Institute of Theoretical Physics at Chinese Academy of Sciences.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(3828 KB)

Accesses

Citations

Detail

Sections
Recommended

/