Localized surface plasmon resonance enhanced photodetector: Physical model, enhanced mechanism and applications

Jiangtong Su, Xiaoqi Hou, Ning Dai, Yang Li

PDF(12280 KB)
PDF(12280 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (6) : 63501. DOI: 10.1007/s11467-024-1413-8
TOPICAL REVIEW

Localized surface plasmon resonance enhanced photodetector: Physical model, enhanced mechanism and applications

Author information +
History +

Abstract

Localized surface plasmon resonance (LSPR) is an intriguing phenomenon that can break diffraction limitations and exhibit excellent light-confinement abilities, making it an attractive strategy for enhancing the light absorption capabilities of photodetectors. However, the complex mechanism behind this enhancement is still plaguing researchers, especially for hot-electron injection process, which inhibits further optimization and development. A clear guideline for basic physical model, enhancement mechanism, material selection and architectural design for LSPR photodetector are still required. This review firstly describes the mainstream understanding of fundamental physical modes of LSPR and related enhancement mechanism for LSPR photodetectors. Then, the universal strategies for tuning the LSPR frequency are introduced. Besides, the state-of-the-art progress in the development of LSPR photodetectors is briefly summarized. Finally, we highlight the remaining challenges and issues needed to be resolved in the future research.

Graphical abstract

Keywords

localized surface plasmon resonance / photodetector / plasmonic nanomaterials / hot electron

Cite this article

Download citation ▾
Jiangtong Su, Xiaoqi Hou, Ning Dai, Yang Li. Localized surface plasmon resonance enhanced photodetector: Physical model, enhanced mechanism and applications. Front. Phys., 2024, 19(6): 63501 https://doi.org/10.1007/s11467-024-1413-8

