Localization−delocalization transitions in non-Hermitian Aharonov−Bohm cages

Xiang Li, Jin Liu, Tao Liu

PDF(4420 KB)
PDF(4420 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (3) : 33211. DOI: 10.1007/s11467-024-1412-9
RESEARCH ARTICLE

Localization−delocalization transitions in non-Hermitian Aharonov−Bohm cages

Author information +
History +

Abstract

A unique feature of non-Hermitian systems is the extreme sensitivity of the eigenspectrum to boundary conditions with the emergence of the non-Hermitian skin effect (NHSE). A NHSE originates from the point-gap topology of complex eigenspectrum, where an extensive number of eigenstates are anomalously localized at the boundary driven by nonreciprocal dissipation. Two different approaches to create localization are disorder and flat-band spectrum, and their interplay can lead to the anomalous inverse Anderson localization, where the Bernoulli anti-symmetric disorder induces mobility in a full-flat band system in the presence of Aharonov−Bohm (AB) Cage. In this work, we study the localization−delocalization transitions due to the interplay of the point-gap topology, flat band and correlated disorder in the one-dimensional rhombic lattice, where both its Hermitian and non-Hermitian structures show AB cage in the presence of magnetic flux. Although it remains the coexistence of localization and delocalization for the Hermitian rhombic lattice in the presence of the random anti-symmetric disorder, it surprisingly becomes complete delocalization, accompanied by the emergence of NHSE. To further study the effects from the Bernoulli anti-symmetric disorder, we found the similar NHSE due to the interplay of the point-gap topology, correlated disorder and flat bands. Our anomalous localization−delocalization property can be experimentally tested in the classical physical platform, such as electrical circuit.

Graphical abstract

Keywords

non-Hermitian skin effects / disorder / flat band / localization−delocalization transition

Cite this article

Download citation ▾
Xiang Li, Jin Liu, Tao Liu. Localization−delocalization transitions in non-Hermitian Aharonov−Bohm cages. Front. Phys., 2024, 19(3): 33211 https://doi.org/10.1007/s11467-024-1412-9

