Magnetic and electrical transport study of the intrinsic magnetic topological insulator MnBi2Te4 with Ge doping
Qingwang Bai, Mingxiang Xu
Magnetic and electrical transport study of the intrinsic magnetic topological insulator MnBi2Te4 with Ge doping
As an intrinsic magnetic topological insulator with magnetic order and non-trivial topological structure, MnBi2Te4 is an ideal material for studying exotic topological states such as quantum anomalous Hall effect and topological axion insulating states. Here, we carry out magnetic and electrical transport measurements on (Mn1–xGex)Bi2Te4 (x = 0, 0.15, 0.30, 0.45, 0.60, and 0.75) single crystals. It is found that with increasing x, the dilution of magnetic moments gradually weakens the antiferromagnetic exchange interaction. Moreover, Ge doping reduces the critical field of ferromagnetic ordering, which may provide a possible way to implement the quantum anomalous Hall effect at lower magnetic field. Electrical transport measurements suggest that electrons are the dominant charge carriers, and the carrier density increases with the Ge doping ratio. Additionally, the Kondo effect is observed in the samples with x = 0.45, 0.60, and 0.75. Our results suggest that doping germanium is a viable way to tune the magnetic and electrical transport properties of MnBi2Te4, opening up the possibility of future applications in magnetic topological insulators.
MnBi2Te4 / intrinsic magnetic topological insulator / transition points / Kondo effect
[1] |
R. Li , J. Wang , X. L. Qi , S. C. Zhang . Dynamical axion field in topological magnetic insulators. Nat. Phys., 2010, 6: 284
CrossRef
ADS
Google scholar
|
[2] |
Y. Wang , F. Zhang , M. Zeng , H. Sun , Z. Hao , Y. Cai , H. Rong , C. Zhang , C. Liu , X. Ma , L. Wang , S. Guo , J. Lin , Q. Liu , C. Liu , C. Chen . Intrinsic magnetic topological materials. Front. Phys., 2023, 18(2): 21304
CrossRef
ADS
Google scholar
|
[3] |
X. Zhu , Y. Chen , Z. Liu , Y. Han , Z. Qiao . Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials. Front. Phys., 2023, 18(2): 23302
CrossRef
ADS
Google scholar
|
[4] |
W. Zhao , D. Cortie , L. Chen , Z. Li , Z. Yue , X. Wang . Quantum oscillations in iron-doped single crystals of the topological insulator Sb2Te3. Phys. Rev. B, 2019, 99(16): 165133
CrossRef
ADS
Google scholar
|
[5] |
Y. Xu , I. Miotkowski , C. Liu , J. Tian , H. Nam , N. Alidoust , J. Hu , C. K. Shih , M. Z. Hasan , Y. P. Chen . Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nat. Phys., 2014, 10(12): 956
CrossRef
ADS
Google scholar
|
[6] |
C. Z. Chang , J. Zhang , X. Feng , J. Shen , Z. Zhang , M. Guo , K. Li , Y. Ou , P. Wei , L. L. Wang , Z. Q. Ji , Y. Feng , S. Ji , X. Chen , J. Jia , X. Dai , Z. Fang , S. C. Zhang , K. He , Y. Wang , L. Lu , X. C. Ma , Q. K. Xue . Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013, 340: 167
CrossRef
ADS
Google scholar
|
[7] |
D. Zhang , M. Shi , T. Zhu , D. Xing , H. Zhang , J. Wang . Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett., 2019, 122(20): 206401
CrossRef
ADS
Google scholar
|
[8] |