References

[1]
A. Poglitsch, C. Waelkens, N. Geis, H. Feuchtgruber, B. Vandenbussche. . The photodetector array camera and spectrometer (PACS) on the Herschel space observatory. Astron. Astrophys., 2010, 518: L2
CrossRef ADS Google scholar
[2]
R.A. YotterD. M. Wilson, A review of photodetectors for sensing light-emitting reporters in biological systems, IEEE Sens. J. 3(3), 288 (2003)
[3]
A. Casas. Clinical uses of 5-aminolaevulinic acid in photodynamic treatment and photodetection of cancer: A review. Cancer Lett., 2020, 490: 165
CrossRef ADS Google scholar
[4]
W.ChenT. KanY.AjikiK.MatsumotoI.Shimoyama, NIR spectrometer using a Schottky photodetector enhanced by grating-based SPR, Opt. Express 24(22), 25797 (2016)
[5]
F. Rutz, A. Bächle, R. Aidam, J. Niemasz, W. Bronner, A. Zibold, R. Rehm. InGaAs SWIR photodetectors for night vision. Infrared Technology and Applications XLV, 2019, 11002: 202
CrossRef ADS Google scholar
[6]
F. Rutz, R. Aidam, A. Bächle, H. Heussen, W. Bronner, R. Rehm, M. Benecke, S. Brunner, B. Göhler, P. Lutzmann, A. Sieck. InGaAs-based SWIR photodetectors for night vision and gated viewing. Electro-Optical and Infrared Systems: Technology and Applications XV, 2018, 10795: 1079503
CrossRef ADS Google scholar
[7]
A.PospischilM.HumerM.M. FurchiD.BachmannR.GuiderT.Fromherz T.Mueller, CMOS-compatible graphene photodetector covering all optical communication bands, Nat. Photonics 7(11), 892 (2013)
[8]
C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, F. Gao. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater., 2018, 30(38): 1803422
CrossRef ADS Google scholar
[9]
A. Rogalski. Infrared detectors: Status and trends. Prog. Quantum Electron., 2003, 27(2−3): 59
CrossRef ADS Google scholar
[10]
R. Liu, F. Wang, L. Liu, X. He, J. Chen, Y. Li, T. Zhai. Band alignment engineering in two‐dimensional transition metal dichalcogenide‐based heterostructures for photodetectors. Small Struct., 2021, 2(3): 2000136
CrossRef ADS Google scholar
[11]
S.LiY.Zhang W.YangH. LiuX.Fang, 2D perovskite Sr2Nb3O10 for high‐performance UV photodetectors, Adv. Mater. 32(7), 1905443 (2020)
[12]
F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. S. Vitiello, M. Polini. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 2014, 9(10): 780
CrossRef ADS Google scholar
[13]
C. Xie, C. Mak, X. Tao, F. Yan. Photodetectors based on two‐dimensional layered materials beyond graphene. Adv. Funct. Mater., 2017, 27(19): 1603886
CrossRef ADS Google scholar
[14]
X.WangP. WangJ.WangW.HuX.Zhou N.GuoH. HuangS.SunH.ShenT.Lin, Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics, arXiv: 1502.04439 (2015)
[15]
T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, D. Golberg. Recent developments in one‐dimensional inorganic nanostructures for photodetectors. Adv. Funct. Mater., 2010, 20(24): 4233
CrossRef ADS Google scholar
[16]
T.ZhaiX. FangM.LiaoX.XuH.Zeng B.YoshioD. Golberg, A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors, Sensors (Basel) 9(8), 6504 (2009)
[17]
T. Zhai, L. Li, Y. Ma, M. Liao, X. Wang, X. Fang, J. Yao, Y. Bando, D. Golberg. One-dimensional inorganic nanostructures: Synthesis, field-emission and photodetection. Chem. Soc. Rev., 2011, 40(5): 2986
CrossRef ADS Google scholar
[18]
I. M. Asuo, D. Gedamu, I. Ka, L. F. Gerlein, F. X. Fortier, A. Pignolet, S. G. Cloutier, R. Nechache. High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector. Nano Energy, 2018, 51: 324
CrossRef ADS Google scholar
[19]
S. X. Li, Y. S. Xu, C. L. Li, Q. Guo, G. Wang, H. Xia, H. H. Fang, L. Shen, H. B. Sun. Perovskite single‐crystal microwire‐array photodetectors with performance stability beyond 1 year. Adv. Mater., 2020, 32(28): 2001998
CrossRef ADS Google scholar
[20]
J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, C. M. Lieber. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science, 2001, 293(5534): 1455
CrossRef ADS Google scholar
[21]
S. Thunich, L. Prechtel, D. Spirkoska, G. Abstreiter, A. Fontcuberta i Morral, A. W. Holleitner. Photocurrent and photoconductance properties of a GaAs nanowire. Appl. Phys. Lett., 2009, 95(8): 083111
CrossRef ADS Google scholar
[22]
G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, E. H. Sargent. Ultrasensitive solution-cast quantum dot photodetectors. Nature, 2006, 442(7099): 180
CrossRef ADS Google scholar
[23]
C.LivacheB. MartinezN.GoubetC.GrébovalJ. QuA.ChuS.RoyerS.Ithurria M.G. SillyB. DubertretE.Lhuillier, A colloidal quantum dot infrared photodetector and its use for intraband detection, Nat. Commun. 10(1), 2125 (2019)
[24]
Z. Ren, J. Sun, H. Li, P. Mao, Y. Wei, X. Zhong, J. Hu, S. Yang, J. Wang. Bilayer PbS quantum dots for high‐performance photodetectors. Adv. Mater., 2017, 29(33): 1702055
CrossRef ADS Google scholar
[25]
J.KimS. M. KwonY.K. KangY.H. KimM.J. Lee K.HanA. FacchettiM.G. KimS.K. Park, A skin-like two-dimensionally pixelized full-color quantum dot photodetector, Sci. Adv. 5(11), eaax8801 (2019)
[26]
D. K. Gramotnev, S. I. Bozhevolnyi. Plasmonics beyond the diffraction limit. Nat. Photonics, 2010, 4(2): 83
CrossRef ADS Google scholar
[27]
J. Zhang, Y. Wang, D. Li, Y. Sun, L. Jiang. Engineering surface plasmons in metal/nonmetal structures for highly desirable plasmonic photodetectors. ACS Mater. Lett., 2022, 4(2): 343
CrossRef ADS Google scholar
[28]
H. Wang, S. Li, R. Ai, H. Huang, L. Shao, J. Wang. Plasmonically enabled two-dimensional material-based optoelectronic devices. Nanoscale, 2020, 12(15): 8095
CrossRef ADS Google scholar
[29]
Y. Wang, J. Zhang, W. Liang, H. Yang, T. Guan, B. Zhao, Y. Sun, L. Chi, L. Jiang. Rational design of plasmonic metal nanostructures for solar energy conversion. CCS Chem., 2022, 4(4): 1153
CrossRef ADS Google scholar
[30]
J. Li, Z. Lou, B. Li. Engineering plasmonic semiconductors for enhanced photocatalysis. J. Mater. Chem. A, 2021, 9(35): 18818