References

[1]
V. V. Konotop, J. Yang, D. A. Zezyulin. Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys., 2016, 88(3): 035002
CrossRef ADS Google scholar
[2]
T. E. Lee. Anomalous edge state in a non-Hermitian lattice. Phys. Rev. Lett., 2016, 116(13): 133903
CrossRef ADS Google scholar
[3]
D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, F. Nori. Edge modes, degeneracies, and topological numbers in non-Hermitian systems. Phys. Rev. Lett., 2017, 118(4): 040401
CrossRef ADS Google scholar
[4]
Y. Xu, S. T. Wang, L. M. Duan. Weyl exceptional rings in a three-dimensional dissipative cold atomic gas. Phys. Rev. Lett., 2017, 118(4): 045701
CrossRef ADS Google scholar
[5]
Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, M. Ueda. Topological phases of non-Hermitian systems. Phys. Rev. X, 2018, 8(3): 031079
CrossRef ADS Google scholar
[6]
R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, D. N. Christodoulides. Non-Hermitian physics and PT symmetry. Nat. Phys., 2018, 14(1): 11
CrossRef ADS Google scholar
[7]
S. Yao, Z. Wang. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett., 2018, 121(8): 086803
CrossRef ADS Google scholar
[8]
K. Zhang, Z. Yang, C. Fang. Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett., 2020, 125(12): 126402
CrossRef ADS Google scholar
[9]
K. Yokomizo, S. Murakami. Non-Bloch band theory of non-Hermitian systems. Phys. Rev. Lett., 2019, 123(6): 066404
CrossRef ADS Google scholar
[10]
T. Gao, E. Estrecho, K. Y. Bliokh, T. C. H. Liew, M. D. Fraser, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, Y. Yamamoto, F. Nori, Y. S. Kivshar, A. G. Truscott, R. G. Dall, E. A. Ostrovskaya. Observation of non-Hermitian degeneracies in a chaotic exciton‒polariton billiard. Nature, 2015, 526(7574): 554
CrossRef ADS Google scholar
[11]
C. Y. Ju, A. Miranowicz, G. Y. Chen, F. Nori. Non-Hermitian Hamiltonians and no‒go theorems in quantum information. Phys. Rev. A, 2019, 100(6): 062118
CrossRef ADS Google scholar
[12]
F. Minganti, A. Miranowicz, R. W. Chhajlany, F. Nori. Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: The effects of quantum jumps. Phys. Rev. A, 2019, 100(6): 062131
CrossRef ADS Google scholar
[13]
B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, L. Yang. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys., 2014, 10(5): 394
CrossRef ADS Google scholar
[14]
B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, L. Yang. Loss-induced suppression and revival of lasing. Science, 2014, 346(6207): 328
CrossRef ADS Google scholar
[15]
Z. P. Liu, J. Zhang, Ş. K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, Y. Liu. Metrology with PT-symmetric cavities: Enhanced sensitivity near the PT-phase transition. Phys. Rev. Lett., 2016, 117(11): 110802
CrossRef ADS Google scholar
[16]
Ş. K. Özdemir, S. Rotter, F. Nori, L. Yang. Parity–time symmetry and exceptional points in photonics. Nat. Mater., 2019, 18(8): 783
CrossRef ADS Google scholar
[17]
S. Yao, F. Song, Z. Wang. Non-Hermitian Chern bands. Phys. Rev. Lett., 2018, 121(13): 136802
CrossRef ADS Google scholar
[18]
F. K. Kunst, E. Edvardsson, J. C. Budich, E. J. Bergholtz. Biorthogonal bulk-boundary correspondence in non-Hermitian systems. Phys. Rev. Lett., 2018, 121(2): 026808
CrossRef ADS Google scholar
[19]