M. M. Otrokov , I. P. Rusinov , M. Blanco-Rey , M. Hoffmann , A. Yu. Vyazovskaya , S. V. Eremeev , A. Ernst , P. M. Echenique , A. Arnau , E. V. Chulkov . Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett., 2019, 122(10): 107202
CrossRef
ADS
Google scholar
|
[9] |
J.Q. YanY.H. LiuD.S. ParkerY.WuA.A. AczelM.MatsudaM.A. McGuireB.C. Sales, A-type antiferromagnetic order in MnBi4Te7 and MnBi6Te10 single crystals, Phys. Rev. Mater. 4(5), 054202 (2020)
|
[10] |
K. Y. Chen , B. S. Wang , J. Q. Yan , D. S. Parker , J. S. Zhou , Y. Uwatoko , J. G. Cheng . Suppression of the antiferromagnetic metallic state in the pressurized MnBi2Te4 single crystal. Phys. Rev. Mater., 2019, 3(9): 094201
CrossRef
ADS
Google scholar
|
[11] |
C. Y. Pei , Y. Y. Xia , J. Z. Wu , Y. Zhao , L. L. Gao , T. P. Ying , B. Gao , N. N. Li , W. G. Yang , D. Z. Zhang , H. Y. Gou , Y. L. Chen , H. Hosono , G. Li , Y. P. Qi . Pressure-induced topological and structural phase transitions in an antiferromagnetic topological insulator. Chin. Phys. Lett., 2020, 37(6): 066401
CrossRef
ADS
Google scholar
|
[12] |
J. H. Li , Y. Li , S. Q. Du , Z. Wang , B. L. Gu , S. C. Zhang , K. He , W. H. Duan , Y. Xu . Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv., 2019, 5(6): eaaw5685
CrossRef
ADS
Google scholar
|
[13] |
Y. J. Deng , Y. J. Yu , M. Z. Shi , Z. X. Guo , Z. H. Xu , J. Wang , X. H. Chen , Y. Zhang . Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science, 2020, 367(6480): 895
CrossRef
ADS
Google scholar
|
[14] |
J. Ge , Y. Z. Liu , J. H. Li , H. Li , T. C. Luo , Y. Wu , Y. Xu , J. Wang . High-Chern-number and high-temperature quantum Hall effect without Landau levels. Natl. Sci. Rev., 2020, 7: 1280
|
[15] |
Z.LiJ.LiK.HeX.WanW.DuanY.Xu, Tunable interlayer magnetism and band topology in van der Waals heterostructures of MnBi2Te4-family materials, Phys. Rev. B 102(8), 081107 (2020) (R)
|
[16] |
Y. Lai , L. Ke , J. Yan , R. D. McDonald , R. J. McQueeney . Defect-driven ferrimagnetism and hidden magnetization in MnBi2Te4. Phys. Rev. B, 2021, 103(18): 184429
CrossRef
ADS
Google scholar
|
[17] |
W. Zhu , C. Song , L. Liao , Z. Zhou , H. Bai , Y. Zhou , F. Pan . Quantum anomalous Hall insulator state in ferromagnetically ordered MnBi2Te4/VBi2Te4 heterostructures. Phys. Rev. B, 2020, 102(8): 085111
CrossRef
ADS
Google scholar
|
[18] |
M. M. Otrokov , I. I. Klimovskikh , H. Bentmann , A. Zeugner , Z. S. Aliev , S. Gass , A. U. B. Wolter , A. V. Koroleva , D. Estyunin , A. M. Shikin , M. Blanco-Rey , M. Hoffmann , I. P. Rusinov , A. Yu. Vyazovskaya , S. V. Eremeev , Y. M. Koroteev , V. M. Kuznetsov , F. Freyse , J. Sánchez-Barriga , I. R. Amiraslanov , M. B. Babanly , N. T. Mamedov , N. A. Abdullayev , V. N. Zverev , A. Alfonsov , V. Kataev , B. Büchner , E. F. Schwier , S. Kumar , A. Kimura , L. Petaccia , G. Di Santo , R. C. Vidal , S. Schatz , K. Kißner , M. Ünzelmann , C. H. Min , S. Moser , T. R. F. Peixoto , F. Reinert , A. Ernst , P. M. Echenique , A. Isaeva , E. V. Chulkov . Prediction and observation of an antiferromagnetic topological insulator. Nature, 2019, 576(7787): 416