CrossRef ADS Google scholar
[31]
S. Li, P. Miao, Y. Zhang, J. Wu, B. Zhang, Y. Du, X. Han, J. Sun, P. Xu. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv. Mater., 2021, 33(6): 2000086
CrossRef ADS Google scholar
[32]
W.HouS. B. Cronin, A review of surface plasmon resonance‐enhanced photocatalysis, Adv. Funct. Mater. 23(13), 1612 (2013)
[33]
K. A. Willets, R. P. Van Duyne. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 2007, 58(1): 267
CrossRef ADS Google scholar
[34]
L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, Y. Xia. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett., 2005, 5(10): 2034
CrossRef ADS Google scholar
[35]
W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, A. R. Sadrolhosseini, M. A. Mahdi. Design and optimization of surface plasmon resonance spectroscopy for optical constant characterization and potential sensing application: Theoretical and experimental approaches. MDPI Photonics 8, 2021, (9): 361
CrossRef ADS Google scholar
[36]
K.M. MayerF. HaoS.LeeP.NordlanderJ.H. Hafner, A single molecule immunoassay by localized surface plasmon resonance, Nanotechnology 21(25), 255503 (2010)
[37]
P. Zijlstra, P. M. Paulo, M. Orrit. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotechnol., 2012, 7(6): 379
CrossRef ADS Google scholar
[38]
X. L. Zhou, Y. Yang, S. Wang, X. W. Liu. Surface plasmon resonance microscopy: From single‐molecule sensing to single‐cell imaging. Angew. Chem. Int. Ed., 2020, 59(5): 1776
CrossRef ADS Google scholar
[39]
L. Lan, Y. Gao, X. Fan, M. Li, Q. Hao, T. Qiu. The origin of ultrasensitive SERS sensing beyond plasmonics. Front. Phys., 2021, 16(4): 43300
CrossRef ADS Google scholar
[40]
H. Xu. Surface-enhanced Raman scattering beyond plasmonics. Front. Phys., 2022, 17(2): 23601
CrossRef ADS Google scholar
[41]
Y. Zhang, F. Zhang, B. Du, H. Chen, S. Wageh, O. A. Al-Hartomy, A. G. Al-Sehemi, B. Zhang, H. Zhang. Au/MXene based ultrafast all-optical switching. Front. Phys., 2023, 18(3): 33301
CrossRef ADS Google scholar
[42]
S.ButunN. A. CinelE.Ozbay, LSPR enhanced MSM UV photodetectors, Nanotechnology 23(44), 444010 (2012)
[43]
N. Patra, M. Manikandan, V. Singh, I. Palani. Investigations on LSPR effect of Cu/Al nanostructures on ZnO nanorods towards photodetector applications. J. Lumin., 2021, 238: 118331
CrossRef ADS Google scholar
[44]
N. Gogurla, A. K. Sinha, S. Santra, S. Manna, S. K. Ray. Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices. Sci. Rep., 2014, 4(1): 6483
CrossRef ADS Google scholar
[45]
A. S. Camacho. Plasmon nanolasers and plasmon optical tweezers. J. Nano Sci. Tech., 2015, 3: 10
[46]
S.A. Maier, Plasmonics: Fundamentals and Applications, Springer, 2007, Vol. 1
[47]
G.Wiederrecht, Handbook of Nanoscale Optics and Electronics, Elsevier, 2010
[48]
J. A. Huang, L. B. Luo. Low‐dimensional plasmonic photodetectors: Recent progress and future opportunities. Adv. Opt. Mater., 2018, 6(8): 1701282
CrossRef ADS Google scholar
[49]
S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, G. Chen. Losses in plasmonics: From mitigating energy dissipation to embracing loss-enabled functionalities. Adv. Opt. Photonics, 2017, 9(4): 775
CrossRef ADS Google scholar
[50]
P. B. Johnson, R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 1972, 6(12): 4370
CrossRef ADS Google scholar
[51]
C. Daboo, M. Baird, H. Hughes, N. Apsley, G. Jones, J. Frost, D. Peacock, D. Ritchie. Surface-plasmon-enhanced photodetection in planar Au GaAs Schottky junctions. Thin Solid Films, 1990, 189(1): 27
CrossRef ADS Google scholar
[52]
T. Echtermeyer, S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, A. Ferrari. Surface plasmon polariton graphene photodetectors. Nano Lett., 2016, 16(1): 8
CrossRef ADS Google scholar
[53]
H. S. Ee, Y. S. No, J. Kim, H. G. Park, M. K. Seo. Long-range surface plasmon polariton detection with a graphene photodetector. Opt. Lett., 2018, 43(12): 2889
CrossRef ADS Google scholar
[54]
H. Zhang, M. Ijaz, R. J. Blaikie. Recent review of surface plasmons and plasmonic hot electron effects in metallic nanostructures. Front. Phys., 2023, 18(6): 63602
CrossRef ADS Google scholar
[55]
J.D. Jackson, Classical Electrodynamics, Wiley, 1999
[56]
W. H. Yang, G. C. Schatz, R. P. Van Duyne. Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. J. Chem. Phys., 1995, 103(3): 869
CrossRef ADS Google scholar
[57]
K. Yee. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antenn. Propag., 1966, 14(3): 302
CrossRef ADS Google scholar
[58]
J.M. Jin, The Finite Element Method in Electromagnetics, John Wiley & Sons, 2015
[59]
Jr Evanoff G. Chumanov.. Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem, 2005, 6(7): 1221
CrossRef ADS Google scholar
[60]
M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, Y. Xia. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev., 2011, 111(6): 3669
CrossRef ADS Google scholar
[61]
V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, M. A. Iatì. Surface plasmon resonance in gold nanoparticles: A review. J. Phys.: Condens. Matter, 2017, 29(20): 203002
CrossRef ADS Google scholar
[62]
B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, Y. Xia. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B, 2006, 110(32): 15666
CrossRef ADS Google scholar
[63]
S. Link, M. B. Mohamed, M. El-Sayed. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B, 1999, 103(16): 3073
CrossRef ADS Google scholar
[64]
J. Zeng, S. Roberts, Y. Xia. Nanocrystal‐based time-temperature indicators. Chemistry, 2010, 16(42): 12559
CrossRef ADS Google scholar
[65]
Y. Sun, B. Wiley, Z. Y. Li, Y. Xia. Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys. J. Am. Chem. Soc., 2004, 126(30): 9399
CrossRef ADS Google scholar
[66]
W. He, X. Wu, J. Liu, K. Zhang, W. Chu, L. Feng, X. Hu, W. Zhou, S. Xie. Formation of AgPt alloy nanoislands via chemical etching with tunable optical and catalytic properties. Langmuir, 2010, 26(6): 4443