T. Liu, Y. R. Zhang, Q. Ai, Z. Gong, K. Kawabata, M. Ueda, F. Nori. Second-order topological phases in non-Hermitian systems. Phys. Rev. Lett., 2019, 122(7): 076801
CrossRef ADS Google scholar
[20]
K. Y. Bliokh, D. Leykam, M. Lein, F. Nori. Topological non-Hermitian origin of surface Maxwell waves. Nat. Commun., 2019, 10(1): 580
CrossRef ADS Google scholar
[21]
F. Song, S. Yao, Z. Wang. Non-Hermitian skin effect and chiral damping in open quantum systems. Phys. Rev. Lett., 2019, 123(17): 170401
CrossRef ADS Google scholar
[22]
J. Y. Lee, J. Ahn, H. Zhou, A. Vishwanath. Topological correspondence between Hermitian and non-Hermitian systems: Anomalous dynamics. Phys. Rev. Lett., 2019, 123(20): 206404
CrossRef ADS Google scholar
[23]
K. Kawabata, T. Bessho, M. Sato. Classification of exceptional points and non-Hermitian topological semimetals. Phys. Rev. Lett., 2019, 123(6): 066405
CrossRef ADS Google scholar
[24]
C. H. Lee, R. Thomale. Anatomy of skin modes and topology in non-Hermitian systems. Phys. Rev. B, 2019, 99(20): 201103
CrossRef ADS Google scholar
[25]
A. Fan, S. D. Liang. Complex energy plane and topological invariant in non-Hermitian systems. Front. Phys., 2022, 17(3): 33501
CrossRef ADS Google scholar
[26]
G. Sun, J. C. Tang, S. P. Kou. Biorthogonal quantum criticality in non-Hermitian many-body systems. Front. Phys., 2021, 17(3): 33502
CrossRef ADS Google scholar
[27]
Y. P. Wu, G. Q. Zhang, C. X. Zhang, J. Xu, D. W. Zhang. Interplay of nonreciprocity and nonlinearity on mean-field energy and dynamics of a Bose‒Einstein condensate in a double-well potential. Front. Phys., 2022, 17(4): 42503
CrossRef ADS Google scholar
[28]
Y. T. Zhang, S. Jiang, Q. Li, Q. F. Sun. An analytical solution for quantum scattering through a PT-symmetric delta potential. Front. Phys., 2021, 16(4): 43503
CrossRef ADS Google scholar
[29]
Z. Y. Ge, Y. R. Zhang, T. Liu, S. W. Li, H. Fan, F. Nori. Topological band theory for non-Hermitian systems from the Dirac equation. Phys. Rev. B, 2019, 100(5): 054105
CrossRef ADS Google scholar
[30]
H. Zhou, J. Y. Lee. Periodic table for topological bands with non-Hermitian symmetries. Phys. Rev. B, 2019, 99(23): 235112
CrossRef ADS Google scholar
[31]
H. Zhao, X. Qiao, T. Wu, B. Midya, S. Longhi, L. Feng. Non-Hermitian topological light steering. Science, 2019, 365(6458): 1163
CrossRef ADS Google scholar
[32]
K. Kawabata, K. Shiozaki, M. Ueda, M. Sato. Symmetry and topology in non-Hermitian physics. Phys. Rev. X, 2019, 9(4): 041015
CrossRef ADS Google scholar
[33]
D. S. Borgnia, A. J. Kruchkov, R. J. Slager. Non-Hermitian boundary modes and topology. Phys. Rev. Lett., 2020, 124(5): 056802
CrossRef ADS Google scholar
[34]
T. Liu, J. J. He, T. Yoshida, Z. L. Xiang, F. Nori. Non-Hermitian topological Mott insulators in one-dimensional fermionic superlattices. Phys. Rev. B, 2020, 102(23): 235151
CrossRef ADS Google scholar
[35]
L. Li, C. H. Lee, S. Mu, J. Gong. Critical non-Hermitian skin effect. Nat. Commun., 2020, 11(1): 5491
CrossRef ADS Google scholar
[36]
K. Yokomizo, S. Murakami. Scaling rule for the critical non-Hermitian skin effect. Phys. Rev. B, 2021, 104(16): 165117
CrossRef ADS Google scholar
[37]
Y. Ashida, Z. Gong, M. Ueda. Non-Hermitian physics. Adv. Phys., 2020, 69(3): 249
CrossRef ADS Google scholar
[38]
K. Kawabata, M. Sato, K. Shiozaki. Higher-order non-Hermitian skin effect. Phys. Rev. B, 2020, 102(20): 205118
CrossRef ADS Google scholar
[39]
N. Okuma, K. Kawabata, K. Shiozaki, M. Sato. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett., 2020, 124(8): 086801
CrossRef ADS Google scholar
[40]
Y. Yi, Z. Yang. Non-Hermitian skin modes induced by on-site dissipations and chiral tunneling effect. Phys. Rev. Lett., 2020, 125(18): 186802
CrossRef ADS Google scholar
[41]
T. Liu, J. J. He, Z. Yang, F. Nori. Higher-order Weyl-exceptional-ring semimetals. Phys. Rev. Lett., 2021, 127(19): 196801
CrossRef ADS Google scholar
[42]
L. Li, C. H. Lee, J. Gong. Impurity induced scale-free localization. Commun. Phys., 2021, 4(1): 42
CrossRef ADS Google scholar
[43]
C. Chen, Y. Liu, L. Zhao, X. Hu, Y. Fu. Asymmetric nonlinear-mode-conversion in an optical waveguide with PT symmetry. Front. Phys., 2022, 17(5): 52504
CrossRef ADS Google scholar
[44]
E. J. Bergholtz, J. C. Budich, F. K. Kunst. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys., 2021, 93(1): 015005
CrossRef ADS Google scholar
[45]
Y. Li, C. Liang, C. Wang, C. Lu, Y. C. Liu. Gain-loss-induced hybrid skin-topological effect. Phys. Rev. Lett., 2022, 128(22): 223903
CrossRef ADS Google scholar
[46]
K. Zhang, Z. Yang, C. Fang. Universal non-Hermitian skin effect in two and higher dimensions. Nat. Commun., 2022, 13(1): 2496
CrossRef ADS Google scholar
[47]
K. Li, Y. Xu. Non-Hermitian absorption spectroscopy. Phys. Rev. Lett., 2022, 129(9): 093001
CrossRef ADS Google scholar
[48]
Y. Wang, J. Lin, P. Xu. Transmission-reflection decoupling of non-Hermitian photonic doping epsilon-near- zero media. Front. Phys., 2024, 19(3): 33206
CrossRef ADS Google scholar
[49]
J. R. Li, C. Jiang, H. Su, D. Qi, L. L. Zhang, W. J. Gong. Parity-dependent skin effects and topological properties in the multilayer nonreciprocal Su–Schrieffer–Heeger structures. Front. Phys., 2024, 19(3): 33204
CrossRef ADS Google scholar
[50]
Y. Y. Zou, Y. Zhou, L. M. Chen, P. Ye. Detecting bulk and edge exceptional points in non-Hermitian systems through generalized Petermann factors. Front. Phys., 2024, 19(2): 23201
CrossRef ADS Google scholar
[51]
Z. Ren, D. Liu, E. Zhao, C. He, K. K. Pak, J. Li, G. B. Jo. Chiral control of quantum states in non-Hermitian spin–orbit-coupled fermions. Nat. Phys., 2022, 18(4): 385
CrossRef ADS Google scholar
[52]
K. Kawabata, T. Numasawa, S. Ryu. Entanglement phase transition induced by the non-Hermitian skin effect. Phys. Rev. X, 2023, 13(2): 021007
CrossRef ADS Google scholar
[53]
R. Lin, T. Tai, L. Li, C. H. Lee. Topological non-Hermitian skin effect. Front. Phys., 2023, 18(5): 53605
CrossRef ADS Google scholar
[54]
K. Zhang, C. Fang, Z. Yang. Dynamical degeneracy splitting and directional invisibility in non-Hermitian systems. Phys. Rev. Lett., 2023, 131(3): 036402
CrossRef ADS Google scholar
[55]
C. A. Li, B. Trauzettel, T. Neupert, S. B. Zhang. Enhancement of second-order non-Hermitian skin effect by magnetic fields. Phys. Rev. Lett., 2023, 131(11): 116601
CrossRef ADS Google scholar
[56]
N. Okuma, M. Sato. Non-Hermitian topological phenomena: A review. Annu. Rev. Condens. Matter Phys., 2023, 14(1): 83
CrossRef ADS Google scholar
[57]
Z.F. CaiT. LiuZ.Yang, Non-Hermitian skin effect in periodically-driven dissipative ultracold atoms, arXiv: 2311.06550 (2023)
