Magnetic and electrical transport study of the intrinsic magnetic topological insulator MnBi2Te4 with Ge doping

Qingwang Bai, Mingxiang Xu

PDF(5156 KB)
PDF(5156 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (3) : 33210. DOI: 10.1007/s11467-024-1408-5
RESEARCH ARTICLE

Magnetic and electrical transport study of the intrinsic magnetic topological insulator MnBi2Te4 with Ge doping

Author information +
History +

Abstract

As an intrinsic magnetic topological insulator with magnetic order and non-trivial topological structure, MnBi2Te4 is an ideal material for studying exotic topological states such as quantum anomalous Hall effect and topological axion insulating states. Here, we carry out magnetic and electrical transport measurements on (Mn1–xGex)Bi2Te4 (x = 0, 0.15, 0.30, 0.45, 0.60, and 0.75) single crystals. It is found that with increasing x, the dilution of magnetic moments gradually weakens the antiferromagnetic exchange interaction. Moreover, Ge doping reduces the critical field of ferromagnetic ordering, which may provide a possible way to implement the quantum anomalous Hall effect at lower magnetic field. Electrical transport measurements suggest that electrons are the dominant charge carriers, and the carrier density increases with the Ge doping ratio. Additionally, the Kondo effect is observed in the samples with x = 0.45, 0.60, and 0.75. Our results suggest that doping germanium is a viable way to tune the magnetic and electrical transport properties of MnBi2Te4, opening up the possibility of future applications in magnetic topological insulators.

Graphical abstract

Keywords

MnBi2Te4 / intrinsic magnetic topological insulator / transition points / Kondo effect

Cite this article

Download citation ▾
Qingwang Bai, Mingxiang Xu. Magnetic and electrical transport study of the intrinsic magnetic topological insulator MnBi2Te4 with Ge doping. Front. Phys., 2024, 19(3): 33210 https://doi.org/10.1007/s11467-024-1408-5