CrossRef ADS Google scholar
[67]
J. Chen, B. Wiley, J. McLellan, Y. Xiong, Z. Y. Li, Y. Xia. Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett., 2005, 5(10): 2058
CrossRef ADS Google scholar
[68]
S. Prathap Chandran, J. Ghatak, P. V. Satyam, M. Sastry. Interfacial deposition of Ag on Au seeds leading to Aucore Ag shell in organic media. J. Colloid Interface Sci., 2007, 312(2): 498
CrossRef ADS Google scholar
[69]
M. Liu, P. Guyot-Sionnest. Synthesis and optical characterization of Au/Ag core/shell nanorods. J. Phys. Chem. B, 2004, 108(19): 5882
CrossRef ADS Google scholar
[70]
M. D. Arnold, M. G. Blaber. Optical performance and metallic absorption in nanoplasmonic systems. Opt. Express, 2009, 17(5): 3835
CrossRef ADS Google scholar
[71]
M. Blaber, M. Arnold, N. Harris, M. Ford, M. Cortie. Plasmon absorption in nanospheres: A comparison of sodium, potassium, aluminium, silver and gold. Physica B, 2007, 394(2): 184
CrossRef ADS Google scholar
[72]
G. H. Chan, J. Zhao, G. C. Schatz, R. P. Van Duyne. Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J. Phys. Chem. C, 2008, 112(36): 13958
CrossRef ADS Google scholar
[73]
S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, J. F. Löffler. Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays. J. Am. Chem. Soc., 2012, 134(4): 1966
CrossRef ADS Google scholar
[74]
I. Zorić, M. Zach, B. Kasemo, C. Langhammer. Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms. ACS Nano, 2011, 5(4): 2535
CrossRef ADS Google scholar
[75]
M. Castro-Lopez, D. Brinks, R. Sapienza, N. F. Van Hulst, Aluminum for nonlinear plasmonics: Resonance-driven polarized luminescence of Al. Ag, and Au nanoantennas. Nano Lett., 2011, 11(11): 4674
CrossRef ADS Google scholar
[76]
T. Stöckli, J. M. Bonard, P. A.Stadelmann, and A. Châtelain, EELS investigation of plasmon excitations in aluminum nanospheres and carbon nanotubes, Z. Phys. D At. Mol. Clust. 40(1–4), 1 (1997)
[77]
A. Taguchi, Y. Saito, K. Watanabe, S. Yijian, S. Kawata. Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures. Appl. Phys. Lett., 2012, 101(8): 081110
CrossRef ADS Google scholar
[78]
M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, N. J. Halas. Aluminum plasmonic nanoantennas. Nano Lett., 2012, 12(11): 6000
CrossRef ADS Google scholar
[79]
A. Dubey, R. Mishra, Y. H. Hsieh, C. W. Cheng, B. H. Wu, L. J. Chen, S. Gwo, T. J. Yen. Aluminum plasmonics enriched ultraviolet GaN photodetector with ultrahigh responsivity, detectivity, and broad bandwidth. Adv. Sci. (Weinh.), 2020, 7(24): 2002274
CrossRef ADS Google scholar
[80]
M. Li, M. Shi, B. Wang, C. Zhang, S. Yang, Y. Yang, N. Zhou, X. Guo, D. Chen, S. Li, H. Mao, J. Xiong. Quasi‐ordered nanoforests with hybrid plasmon resonances for broadband absorption and photodetection. Adv. Funct. Mater., 2021, 31(38): 2102840
CrossRef ADS Google scholar
[81]
J. Li, C. Nie, F. Sun, L. Tang, Z. Zhang, J. Zhang, Y. Zhao, J. Shen, S. Feng, H. Shi, X. Wei. Enhancement of the photoresponse of monolayer MoS2 photodetectors induced by a nanoparticle grating. ACS Appl. Mater. Interfaces, 2020, 12(7): 8429
CrossRef ADS Google scholar
[82]
Z. Chen, X. Li, J. Wang, L. Tao, M. Long, S. J. Liang, L. K. Ang, C. Shu, H. K. Tsang, J. B. Xu. Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity. ACS Nano, 2017, 11(1): 430
CrossRef ADS Google scholar
[83]
B. L. Greenberg, S. Ganguly, J. T. Held, N. J. Kramer, K. A. Mkhoyan, E. S. Aydil, U. R. Kortshagen. Nonequilibrium-plasma-synthesized ZnO nanocrystals with plasmon resonance tunable via Al doping and quantum confinement. Nano Lett., 2015, 15(12): 8162
CrossRef ADS Google scholar
[84]
A. M. Schimpf, C. E. Gunthardt, J. D. Rinehart, J. M. Mayer, D. R. Gamelin. Controlling carrier densities in photochemically reduced colloidal ZnO nanocrystals: Size dependence and role of the hole quencher. J. Am. Chem. Soc., 2013, 135(44): 16569
CrossRef ADS Google scholar
[85]
G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, D. J. Milliron. Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. Nano Lett., 2011, 11(10): 4415
CrossRef ADS Google scholar
[86]
T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva, C. B. Murray. Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO). Nano Lett., 2013, 13(6): 2857
CrossRef ADS Google scholar
[87]
Q. Liu, C. Sun, Q. He, D. Liu, A. Khalil, T. Xiang, Z. Wu, J. Wang, L. Song. Ultrathin carbon layer coated MoO2 nanoparticles for high-performance near-infrared photothermal cancer therapy. Chem. Commun. (Camb.), 2015, 51(49): 10054
CrossRef ADS Google scholar
[88]
T. M. Mattox, A. Bergerud, A. Agrawal, D. J. Milliron. Influence of shape on the surface plasmon resonance of tungsten bronze nanocrystals. Chem. Mater., 2014, 26(5): 1779
CrossRef ADS Google scholar
[89]
J. M. Luther, P. K. Jain, T. Ewers, A. P. Alivisatos. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater., 2011, 10(5): 361
CrossRef ADS Google scholar
[90]
V. Gurin, V. Prokopenko, A. Alexeenko, S. Wang, K. Yumashev, P. Prokoshin. Sol–gel silica glasses with nanoparticles of copper selenide: Synthesis, optics and structure. Int. J. Inorg. Mater., 2001, 3(6): 493
CrossRef ADS Google scholar
[91]
B. C. Marin, S. W. Hsu, L. Chen, A. Lo, D. W. Zwissler, Z. Liu, A. R. Tao. Plasmon-enhanced two-photon absorption in photoluminescent semiconductor nanocrystals. ACS Photonics, 2016, 3(4): 526
CrossRef ADS Google scholar
[92]
D. J. Rowe, J. S. Jeong, K. A. Mkhoyan, U. R. Kortshagen. Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance. Nano Lett., 2013, 13(3): 1317
CrossRef ADS Google scholar
[93]
R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, D. J. Milliron. Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. Nano Lett., 2011, 11(11): 4706
CrossRef ADS Google scholar