[58]
C. Leefmans, A. Dutt, J. Williams, L. Yuan, M. Parto, F. Nori, S. Fan, A. Marandi. Topological dissipation in a time-multiplexed photonic resonator network. Nat. Phys., 2022, 18(4): 442
CrossRef ADS Google scholar
[59]
C.R. LeefmansM.PartoJ.Williams G.H. Y. LiA. DuttF.NoriA.Marandi, Topological temporally mode-locked laser, Nat. Phys., doi: 10.1038/s41567-024-02420-4 (2024)
[60]
H. Zhang, Z. Guo, Y. Li, Y. Yang, Y. Chen, H. Chen. A universal non-Hermitian platform for bound state in the continuum enhanced wireless power transfer. Front. Phys., 2024, 19(4): 43209
CrossRef ADS Google scholar
[61]
X. D. Xie, Z. Y. Xue, D. B. Zhang. Variational quantum algorithms for scanning the complex spectrum of non-Hermitian systems. Front. Phys., 2024, 19(4): 41202
CrossRef ADS Google scholar
[62]
Q. Zhou, J. Wu, Z. Pu, J. Lu, X. Huang, W. Deng, M. Ke, Z. Liu. Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points. Nat. Commun., 2023, 14(1): 4569
CrossRef ADS Google scholar
[63]
S. Weidemann, M. Kremer, T. Helbig, T. Hofmann, A. Stegmaier, M. Greiter, R. Thomale, A. Szameit. Topological funneling of light. Science, 2020, 368(6488): 311
CrossRef ADS Google scholar
[64]
K. Wang, A. Dutt, K. Y. Yang, C. C. Wojcik, J. Vučković, S. Fan. Generating arbitrary topological windings of a non-Hermitian band. Science, 2021, 371(6535): 1240
CrossRef ADS Google scholar
[65]
T. Helbig, T. Hofmann, S. Imhof, M. Abdelghany, T. Kiessling, L. W. Molenkamp, C. H. Lee, A. Szameit, M. Greiter, R. Thomale. Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys., 2020, 16(7): 747
CrossRef ADS Google scholar
[66]
D. Zou, T. Chen, W. He, J. Bao, C. H. Lee, H. Sun, X. Zhang. Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits. Nat. Commun., 2021, 12(1): 7201
CrossRef ADS Google scholar
[67]
Q. Liang, D. Xie, Z. Dong, H. Li, H. Li, B. Gadway, W. Yi, B. Yan. Dynamic signatures of non-Hermitian skin effect and topology in ultracold atoms. Phys. Rev. Lett., 2022, 129(7): 070401
CrossRef ADS Google scholar
[68]
L. Feng, R. El-Ganainy, L. Ge. Non-Hermitian photonics based on parity‒time symmetry. Nat. Photonics, 2017, 11(12): 752
CrossRef ADS Google scholar
[69]
R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, D. N. Christodoulides. Non-Hermitian physics and PT symmetry. Nat. Phys., 2018, 14(1): 11
CrossRef ADS Google scholar
[70]
Y. Wu, L. Kang, D. H. Werner. Generalized PT symmetry in non-Hermitian wireless power transfer systems. Phys. Rev. Lett., 2022, 129(20): 200201
CrossRef ADS Google scholar
[71]
X. Hao, K. Yin, J. Zou, R. Wang, Y. Huang, X. Ma, T. Dong. Frequency-stable robust wireless power transfer based on high-order pseudo-Hermitian physics. Phys. Rev. Lett., 2023, 130(7): 077202
CrossRef ADS Google scholar
[72]
K. Kawabata, S. Ryu. Nonunitary scaling theory of non-Hermitian localization. Phys. Rev. Lett., 2021, 126(16): 166801
CrossRef ADS Google scholar
[73]
P. W. Anderson. Absence of diffusion in certain random lattices. Phys. Rev., 1958, 109(5): 1492
CrossRef ADS Google scholar
[74]
P. A. Lee, T. V. Ramakrishnan. Disordered electronic systems. Rev. Mod. Phys., 1985, 57(2): 287
CrossRef ADS Google scholar
[75]
N. Hatano, D. R. Nelson. Localization transitions in non-Hermitian quantum mechanics. Phys. Rev. Lett., 1996, 77(3): 570