References

[1]
R. Li , J. Wang , X. L. Qi , S. C. Zhang . Dynamical axion field in topological magnetic insulators. Nat. Phys., 2010, 6: 284
CrossRef ADS Google scholar
[2]
Y. Wang , F. Zhang , M. Zeng , H. Sun , Z. Hao , Y. Cai , H. Rong , C. Zhang , C. Liu , X. Ma , L. Wang , S. Guo , J. Lin , Q. Liu , C. Liu , C. Chen . Intrinsic magnetic topological materials. Front. Phys., 2023, 18(2): 21304
CrossRef ADS Google scholar
[3]
X. Zhu , Y. Chen , Z. Liu , Y. Han , Z. Qiao . Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials. Front. Phys., 2023, 18(2): 23302
CrossRef ADS Google scholar
[4]
W. Zhao , D. Cortie , L. Chen , Z. Li , Z. Yue , X. Wang . Quantum oscillations in iron-doped single crystals of the topological insulator Sb2Te3. Phys. Rev. B, 2019, 99(16): 165133
CrossRef ADS Google scholar
[5]
Y. Xu , I. Miotkowski , C. Liu , J. Tian , H. Nam , N. Alidoust , J. Hu , C. K. Shih , M. Z. Hasan , Y. P. Chen . Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nat. Phys., 2014, 10(12): 956
CrossRef ADS Google scholar
[6]
C. Z. Chang , J. Zhang , X. Feng , J. Shen , Z. Zhang , M. Guo , K. Li , Y. Ou , P. Wei , L. L. Wang , Z. Q. Ji , Y. Feng , S. Ji , X. Chen , J. Jia , X. Dai , Z. Fang , S. C. Zhang , K. He , Y. Wang , L. Lu , X. C. Ma , Q. K. Xue . Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013, 340: 167
CrossRef ADS Google scholar
[7]
D. Zhang , M. Shi , T. Zhu , D. Xing , H. Zhang , J. Wang . Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett., 2019, 122(20): 206401
CrossRef ADS Google scholar
[8]
M. M. Otrokov , I. P. Rusinov , M. Blanco-Rey , M. Hoffmann , A. Yu. Vyazovskaya , S. V. Eremeev , A. Ernst , P. M. Echenique , A. Arnau , E. V. Chulkov . Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett., 2019, 122(10): 107202
CrossRef ADS Google scholar
[9]
J.Q. YanY.H. LiuD.S. ParkerY.WuA.A. AczelM.MatsudaM.A. McGuireB.C. Sales, A-type antiferromagnetic order in MnBi4Te7 and MnBi6Te10 single crystals, Phys. Rev. Mater. 4(5), 054202 (2020)
[10]
K. Y. Chen , B. S. Wang , J. Q. Yan , D. S. Parker , J. S. Zhou , Y. Uwatoko , J. G. Cheng . Suppression of the antiferromagnetic metallic state in the pressurized MnBi2Te4 single crystal. Phys. Rev. Mater., 2019, 3(9): 094201
CrossRef ADS Google scholar
[11]
C. Y. Pei , Y. Y. Xia , J. Z. Wu , Y. Zhao , L. L. Gao , T. P. Ying , B. Gao , N. N. Li , W. G. Yang , D. Z. Zhang , H. Y. Gou , Y. L. Chen , H. Hosono , G. Li , Y. P. Qi . Pressure-induced topological and structural phase transitions in an antiferromagnetic topological insulator. Chin. Phys. Lett., 2020, 37(6): 066401
CrossRef ADS Google scholar
[12]
J. H. Li , Y. Li , S. Q. Du , Z. Wang , B. L. Gu , S. C. Zhang , K. He , W. H. Duan , Y. Xu . Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv., 2019, 5(6): eaaw5685
CrossRef ADS Google scholar
[13]
Y. J. Deng , Y. J. Yu , M. Z. Shi , Z. X. Guo , Z. H. Xu , J. Wang , X. H. Chen , Y. Zhang . Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science, 2020, 367(6480): 895
CrossRef ADS Google scholar
[14]
J. Ge , Y. Z. Liu , J. H. Li , H. Li , T. C. Luo , Y. Wu , Y. Xu , J. Wang . High-Chern-number and high-temperature quantum Hall effect without Landau levels. Natl. Sci. Rev., 2020, 7: 1280
[15]
Z.LiJ.LiK.HeX.WanW.DuanY.Xu, Tunable interlayer magnetism and band topology in van der Waals heterostructures of MnBi2Te4-family materials, Phys. Rev. B 102(8), 081107 (2020) (R)
[16]
Y. Lai , L. Ke , J. Yan , R. D. McDonald , R. J. McQueeney . Defect-driven ferrimagnetism and hidden magnetization in MnBi2Te4. Phys. Rev. B, 2021, 103(18): 184429
CrossRef ADS Google scholar