[94]
S. Ghosh, M. Saha, S. K. De. Tunable surface plasmon resonance and enhanced electrical conductivity of In doped ZnO colloidal nanocrystals. Nanoscale, 2014, 6(12): 7039
CrossRef ADS Google scholar
[95]
M. Kanehara, H. Koike, T. Yoshinaga, T. Teranishi. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. J. Am. Chem. Soc., 2009, 131(49): 17736
CrossRef ADS Google scholar
[96]
C. Y. Su, H. C. Lin. Direct route to tungsten oxide nanorod bundles: Microstructures and electro-optical properties. J. Phys. Chem. C, 2009, 113(10): 4042
CrossRef ADS Google scholar
[97]
S. H. Lee, H. Nishi, T. Tatsuma. Tunable plasmon resonance of molybdenum oxide nanoparticles synthesized in non-aqueous media. Chem. Commun. (Camb.), 2017, 53(94): 12680
CrossRef ADS Google scholar
[98]
A. M. Schimpf, S. D. Lounis, E. L. Runnerstrom, D. J. Milliron, D. R. Gamelin. Redox chemistries and plasmon energies of photodoped In2O3 and Sn-doped In2O3 (ITO) nanocrystals. J. Am. Chem. Soc., 2015, 137(1): 518
CrossRef ADS Google scholar
[99]
J. A. Faucheaux, P. K. Jain. Plasmons in photocharged ZnO nanocrystals revealing the nature of charge dynamics. J. Phys. Chem. Lett., 2013, 4(18): 3024
CrossRef ADS Google scholar
[100]
H. Du, Y. Li, N. Zhou, C. Pu, J. Yin, X. Kong, H. Tian, Y. Jin. Plasmonic metal oxide nanocrystals via surface anchoring of redox-active phosphorus species. Chem. Mater., 2021, 33(13): 5290
CrossRef ADS Google scholar
[101]
C. N. Valdez, M. Braten, A. Soria, D. R. Gamelin, J. M. Mayer. Effect of protons on the redox chemistry of colloidal zinc oxide nanocrystals. J. Am. Chem. Soc., 2013, 135(23): 8492
CrossRef ADS Google scholar
[102]
R.LuC.W. Ge Y.F. ZouK. ZhengD.D. WangT.F. ZhangL.B. Luo, A localized surface plasmon resonance and light confinement‐enhanced near‐infrared light photodetector, Laser Photonics Rev. 10(4), 595 (2016)
[103]
Z. Ni, L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, Z. Wang, M. Xu, D. Li, J. Yang, W. Hu, X. Pi, D. Yang. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors. ACS Nano, 2017, 11(10): 9854
CrossRef ADS Google scholar
[104]
M. Abb, Y. Wang, N. Papasimakis, C. De Groot, O. L. Muskens. Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays. Nano Lett., 2014, 14(1): 346
CrossRef ADS Google scholar
[105]
A. Agrawal, I. Kriegel, D. J. Milliron. Shape-dependent field enhancement and plasmon resonance of oxide nanocrystals. J. Phys. Chem. C, 2015, 119(11): 6227
CrossRef ADS Google scholar
[106]
E. L. Runnerstrom, A. Bergerud, A. Agrawal, R. W. Johns, C. J. Dahlman, A. Singh, S. M. Selbach, D. J. Milliron. Defect engineering in plasmonic metal oxide nanocrystals. Nano Lett., 2016, 16(5): 3390
CrossRef ADS Google scholar
[107]
J. Kim, A. Agrawal, F. Krieg, A. Bergerud, D. J. Milliron. The interplay of shape and crystalline anisotropies in plasmonic semiconductor nanocrystals. Nano Lett., 2016, 16(6): 3879
CrossRef ADS Google scholar
[108]
B. Auguié, W. L. Barnes. Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett., 2008, 101(14): 143902
CrossRef ADS Google scholar
[109]
Y. A. Urzhumov, G. Shvets, J. Fan, F. Capasso, D. Brandl, P. Nordlander. Plasmonic nanoclusters: A path towards negative-index metafluids. Opt. Express, 2007, 15(21): 14129
CrossRef ADS Google scholar
[110]
E. Boulais, R. Lachaine, A. Hatef, M. Meunier. Plasmonics for pulsed-laser cell nanosurgery: Fundamentals and applications. J. Photochem. Photobiol. Photochem. Rev., 2013, 17: 26
CrossRef ADS Google scholar
[111]
A. Yurtsever, A. H. Zewail. Direct visualization of near-fields in nanoplasmonics and nanophotonics. Nano Lett., 2012, 12(6): 3334
CrossRef ADS Google scholar
[112]
Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, H. Zeng. Improving all‐inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small, 2016, 12(40): 5622
CrossRef ADS Google scholar
[113]
H. A. Atwater, A. Polman. Plasmonics for improved photovoltaic devices. Nat. Mater., 2010, 9(3): 205
CrossRef ADS Google scholar
[114]
A. Furube, T. Yoshinaga, M. Kanehara, M. Eguchi, T. Teranishi. Electric-field enhancement inducing near-infrared two-photon absorption in an indium-tin oxide nanoparticle film. Angew. Chem. Int. Ed., 2012, 51(11): 2640
CrossRef ADS Google scholar
[115]
A. Agrawal, A. Singh, S. Yazdi, A. Singh, G. K. Ong, K. Bustillo, R. W. Johns, E. Ringe, D. J. Milliron. Resonant coupling between molecular vibrations and localized surface plasmon resonance of faceted metal oxide nanocrystals. Nano Lett., 2017, 17(4): 2611
CrossRef ADS Google scholar
[116]
C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett., 2002, 88(7): 077402
CrossRef ADS Google scholar
[117]
M. L. Brongersma, N. J. Halas, P. Nordlander. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol., 2015, 10(1): 25
CrossRef ADS Google scholar
[118]
M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, N. J. Halas. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett., 2013, 13(4): 1687
CrossRef ADS Google scholar
[119]
J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, G. Gerber. Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission. Phys. Rev. Lett., 2000, 85(14): 2921
CrossRef ADS Google scholar
[120]
M. W. Knight, H. Sobhani, P. Nordlander, N. J. Halas. Photodetection with active optical antennas. Science, 2011, 332(6030): 702
CrossRef ADS Google scholar
[121]
H. Chalabi, D. Schoen, M. L. Brongersma. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett., 2014, 14(3): 1374
CrossRef ADS Google scholar
[122]
G. Zhao, H. Kozuka, T. Yoko. Sol‒gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles. Thin Solid Films, 1996, 277(1-2): 147
CrossRef ADS Google scholar
[123]
Y. Tian, T. Tatsuma. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. (Camb.), 2004, (16): 1810
CrossRef ADS Google scholar
[124]
Y. Tian, T. Tatsuma. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc., 2005, 127(20): 7632