CrossRef
ADS
Google scholar
|
[19] |
S. Changdar , S. Ghosh , K. Vijay , I. Kar , S. Routh , P. K. Maheshwari , S. Ghorai , S. Banik , S. Thirupathaiah . Nonmagnetic Sn doping effect on the electronic and magnetic properties of antiferromagnetic topological insulator MnBi2Te4. Physica B, 2023, 657: 414799
CrossRef
ADS
Google scholar
|
[20] |
A. Zeugner , F. Nietschke , A. U. B. Wolter , S. Gaß , R. C. Vidal , T. R. F. Peixoto , D. Pohl , C. Damm , A. Lubk , R. Hentrich , S. K. Moser , C. Fornari , C. H. Min , S. Schatz , K. Kißner , M. Ünzelmann , M. Kaiser , F. Scaravaggi , B. Rellinghaus , K. Nielsch , C. Hess , B. Büchner , F. Reinert , H. Bentmann , O. Oeckler , T. Doert , M. Ruck , A. Isaeva . Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4. Chem. Mater., 2019, 31: 2795
CrossRef
ADS
Google scholar
|
[21] |
T. Qian , Y. T. Yao , C. Hu , E. Feng , H. Cao , I. I. Mazin , T. R. Chang , N. Ni . Magnetic dilution effect and topological phase transitions in (Mn1−xPbx)Bi2Te4. Phys. Rev. B, 2022, 106: 045121
CrossRef
ADS
Google scholar
|
[22] |
A. V. Tarasov , T. P. Makarova , D. A. Estyunin , A. V. Eryzhenkov , I. I. Klimovskikh , V. A. Golyashov , K. A. Kokh , O. E. Tereshchenko , A. M. Shikin . Topological phase transitions driven by Sn doping in (Mn1−xSnx)Bi2Te4. Symmetry (Basel), 2023, 15(2): 469
CrossRef
ADS
Google scholar
|
[23] |
M. M. Otrokov , T. V. Menshchikova , M. G. Vergniory , I. P. Rusinov , A. Y. Vyazovskaya , Y. M. Koroteev , G. Bihlmayer , A. Ernst , P. M. Echenique , A. Arnau . Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects. 2D Mater., 2017, 4(2): 025082
CrossRef
ADS
Google scholar
|
[24] |
Y. J. Hao , P. F. Liu , Y. Feng , X. M. Ma , E. F. Schwier , M. Arita , S. Kumar , C. W. Hu , R. E. Lu , M. Zeng , Y. Wang , Z. Y. Hao , H. Y. Sun , K. Zhang , J. W. Mei , N. Ni , L. S. Wu , K. Shimada , C. Y. Chen , Q. H. Liu , C. Liu . Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X, 2019, 9(4): 041038
CrossRef
ADS
Google scholar
|
[25] |
T. F. Cao , D. F. Shao , K. Huang , G. T. Gurung , E. Y. Tsymbal . Switchable anomalous Hall effects in polar-stacked 2D antiferromagnet MnBi2Te4. Nano Lett., 2023, 23(9): 3781
CrossRef
ADS
Google scholar
|
[26] |
D. S. Lee , T. H. Kim , C. H. Park , C. Y. Chung , Y. S. Lim , W. S. Seo , H. H. Park . Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4. CrystEngComm, 2013, 15(27): 5532
CrossRef
ADS
Google scholar
|
[27] |
S. H. Lee , Y. Zhu , Y. Wang , L. Miao , T. Pillsbury , H. Yi , S. Kempinger , J. Hu , C. A. Heikes , P. Quarterman , W. Ratcliff , J. A. Borchers , H. Zhang , X. Ke , D. Graf , N. Alem , C. Z. Chang , N. Samarth , Z. Mao . Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Res., 2019, 1(1): 012011
CrossRef
ADS
Google scholar
|
[28] |
R. Peng , T. Zhang , Z. He , Q. Wu , Y. Dai , B. Huang , Y. Ma . Intrinsic layer-polarized anomalous Hall effect in bilayer MnBi2Te4. Phys. Rev. B, 2023, 107(8): 085411
CrossRef
ADS
Google scholar
|
[29] |