CrossRef ADS Google scholar
[76]
N. Hatano, D. R. Nelson. Non-Hermitian delocalization and eigenfunctions. Phys. Rev. B, 1998, 58(13): 8384
CrossRef ADS Google scholar
[77]
J. Feinberg, A. Zee. Non-Hermitian localization and delocalization. Phys. Rev. E, 1999, 59(6): 6433
CrossRef ADS Google scholar
[78]
Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, M. Ueda. Topological phases of non-Hermitian systems. Phys. Rev. X, 2018, 8(3): 031079
CrossRef ADS Google scholar
[79]
H. Jiang, L. J. Lang, C. Yang, S. L. Zhu, S. Chen. Interplay of non-Hermitian skin effects and Anderson localization in nonreciprocal quasiperiodic lattices. Phys. Rev. B, 2019, 100(5): 054301
CrossRef ADS Google scholar
[80]
C. Wang, X. R. Wang. Level statistics of extended states in random non-Hermitian Hamiltonians. Phys. Rev. B, 2020, 101(16): 165114
CrossRef ADS Google scholar
[81]
S. Longhi. Topological phase transition in non-Hermitian quasicrystals. Phys. Rev. Lett., 2019, 122(23): 237601
CrossRef ADS Google scholar
[82]
A. F. Tzortzakakis, K. G. Makris, E. N. Economou. Non-Hermitian disorder in two-dimensional optical lattices. Phys. Rev. B, 2020, 101(1): 014202
CrossRef ADS Google scholar
[83]
Y. Huang, B. I. Shklovskii. Anderson transition in three-dimensional systems with non-Hermitian disorder. Phys. Rev. B, 2020, 101(1): 014204
CrossRef ADS Google scholar
[84]
D. W. Zhang, L. Z. Tang, L. J. Lang, H. Yan, S. L. Zhu. Non-Hermitian topological Anderson insulators. Sci. China Phys. Mech. Astron., 2020, 63(6): 267062
CrossRef ADS Google scholar
[85]
J. Claes, T. L. Hughes. Skin effect and winding number in disordered non-Hermitian systems. Phys. Rev. B, 2021, 103(14): L140201
CrossRef ADS Google scholar
[86]
X. Luo, T. Ohtsuki, R. Shindou. Universality classes of the Anderson transitions driven by non-Hermitian disorder. Phys. Rev. Lett., 2021, 126(9): 090402
CrossRef ADS Google scholar
[87]
X. Luo, T. Ohtsuki, R. Shindou. Transfer matrix study of the Anderson transition in non-Hermitian systems. Phys. Rev. B, 2021, 104(10): 104203
CrossRef ADS Google scholar
[88]
K. M. Kim, M. J. Park. Disorder-driven phase transition in the second-order non-Hermitian skin effect. Phys. Rev. B, 2021, 104(12): L121101
CrossRef ADS Google scholar
[89]
C. C. Wanjura, M. Brunelli, A. Nunnenkamp. Correspondence between non-Hermitian topology and directional amplification in the presence of disorder. Phys. Rev. Lett., 2021, 127(21): 213601
CrossRef ADS Google scholar
[90]
S. Weidemann, M. Kremer, S. Longhi, A. Szameit. Coexistence of dynamical delocalization and spectral localization through stochastic dissipation. Nat. Photonics, 2021, 15(8): 576
CrossRef ADS Google scholar
[91]
Q. Lin, T. Li, L. Xiao, K. Wang, W. Yi, P. Xue. Observation of non-Hermitian topological Anderson insulator in quantum dynamics. Nat. Commun., 2022, 13(1): 3229
CrossRef ADS Google scholar
[92]
H. Liu, M. Lu, Z. Q. Zhang, H. Jiang. Modified generalized Brillouin zone theory with on-site disorder. Phys. Rev. B, 2023, 107(14): 144204
CrossRef ADS Google scholar
[93]
J.LiuZ. F. CaiT.LiuZ.Yang, Reentrant non-Hermitian skin effect in coupled non-Hermitian and Hermitian chains with correlated disorder, arXiv: 2311.03777 (2023)
[94]
C. Wang, W. He, H. Ren, X. R. Wang. Berezinskii‒Kosterlitz‒Thouless-like localization−localization transitions in disordered two-dimensional quantized quadrupole insulators. Phys. Rev. B, 2024, 109(2): L020202
CrossRef ADS Google scholar
[95]
D. Leykam, A. Andreanov, S. Flach. Artificial flat band systems: from lattice models to experiments. Adv. Phys. X, 2018, 3(1): 1473052
CrossRef ADS Google scholar
[96]
J. W. Rhim, B. J. Yang. Singular flat bands. Adv. Phys. X, 2021, 6(1): 1901606
CrossRef ADS Google scholar
[97]
J. Vidal, B. Douçot, R. Mosseri, P. Butaud. Interaction induced delocalization for two particles in a periodic potential. Phys. Rev. Lett., 2000, 85(18): 3906
CrossRef ADS Google scholar
[98]
B. Douçcot, J. Vidal. Pairing of cooper pairs in a fully frustrated Josephson-junction chain. Phys. Rev. Lett., 2002, 88(22): 227005
CrossRef ADS Google scholar
[99]
S. Longhi. Aharonov−Bohm photonic cages in waveguide and coupled resonator lattices by synthetic magnetic fields. Opt. Lett., 2014, 39(20): 5892
CrossRef ADS Google scholar
[100]
S. Mukherjee, M. Di Liberto, P. Öhberg, R. R. Thomson, N. Goldman. Experimental observation of Aharonov‒Bohm cages in photonic lattices. Phys. Rev. Lett., 2018, 121(7): 075502
CrossRef ADS Google scholar
[101]
M. Kremer, I. Petrides, E. Meyer, M. Heinrich, O. Zilberberg, A. Szameit. A square-root topological insulator with non-quantized indices realized with photonic Aharonov‒Bohm cages. Nat. Commun., 2020, 11(1): 907
CrossRef ADS Google scholar
[102]
H. Li, Z. Dong, S. Longhi, Q. Liang, D. Xie, B. Yan. Aharonov‒Bohm caging and inverse Anderson transition in ultracold atoms. Phys. Rev. Lett., 2022, 129(22): 220403
CrossRef ADS Google scholar
[103]
J. G. C. Martinez, C. S. Chiu, B. M. Smitham, A. A. Houck. Flat-band localization and interaction-induced delocalization of photons. Sci. Adv., 2023, 9(50): eadj7195
CrossRef ADS Google scholar
[104]
J. Vidal, R. Mosseri, B. Douçcot. Aharonov‒Bohm cages in two-dimensional structures. Phys. Rev. Lett., 1998, 81(26): 5888
CrossRef ADS Google scholar
[105]
J. Vidal, P. Butaud, B. Dou¸cot, R. Mosseri. Disorder and interactions in Aharonov‒Bohm cages. Phys. Rev. B, 2001, 64(15): 155306
CrossRef ADS Google scholar
[106]
Y. L. Lin, F. Nori. Quantum interference on the kagomé lattice. Phys. Rev. B, 1994, 50(21): 15953
CrossRef ADS Google scholar
[107]
Y. L. Lin, F. Nori. Quantum interference in superconducting wire networks and Josephson junction arrays: An analytical approach based on multiple-loop Aharonov‒Bohm Feynman path integrals. Phys. Rev. B, 2002, 65(21): 214504
CrossRef ADS Google scholar
[108]
M. W. Y. Tu, W. M. Zhang, F. Nori. Coherent control of double-dot molecules using Aharonov−Bohm magnetic flux. Phys. Rev. B, 2012, 86(19): 195403
CrossRef ADS Google scholar
[109]
M. Goda, S. Nishino, H. Matsuda. Inverse Anderson transition caused by flatbands. Phys. Rev. Lett., 2006, 96(12): 126401
CrossRef ADS Google scholar
[110]
F. Baboux, L. Ge, T. Jacqmin, M. Biondi, E. Galopin, A. Lemaĭtre, L. Le Gratiet, I. Sagnes, S. Schmidt, H. E. Türeci, A. Amo, J. Bloch. Bosonic condensation and disorder-induced localization in a flat band. Phys. Rev. Lett., 2016, 116(6): 066402
CrossRef ADS Google scholar
[111]
L. Ge. Parity−time symmetry in a flat-band system. Phys. Rev. A, 2015, 92(5): 052103
CrossRef ADS Google scholar