CrossRef ADS Google scholar
[125]
S. Linic, P. Christopher, D. B. Ingram. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater., 2011, 10(12): 911
CrossRef ADS Google scholar
[126]
S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, M. Moskovits. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol., 2013, 8(4): 247
CrossRef ADS Google scholar
[127]
D. Peters. An infrared detector utilizing internal photoemission. Proc. IEEE, 1967, 55(5): 704
CrossRef ADS Google scholar
[128]
A. Akbari, P. Berini. Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide. Appl. Phys. Lett., 2009, 95(2): 021104
CrossRef ADS Google scholar
[129]
I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, U. Levy. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett., 2011, 11(6): 2219
CrossRef ADS Google scholar
[130]
C. Scales, P. Berini. Thin-film Schottky barrier photodetector models. IEEE J. Quantum Electron., 2010, 46(5): 633
CrossRef ADS Google scholar
[131]
S. Faris, T. Gustafson, J. Wiesner. Detection of optical and infrared radiation with DC-biased electron-tunneling metal−barrier−metal diodes. IEEE J. Quantum Electron., 1973, 9(7): 737
CrossRef ADS Google scholar
[132]
M. Heiblum, S. Wang, J. Whinnery, T. Gustafson. Characteristics of integrated MOM junctions at dc and at optical frequencies. IEEE J. Quantum Electron., 1978, 14(3): 159
CrossRef ADS Google scholar
[133]
X. Li, D. Xiao, Z. Zhang. Landau damping of quantum plasmons in metal nanostructures. New J. Phys., 2013, 15(2): 023011
CrossRef ADS Google scholar
[134]
K. Watanabe, D. Menzel, N. Nilius, H. J. Freund. Photochemistry on metal nanoparticles. Chem. Rev., 2006, 106(10): 4301
CrossRef ADS Google scholar
[135]
J. B. Khurgin. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol., 2015, 10(1): 2
CrossRef ADS Google scholar
[136]
Y. Ben‐Shahar, F. Scotognella, N. Waiskopf, I. Kriegel, S. Dal Conte, G. Cerullo, U. Banin. Effect of surface coating on the photocatalytic function of hybrid CdS–Au nanorods. Small, 2015, 11(4): 462
CrossRef ADS Google scholar
[137]
Y. Ben-Shahar, F. Scotognella, I. Kriegel, L. Moretti, G. Cerullo, E. Rabani, U. Banin. Optimal metal domain size for photocatalysis with hybrid semiconductor−metal nanorods. Nat. Commun., 2016, 7(1): 10413
CrossRef ADS Google scholar
[138]
L. Du, A. Furube, K. Hara, R. Katoh, M. Tachiya. Ultrafast plasmon induced electron injection mechanism in gold–TiO2 nanoparticle system. J. Photochem. Photobiol. Photochem. Rev., 2013, 15: 21
CrossRef ADS Google scholar
[139]
A. Furube, L. Du, K. Hara, R. Katoh, M. Tachiya. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc., 2007, 129(48): 14852
CrossRef ADS Google scholar
[140]
L. Du, A. Furube, K. Yamamoto, K. Hara, R. Katoh, M. Tachiya. Plasmon-induced charge separation and recombination dynamics in gold−TiO2 nanoparticle systems: dependence on TiO2 particle size. J. Phys. Chem. C, 2009, 113(16): 6454
CrossRef ADS Google scholar
[141]
T. Liu, Q. Wang, C. Zhang, X. Li, J. Hu. High performance of hot-carrier generation, transport and injection in TiN/TiO2 junction. Front. Phys., 2022, 17(5): 53509
CrossRef ADS Google scholar
[142]
W. Yang, Y. Liu, D. A. Cullen, J. R. McBride, T. Lian. Harvesting sub-bandgap IR photons by photothermionic hot electron transfer in a plasmonic p–n junction. Nano Lett., 2021, 21(9): 4036
CrossRef ADS Google scholar
[143]
A. O. Govorov, H. Zhang, Y. K. Gun’ko. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J. Phys. Chem. C, 2013, 117(32): 16616
CrossRef ADS Google scholar
[144]
A. Manjavacas, J. G. Liu, V. Kulkarni, P. Nordlander. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano, 2014, 8(8): 7630
CrossRef ADS Google scholar
[145]
R. Sundararaman, P. Narang, A. S. Jermyn, III Goddard, H. A. Atwater. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun., 2014, 5(1): 5788
CrossRef ADS Google scholar
[146]
L. Ranno, S. D. Forno, J. Lischner. Computational design of bimetallic core−shell nanoparticles for hot-carrier photocatalysis. npj Comput, Mater., 2018, 4(1): 31
CrossRef ADS Google scholar
[147]
M.BernardiD. Vigil-FowlerC.S. OngJ.B. NeatonS.G. Louie, Ab initio study of hot electrons in GaAs, Proc. Natl. Acad. Sci. USA 112(17), 5291 (2015)
[148]
Z. Lian, M. Sakamoto, H. Matsunaga, J. J. M. Vequizo, A. Yamakata, M. Haruta, H. Kurata, W. Ota, T. Sato, T. Teranishi. Near infrared light induced plasmonic hot hole transfer at a nano-heterointerface. Nat. Commun., 2018, 9(1): 2314
CrossRef ADS Google scholar
[149]
F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, P. Nordlander. Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance. Nano Lett., 2008, 8(11): 3983
CrossRef ADS Google scholar
[150]
Y. Zhang. Theory of plasmonic hot-carrier generation and relaxation. J. Phys. Chem. A, 2021, 125(41): 9201
CrossRef ADS Google scholar
[151]
M. A. Butt. Metal−insulator−metal waveguide-based plasmonic sensors: Fantasy or truth — A critical review. Appl. Res., 2023, 2: e202200099
CrossRef ADS Google scholar
[152]
W. Y. Kong, G. A. Wu, K. Y. Wang, T. F. Zhang, Y. F. Zou, D. D. Wang, L. B. Luo. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv. Mater., 2016, 28(48): 10725
CrossRef ADS Google scholar
[153]
X. Wang, K. Liu, X. Chen, B. Li, M. Jiang, Z. Zhang, H. Zhao, D. Shen. Highly wavelength-selective enhancement of responsivity in Ag nanoparticle-modified ZnO UV photodetector. ACS Appl. Mater. Interfaces, 2017, 9(6): 5574
CrossRef ADS Google scholar
[154]
W. Ouyang, F. Teng, M. Jiang, X. Fang. ZnO film UV photodetector with enhanced performance: Heterojunction with CdMoO4 microplates and the hot electron injection effect of Au nanoparticles. Small, 2017, 13(39): 1702177
CrossRef ADS Google scholar
[155]