[17]
W. Zhu , C. Song , L. Liao , Z. Zhou , H. Bai , Y. Zhou , F. Pan . Quantum anomalous Hall insulator state in ferromagnetically ordered MnBi2Te4/VBi2Te4 heterostructures. Phys. Rev. B, 2020, 102(8): 085111
CrossRef ADS Google scholar
[18]
M. M. Otrokov , I. I. Klimovskikh , H. Bentmann , A. Zeugner , Z. S. Aliev , S. Gass , A. U. B. Wolter , A. V. Koroleva , D. Estyunin , A. M. Shikin , M. Blanco-Rey , M. Hoffmann , I. P. Rusinov , A. Yu. Vyazovskaya , S. V. Eremeev , Y. M. Koroteev , V. M. Kuznetsov , F. Freyse , J. Sánchez-Barriga , I. R. Amiraslanov , M. B. Babanly , N. T. Mamedov , N. A. Abdullayev , V. N. Zverev , A. Alfonsov , V. Kataev , B. Büchner , E. F. Schwier , S. Kumar , A. Kimura , L. Petaccia , G. Di Santo , R. C. Vidal , S. Schatz , K. Kißner , M. Ünzelmann , C. H. Min , S. Moser , T. R. F. Peixoto , F. Reinert , A. Ernst , P. M. Echenique , A. Isaeva , E. V. Chulkov . Prediction and observation of an antiferromagnetic topological insulator. Nature, 2019, 576(7787): 416
CrossRef ADS Google scholar
[19]
S. Changdar , S. Ghosh , K. Vijay , I. Kar , S. Routh , P. K. Maheshwari , S. Ghorai , S. Banik , S. Thirupathaiah . Nonmagnetic Sn doping effect on the electronic and magnetic properties of antiferromagnetic topological insulator MnBi2Te4. Physica B, 2023, 657: 414799
CrossRef ADS Google scholar
[20]
A. Zeugner , F. Nietschke , A. U. B. Wolter , S. Gaß , R. C. Vidal , T. R. F. Peixoto , D. Pohl , C. Damm , A. Lubk , R. Hentrich , S. K. Moser , C. Fornari , C. H. Min , S. Schatz , K. Kißner , M. Ünzelmann , M. Kaiser , F. Scaravaggi , B. Rellinghaus , K. Nielsch , C. Hess , B. Büchner , F. Reinert , H. Bentmann , O. Oeckler , T. Doert , M. Ruck , A. Isaeva . Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4. Chem. Mater., 2019, 31: 2795
CrossRef ADS Google scholar
[21]
T. Qian , Y. T. Yao , C. Hu , E. Feng , H. Cao , I. I. Mazin , T. R. Chang , N. Ni . Magnetic dilution effect and topological phase transitions in (Mn1−xPbx)Bi2Te4. Phys. Rev. B, 2022, 106: 045121
CrossRef ADS Google scholar
[22]
A. V. Tarasov , T. P. Makarova , D. A. Estyunin , A. V. Eryzhenkov , I. I. Klimovskikh , V. A. Golyashov , K. A. Kokh , O. E. Tereshchenko , A. M. Shikin . Topological phase transitions driven by Sn doping in (Mn1−xSnx)Bi2Te4. Symmetry (Basel), 2023, 15(2): 469
CrossRef ADS Google scholar
[23]
M. M. Otrokov , T. V. Menshchikova , M. G. Vergniory , I. P. Rusinov , A. Y. Vyazovskaya , Y. M. Koroteev , G. Bihlmayer , A. Ernst , P. M. Echenique , A. Arnau . Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects. 2D Mater., 2017, 4(2): 025082
CrossRef ADS Google scholar
[24]
Y. J. Hao , P. F. Liu , Y. Feng , X. M. Ma , E. F. Schwier , M. Arita , S. Kumar , C. W. Hu , R. E. Lu , M. Zeng , Y. Wang , Z. Y. Hao , H. Y. Sun , K. Zhang , J. W. Mei , N. Ni , L. S. Wu , K. Shimada , C. Y. Chen , Q. H. Liu , C. Liu . Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X, 2019, 9(4): 041038
CrossRef ADS Google scholar
[25]
T. F. Cao , D. F. Shao , K. Huang , G. T. Gurung , E. Y. Tsymbal . Switchable anomalous Hall effects in polar-stacked 2D antiferromagnet MnBi2Te4. Nano Lett., 2023, 23(9): 3781
CrossRef ADS Google scholar
[26]
D. S. Lee , T. H. Kim , C. H. Park , C. Y. Chung , Y. S. Lim , W. S. Seo , H. H. Park . Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4. CrystEngComm, 2013, 15(27): 5532
CrossRef ADS Google scholar
[27]
S. H. Lee , Y. Zhu , Y. Wang , L. Miao , T. Pillsbury , H. Yi , S. Kempinger , J. Hu , C. A. Heikes , P. Quarterman , W. Ratcliff , J. A. Borchers , H. Zhang , X. Ke , D. Graf , N. Alem , C. Z. Chang , N. Samarth , Z. Mao . Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Res., 2019, 1(1): 012011