[112]
H. Ramezani. Non-Hermiticity-induced flat band. Phys. Rev. A, 2017, 96(1): 011802
CrossRef ADS Google scholar
[113]
D. Leykam, S. Flach, Y. D. Chong. Flat bands in lattices with non-Hermitian coupling. Phys. Rev. B, 2017, 96(6): 064305
CrossRef ADS Google scholar
[114]
S. M. Zhang, L. Jin. Flat band in two-dimensional non-Hermitian optical lattices. Phys. Rev. A, 2019, 100(4): 043808
CrossRef ADS Google scholar
[115]
P. He, H. T. Ding, S. L. Zhu. Geometry and superfluidity of the flat band in a non-Hermitian optical lattice. Phys. Rev. A, 2021, 103(4): 043329
CrossRef ADS Google scholar
[116]
T. Biesenthal, M. Kremer, M. Heinrich, A. Szameit. Experimental realization of PT-symmetric flat bands. Phys. Rev. Lett., 2019, 123(18): 183601
CrossRef ADS Google scholar
[117]
B. Qi, L. Zhang, L. Ge. Defect states emerging from a non-Hermitian flatband of photonic zero modes. Phys. Rev. Lett., 2018, 120(9): 093901
CrossRef ADS Google scholar
[118]
S. M. Zhang, L. Jin. Localization in non-Hermitian asymmetric rhombic lattice. Phys. Rev. Res., 2020, 2(3): 033127
CrossRef ADS Google scholar
[119]
S. M. Zhang, H. S. Xu, L. Jin. Tunable Aharonov−Bohm cages through anti-PT-symmetric imaginary couplings. Phys. Rev. A, 2023, 108(2): 023518
CrossRef ADS Google scholar
[120]
J. Ramya Parkavi, V. K. Chandrasekar. Localization in a non-Hermitian flat band lattice with nonlinearity. Optik (Stuttg.), 2022, 271: 170129
CrossRef ADS Google scholar
[121]
S. Ke, W. Wen, D. Zhao, Y. Wang. Floquet engineering of the non-Hermitian skin effect in photonic waveguide arrays. Phys. Rev. A, 2023, 107(5): 053508
CrossRef ADS Google scholar
[122]
I.AmelioN. Goldman, Lasing, quantum geometry and coherence in non-Hermitian flat bands, arXiv: 2308.08418 (2023)
[123]
C. Martínez-Strasser, M. A. J. Herrera, A. García-Etxarri, G. Palumbo, F. K. Kunst, D. Bercioux. Topological properties of a non-Hermitian quasi-1D chain with a flat band. Adv. Quant. Technol., 2023, 7(2): 2300225
CrossRef ADS Google scholar
[124]
S. Longhi. Inverse Anderson transition in photonic cages. Opt. Lett., 2021, 46(12): 2872
CrossRef ADS Google scholar
[125]
P. Molignini, O. Arandes, E. J. Bergholtz. Anomalous skin effects in disordered systems with a single non-Hermitian impurity. Phys. Rev. Res., 2023, 5(3): 033058
CrossRef ADS Google scholar
[126]
T. Hofmann, T. Helbig, C. H. Lee, M. Greiter, R. Thomale. Chiral voltage propagation and calibration in a topolectrical chern circuit. Phys. Rev. Lett., 2019, 122(24): 247702
CrossRef ADS Google scholar
[127]
J. Dong, V. Juričić, B. Roy. Topolectric circuits: Theory and construction. Phys. Rev. Res., 2021, 3(2): 023056
CrossRef ADS Google scholar
[128]
C. H. Lee, S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, R. Thomale. Topolectrical circuits. Commun. Phys., 2018, 1(1): 39
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

T.L. acknowledges the support from the Fundamental Research Funds for the Central Universities (Grant No. 2023ZYGXZR020), the Introduced Innovative Team Project of Guangdong Pearl River Talents Program (Grant No. 2021ZT09Z109), and the Startup Grant of South China University of Technology (Grant No. 20210012).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(4420 KB)

Accesses

Citations

Detail

Sections
Recommended

/