S. Liu, M. Y. Li, D. Su, M. Yu, H. Kan, H. Liu, X. Wang, S. Jiang. Broad-band high-sensitivity ZnO colloidal quantum dots/self-assembled Au nanoantennas heterostructures photodetectors. ACS Appl. Mater. Interfaces, 2018, 10(38): 32516
CrossRef ADS Google scholar
[156]
M. Li, M. Zhao, D. Jiang, M. Yang, Q. Li, C. Shan, X. Zhou, Y. Duan, N. Wang, J. Sun. Optimizing the spacing of Ag nanoparticle layers to enhance the performance of ZnO/Ag/ZnO/Ag/ZnO multilayer-structured UV photodetectors. Sens. Actuators A Phys., 2019, 297: 111501
CrossRef ADS Google scholar
[157]
Y. Liu, X. Zhang, J. Su, H. Li, Q. Zhang, Y. Gao. Ag nanoparticles@ ZnO nanowire composite arrays: An absorption enhanced UV photodetector. Opt. Express, 2014, 22(24): 30148
CrossRef ADS Google scholar
[158]
J. Lu, C. Xu, J. Dai, J. Li, Y. Wang, Y. Lin, P. Li. Improved UV photoresponse of ZnO nanorod arrays by resonant coupling with surface plasmons of Al nanoparticles. Nanoscale, 2015, 7(8): 3396
CrossRef ADS Google scholar
[159]
C. C. Yang, H. C. Yu, Y. K. Su, M. Y. Chuang, C. H. Hsiao, T. H. Kao. Noise properties of ag nanoparticle-decorated ZnO nanorod UV photodetectors. IEEE Photonics Technol. Lett., 2016, 28(4): 379
CrossRef ADS Google scholar
[160]
C. L. Hsu, Y. C. Wang, S. P. Chang, S. J. Chang. Ultraviolet/visible photodetectors based on p–n NiO/ZnO nanowires decorated with Pd nanoparticles. ACS Appl. Nano Mater., 2019, 2(10): 6343
CrossRef ADS Google scholar
[161]
Y. Noh, J. Shin, H. Lee, G. Y. Kim, M. Kumar, D. Lee. Decoration of Ag nanoparticle on ZnO nanowire by intense pulsed light and enhanced UV photodetector. Chemosensors (Basel), 2021, 9(11): 321
CrossRef ADS Google scholar
[162]
M. Y. Li, S. Liu, Z. Huang, Y. Ai, K. Shen, H. Lu, M. Li, J. Wu. Facile fabrication of ultrasensitive honeycomb nano-mesh ultraviolet photodetectors based on self-assembled plasmonic architectures. ACS Appl. Mater. Interfaces, 2021, 13(30): 35972
CrossRef ADS Google scholar
[163]
Q. Li, J. Huang, J. Meng, Z. Li. Enhanced performance of a self-powered ZnO photodetector by coupling LSPR-inspired pyro-phototronic effect and piezo-phototronic effect. Adv. Opt. Mater., 2022, 10(7): 2102468
CrossRef ADS Google scholar
[164]
L. Goswami, N. Aggarwal, S. Krishna, M. Singh, P. Vashishtha, S. P. Singh, S. Husale, R. Pandey, G. Gupta. Au-nanoplasmonics-mediated surface plasmon-enhanced GaN nanostructured UV photodetectors. ACS Omega, 2020, 5(24): 14535
CrossRef ADS Google scholar
[165]
S. Kunwar, S. Pandit, J. H. Jeong, J. Lee. Improved photoresponse of UV photodetectors by the incorporation of plasmonic nanoparticles on GaN through the resonant coupling of localized surface plasmon resonance. Nano-Micro Lett., 2020, 12(1): 91
CrossRef ADS Google scholar
[166]
S. Lin, R. Kulkarni, R. Mandavkar, M. A. Habib, S. Burse, S. Kunwar, J. Lee. Surmounting the interband threshold limit by the hot electron excitation of multi-metallic plasmonic AgAuCu NPs for UV photodetector application. CrystEngComm, 2022, 24(22): 4134
CrossRef ADS Google scholar
[167]
K. Arora, D. P. Singh, P. Fischer, M. Kumar. Spectrally selective and highly sensitive UV photodetection with UV-A, C band specific polarity switching in silver plasmonic nanoparticle enhanced gallium oxide thin-film. Adv. Opt. Mater., 2020, 8(16): 2000212
CrossRef ADS Google scholar
[168]
Y. Liu, W. Chen, L. Zhao, J. Guo, C. Yang, X. Wang, W. Huang, T. Ren, J. Xu. Plasmon‐enhanced InGaZnO ultraviolet photodetectors tuned by ferroelectric HfZrO. Adv. Electron. Mater., 2019, 5(12): 1900588
CrossRef ADS Google scholar
[169]
S. Han, H. Xia, Y. Lu, S. Hu, D. Zhang, W. Xu, M. Fang, W. Liu, P. Cao, D. Zhu. Great enhancement effect of 20–40 nm Ag NPs on solar-blind UV response of the mixed-phase MgZnO detector. ACS Omega, 2021, 6(10): 6699
CrossRef ADS Google scholar
[170]
X. Shi, Z. Yang, S. Yin, H. Zeng. Al plasmon-enhanced diamond solar-blind UV photodetector by coupling of plasmon and excitons. Mater. Technol., 2016, 31(9): 544
CrossRef ADS Google scholar
[171]
S. Mondal, A. Dalal, A. Mondal. Al nanoparticles decorated Er: TiO2 thin film based plasmonic photodetector. Ceram. Int., 2023, 49(4): 6289
CrossRef ADS Google scholar
[172]
Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas. Graphene-antenna sandwich photodetector. Nano Lett., 2012, 12(7): 3808
CrossRef ADS Google scholar
[173]
S. Lee, M. Lee, H. Shin, D. Choi. Control of density and LSPR of Au nanoparticles on graphene. Nanotechnology, 2013, 24(27): 275702
CrossRef ADS Google scholar
[174]
S. Jang, E. Hwang, Y. Lee, S. Lee, J. H. Cho. Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals. Nano Lett., 2015, 15(4): 2542
CrossRef ADS Google scholar
[175]
J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, W. Lu. Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays. Small, 2015, 11(20): 2392
CrossRef ADS Google scholar
[176]
V. Selamneni, H. Raghavan, A. Hazra, P. Sahatiya. MoS2/paper decorated with metal nanoparticles (Au, Pt, and Pd) based plasmonic‐enhanced broadband (visible‐NIR) flexible photodetectors. Adv. Mater. Interfaces, 2021, 8(6): 2001988
CrossRef ADS Google scholar
[177]
G. Li, Y. Song, S. Feng, L. Feng, Z. Liu, B. Leng, Z. Fu, J. Li, X. Jiang, B. Liu, X. Zhang. Improved optoelectronic performance of MoS2 photodetector via localized surface plasmon resonance coupling of double-layered Au nanoparticles with sandwich structure. ACS Appl. Electron. Mater., 2022, 4(4): 1626
CrossRef ADS Google scholar
[178]
Y. Li, J. G. DiStefano, A. A. Murthy, J. D. Cain, E. D. Hanson, Q. Li, F. C. Castro, X. Chen, V. P. Dravid. Superior plasmonic photodetectors based on Au@MoS2 core–shell heterostructures. ACS Nano, 2017, 11(10): 10321
CrossRef ADS Google scholar
[179]
J. Zhang, X. Zhang, J. Li, Z. Ma, B. Leng, Q. Xia, L. Shen, Y. Song, Z. Fu, S. Feng, L. Feng, Z. Liu, S. Yuldashev, X. Jiang, B. Liu. Simultaneous visible and ultraviolet photoresponse improvement of MoS2/ZnO heterostructure photodetector via direct resonant coupling of Au nanoparticles localized surface plasmon resonance. Opt. Mater., 2022, 124: 111997
CrossRef ADS Google scholar
[180]
A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl. Negative refraction in semiconductor metamaterials. Nat. Mater., 2007, 6(12): 946
CrossRef ADS Google scholar
[181]
Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, N. J. Halas. Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett., 2014, 14(1): 299
CrossRef ADS Google scholar
[182]
Z. Xia, P. Li, Y. Wang, T. Song, Q. Zhang, B. Sun. Solution-processed gold nanorods integrated with graphene for near-infrared photodetection via hot carrier injection. ACS Appl. Mater. Interfaces, 2015, 7(43): 24136
CrossRef ADS Google scholar
[183]
B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. Han, J. Kong, F. Xia. Coupling-enhanced broadband mid-infrared light absorption in graphene plasmonic nanostructures. ACS Nano, 2016, 10(12): 11172
CrossRef ADS Google scholar
[184]
N. S. Rohizat, A. H. A. Ripain, C. S. Lim, C. L. Tan, R. Zakaria. Plasmon-enhanced reduced graphene oxide photodetector with monometallic of Au and Ag nanoparticles at VIS–NIR region. Sci. Rep., 2021, 11(1): 19688
CrossRef ADS Google scholar
[185]
Z. B. Dai, G. Cen, Z. Zhang, X. Lv, K. Liu, Z. Li. Near-field infrared response of graphene on copper substrate. Front. Phys., 2022, 17(4): 43502
CrossRef ADS Google scholar
[186]
S. Podder, A. R. Pal. Plasmonic visible-NIR photodetector based on hot electrons extracted from nanostructured titanium nitride. J. Appl. Phys., 2019, 126(8): 083108
CrossRef ADS Google scholar
[187]
A. Lesuffleur, H. Im, N. C. Lindquist, S. H. Oh. Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors. Appl. Phys. Lett., 2007, 90(24): 243110
CrossRef ADS Google scholar
[188]
P.C. ChuangP. C. LiaoY.F. Chen, Enhancing the sensitivity of localized surface plasmon resonance (LSPR) biosensors using nanorods and DNA aptamers, Plasmonics in Biology and Medicine XII 2015, 98
[189]
H. Takei, N. Bessho, A. Ishii, T. Okamoto, A. Beyer, H. Vieker, A. Gölzhäuser. Enhanced infrared LSPR sensitivity of cap-shaped gold nanoparticles coupled to a metallic film. Langmuir, 2014, 30(8): 2297
CrossRef ADS Google scholar
[190]
M. Bauch, K. Toma, M. Toma, Q. Zhang, J. Dostalek. Plasmon-enhanced fluorescence biosensors: A review. Plasmonics, 2014, 9(4): 781
CrossRef ADS Google scholar
[191]
A. Campion, P. Kambhampati. Surface-enhanced Raman scattering. Chem. Soc. Rev., 1998, 27(4): 241
CrossRef ADS Google scholar
[192]
L. Tang, J. Li. Plasmon-based colorimetric nanosensors for ultrasensitive molecular diagnostics. ACS Sens., 2017, 2(7): 857
CrossRef ADS Google scholar
[193]
S. Chen, M. Svedendahl, R. P. Van Duyne, M. Käll. Plasmon-enhanced colorimetric ELISA with single molecule sensitivity. Nano Lett., 2011, 11(4): 1826
CrossRef ADS Google scholar
[194]
Y. Liang, H. Zhang, W. Zhu, A. Agrawal, H. Lezec, L. Li, W. Peng, Y. Zou, Y. Lu, T. Xu. Subradiant dipolar interactions in plasmonic nanoring resonator array for integrated label-free biosensing. ACS Sens., 2017, 2(12): 1796
CrossRef ADS Google scholar
[195]
X.WangJ. ZhuH.TongX.YangX.Wu Z.PangH. YangY.Qi, A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer, Chin. Phys. B 28(4), 044201 (2019)
[196]
T. Chen, S. Li, H. Sun. Metamaterials application in sensing. Sensors (Basel), 2012, 12(3): 2742
CrossRef ADS Google scholar
[197]
C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater., 2012, 11(1): 69
CrossRef ADS Google scholar
[198]
J. Zhu, Z. Wang, S. Lin, S. Jiang, X. Liu, S. Guo. Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker. Biosens. Bioelectron., 2020, 150: 111905
CrossRef ADS Google scholar
[199]
Y. I. Park, H. Im, R. Weissleder, H. Lee. Nanostar clustering improves the sensitivity of plasmonic assays. Bioconjug. Chem., 2015, 26(8): 1470
CrossRef ADS Google scholar
[200]
H. Cheng, T. Kamegawa, K. Mori, H. Yamashita. Surfactant‐free nonaqueous synthesis of plasmonic molybdenum oxide nanosheets with enhanced catalytic activity for hydrogen generation from ammonia borane under visible light. Angew. Chem. Int. Ed., 2014, 53(11): 2910
CrossRef ADS Google scholar
[201]
Z.ZhangJ. HuangY.FangM.ZhangK.Liu B.Dong, A nonmetal plasmonic Z‐scheme photocatalyst with UV‐ to NIR‐driven photocatalytic protons reduction, Adv. Mater. 29(18), 1606688 (2017)
[202]
Z. Lou, M. Zhu, X. Yang, Y. Zhang, M. H. Whangbo, B. Li, B. Huang. Continual injection of photoinduced electrons stabilizing surface plasmon resonance of non-elemental-metal plasmonic photocatalyst CdS/WO3−x for efficient hydrogen generation. Appl. Catal. B, 2018, 226: 10
CrossRef ADS Google scholar
[203]
L. Mikac, M. Ivanda, M. Gotić, T. Mihelj, L. Horvat. Synthesis and characterization of silver colloidal nanoparticles with different coatings for SERS application. J. Nanopart. Res., 2014, 16(12): 2748
CrossRef ADS Google scholar
[204]
H. Y. Chen, M. H. Lin, C. Y. Wang, Y. M. Chang, S. Gwo. Large-scale hot spot engineering for quantitative SERS at the single-molecule scale. J. Am. Chem. Soc., 2015, 137(42): 13698
CrossRef ADS Google scholar
[205]
Y. Zhou, R. Ding, P. Joshi, P. Zhang. Quantitative surface-enhanced Raman measurements with embedded internal reference. Anal. Chim. Acta, 2015, 874: 49
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22005267 and 22105011), the Basic Public Research Program of Zhejiang Province (Nos. LGF22B010004 and LY23B010001), the National Key Technologies R&D Program of China (No. 2022YFA1207000), the Research Funds of Hangzhou Institute for Advanced Study, UCAS (No. A05006C019001), and Hangzhou Science and Technology Bureau of Zhejiang Province (No. TD2020002).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(12280 KB)

Accesses

Citations

Detail

Sections
Recommended

/