CrossRef ADS Google scholar
[28]
R. Peng , T. Zhang , Z. He , Q. Wu , Y. Dai , B. Huang , Y. Ma . Intrinsic layer-polarized anomalous Hall effect in bilayer MnBi2Te4. Phys. Rev. B, 2023, 107(8): 085411
CrossRef ADS Google scholar
[29]
J. Zhu , M. Naveed , B. Chen , Y. Du , J. Guo , H. Xie , F. Fei . Magnetic and electrical transport study of the antiferromagnetic topological insulator Sn-doped MnBi2Te4. Phys. Rev. B, 2021, 103(14): 144407
CrossRef ADS Google scholar
[30]
J. Q. Yan , Z. L. Huang , W. Wu , A. F. May , W. D. Wu , A. F. May . Vapor transport growth of MnBi2Te4 and related compounds. J. Alloys Compd., 2022, 906: 164327
CrossRef ADS Google scholar
[31]
J.M. D. Coey, Magnetism, magnetic materials, Cambridge University Press, 9780511845000 (2010)
[32]
J. Q. Yan , S. Okamoto , M. A. McGuire , A. F. May , R. J. McQueeney , B. C. Sales . Evolution of structural, magnetic, and transport properties in MnBi2−xSbxTe4. Phys. Rev. B, 2019, 100(10): 104409
CrossRef ADS Google scholar
[33]
P. A. Lee , T. V. Ramakrishnan . Disordered electronic systems. Rev. Mod. Phys., 1985, 57(2): 287
CrossRef ADS Google scholar
[34]
B. L. Altshuler , D. Khmel’nitzkii , A. I. Larkin , P. A. Lee . Magnetoresistance and Hall effect in a disordered two-dimensional electron gas. Phys. Rev. B, 1980, 22(11): 5142
CrossRef ADS Google scholar
[35]
J. Kondo . Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys., 1964, 32(1): 37
CrossRef ADS Google scholar
[36]
F. Y. Wu , Q. Y. Wu , C. Zhang , Y. Luo , X. Liu , Y. F. Xu , D. H. Lu , M. Hashimoto , H. Liu , Y. Z. Zhao , J. J. Song , Y. H. Yuan , H. Y. Liu , J. He , Y. X. Duan , Y. F. Guo , J. Q. Meng . Itinerant to relocalized transition of electrons in the Kondo insulator CeRu4Sn6. Front. Phys., 2023, 18(5): 53304
CrossRef ADS Google scholar
[37]
H. Z. Lu , S. Q. Shen . Weak antilocalization and localization in disordered and interacting Weyl semimetals. Phys. Rev. B, 2015, 92(3): 035203
CrossRef ADS Google scholar
[38]
H. Liu , J. Fan , H. Zheng , J. Wang , C. Ma , H. Wang , L. Zhang , C. Wang , Y. Zhu , H. Yang . Magnetic properties and critical behavior of quasi-2D layered Cr4Te5 thin film. Front. Phys., 2023, 18(1): 13302
CrossRef ADS Google scholar
[39]
M. Xu , L. Guo , L. Chen , Y. Zhang , S. S. Li , W. Zhao , X. Wang , S. Dong , R. K. Zheng . Emerging weak antilocalization effect in Ta0.7Nb0.3Sb2 semimetal single crystals. Front. Phys., 2023, 18(1): 13304
CrossRef ADS Google scholar
[40]
H. T. Liu , Y. Z. Xue , J. A. Shi , R. A. Guzman , P. P. Zhang , Z. Zhou , Y. G. He , C. Bian , L. G. Wu , R. S. Ma , J. C. Chen , J. H. Yan , H. T. Yang , C. M. Shen , W. Zhou , L. H. Bao , H. J. Gao . Observation of the Kondo effect in multilayer single-crystalline VTe2 nanoplates. Nano Lett., 2019, 19(12): 8572
CrossRef ADS Google scholar
[41]
D. R. Hamann . New solution for exchange scattering in dilute alloys. Phys. Rev., 1967, 158(3): 570
CrossRef ADS Google scholar
[42]
T. P. Estyunina , A. M. Shikin , D. A. Estyunin , A. V. Eryzhenkov , I. I. Klimovskikh , K. A. Bokai , V. A. Golyashov , K. A. Kokh , O. E. Tereshchenko , S. Kumar , K. Shimada , A. V. Tarasov . Evolution of Mn1-xGexBi2Te4 electronic structure under variation of Ge content. Nanomaterials (Basel), 2023, 13(14): 2151
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2018YFA0704300) and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20201285).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5156 KB)

Accesses

Citations

Detail

Sections
Recommended

/