J. Zhu , M. Naveed , B. Chen , Y. Du , J. Guo , H. Xie , F. Fei . Magnetic and electrical transport study of the antiferromagnetic topological insulator Sn-doped MnBi2Te4. Phys. Rev. B, 2021, 103(14): 144407
CrossRef
ADS
Google scholar
|
[30] |
J. Q. Yan , Z. L. Huang , W. Wu , A. F. May , W. D. Wu , A. F. May . Vapor transport growth of MnBi2Te4 and related compounds. J. Alloys Compd., 2022, 906: 164327
CrossRef
ADS
Google scholar
|
[31] |
J.M. D. Coey, Magnetism, magnetic materials, Cambridge University Press, 9780511845000 (2010)
|
[32] |
J. Q. Yan , S. Okamoto , M. A. McGuire , A. F. May , R. J. McQueeney , B. C. Sales . Evolution of structural, magnetic, and transport properties in MnBi2−xSbxTe4. Phys. Rev. B, 2019, 100(10): 104409
CrossRef
ADS
Google scholar
|
[33] |
P. A. Lee , T. V. Ramakrishnan . Disordered electronic systems. Rev. Mod. Phys., 1985, 57(2): 287
CrossRef
ADS
Google scholar
|
[34] |
B. L. Altshuler , D. Khmel’nitzkii , A. I. Larkin , P. A. Lee . Magnetoresistance and Hall effect in a disordered two-dimensional electron gas. Phys. Rev. B, 1980, 22(11): 5142
CrossRef
ADS
Google scholar
|
[35] |
J. Kondo . Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys., 1964, 32(1): 37
CrossRef
ADS
Google scholar
|
[36] |
F. Y. Wu , Q. Y. Wu , C. Zhang , Y. Luo , X. Liu , Y. F. Xu , D. H. Lu , M. Hashimoto , H. Liu , Y. Z. Zhao , J. J. Song , Y. H. Yuan , H. Y. Liu , J. He , Y. X. Duan , Y. F. Guo , J. Q. Meng . Itinerant to relocalized transition of electrons in the Kondo insulator CeRu4Sn6. Front. Phys., 2023, 18(5): 53304
CrossRef
ADS
Google scholar
|
[37] |
H. Z. Lu , S. Q. Shen . Weak antilocalization and localization in disordered and interacting Weyl semimetals. Phys. Rev. B, 2015, 92(3): 035203
CrossRef
ADS
Google scholar
|
[38] |
H. Liu , J. Fan , H. Zheng , J. Wang , C. Ma , H. Wang , L. Zhang , C. Wang , Y. Zhu , H. Yang . Magnetic properties and critical behavior of quasi-2D layered Cr4Te5 thin film. Front. Phys., 2023, 18(1): 13302
CrossRef
ADS
Google scholar
|
[39] |
M. Xu , L. Guo , L. Chen , Y. Zhang , S. S. Li , W. Zhao , X. Wang , S. Dong , R. K. Zheng . Emerging weak antilocalization effect in Ta0.7Nb0.3Sb2 semimetal single crystals. Front. Phys., 2023, 18(1): 13304
CrossRef
ADS
Google scholar
|
[40] |
H. T. Liu , Y. Z. Xue , J. A. Shi , R. A. Guzman , P. P. Zhang , Z. Zhou , Y. G. He , C. Bian , L. G. Wu , R. S. Ma , J. C. Chen , J. H. Yan , H. T. Yang , C. M. Shen , W. Zhou , L. H. Bao , H. J. Gao . Observation of the Kondo effect in multilayer single-crystalline VTe2 nanoplates. Nano Lett., 2019, 19(12): 8572
CrossRef
ADS
Google scholar
|
[41] |
D. R. Hamann . New solution for exchange scattering in dilute alloys. Phys. Rev., 1967, 158(3): 570
CrossRef
ADS
Google scholar
|
[42] |
T. P. Estyunina , A. M. Shikin , D. A. Estyunin , A. V. Eryzhenkov , I. I. Klimovskikh , K. A. Bokai , V. A. Golyashov , K. A. Kokh , O. E. Tereshchenko , S. Kumar , K. Shimada , A. V. Tarasov . Evolution of Mn1-xGexBi2Te4 electronic structure under variation of Ge content. Nanomaterials (Basel), 2023, 13(14): 2151
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |