Majorana zero mode assisted spin pumping

Mingzhou Cai, Zhaoqi Chu, Zhen-Hua Wang, Yunjing Yu, Bin Wang, Jian Wang

PDF(4538 KB)
PDF(4538 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (5) : 53207. DOI: 10.1007/s11467-024-1407-6
RESEARCH ARTICLE

Majorana zero mode assisted spin pumping

Author information +
History +

Abstract

We present a theoretical investigation of Majorana zero mode (MZM) assisted spin pumping which consists of a quantum dot (QD) and two normal leads. When the coupling between the MZM and the QD is absent, d.c. pure spin current can be excited by a rotating magnetic field where low energy spin down electrons are flipped to high energy spin up electrons by absorbing photons. However, when the coupling is turned on, the d.c. pure spin current vanishes, and an a.c. charge current emerges with its magnitude independent of the coupling strength. We reveal that this change is due to the formation of a highly localized MZM assisted topological Andreev state at the Fermi level, which allows only the injection of electron pairs with opposite spin into the QD. By absorbing or emitting photons, the electron pairs are separated to opposite spin electrons, and then return back to the lead again, generating an a.c. charge current without spin polarization. We demonstrate the switching from d.c. pure spin current to a.c. charge current based on both Kitaev model and a more realistic topological superconductor nanowire. Although this switching can also be induced by partially separated Andreev bound state (ps-ABS) in the topological trivial phase, it is extremely unstable and highly sensitive to the Zeeman field, which is different from the switching induced by MZM. Our result suggests that quantum spin pumping may be a feasible local transport method for detecting the presence of MZMs at the ends of a superconducting nanowire.

Graphical abstract

Keywords

Majorana zero mode / spin pumping

Cite this article

Download citation ▾
Mingzhou Cai, Zhaoqi Chu, Zhen-Hua Wang, Yunjing Yu, Bin Wang, Jian Wang. Majorana zero mode assisted spin pumping. Front. Phys., 2024, 19(5): 53207 https://doi.org/10.1007/s11467-024-1407-6

References

[1]
F. Wilczek . Majorana returns. Nat. Phys., 2009, 5(9): 614
CrossRef ADS Google scholar
[2]
J. Alicea . New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys., 2012, 75(7): 076501
CrossRef ADS Google scholar
[3]
C. W. J. Beenakker . Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys., 2013, 4(1): 113
CrossRef ADS Google scholar
[4]
H.M. Guo, A brief review on one-dimensional topological insulators and superconductors, Sci. China Phys. Mech. Astron. 59(3), 637401 (2016)
[5]
M. Sato , Y. Ando . Topological superconductors: A review. Rep. Prog. Phys., 2017, 80(7): 076501
CrossRef ADS Google scholar
[6]
D. Culcer , A. C. Keser , Y. Li , G. Tkachov . Transport in two-dimensional topological materials: Recent developments in experiment and theory. 2D Mater., 2020, 7: 022007
CrossRef ADS Google scholar
[7]
Q. Zhang , B. Wu . Majorana modes in solid state systems and its dynamics. Front. Phys., 2018, 13(2): 137101
CrossRef ADS Google scholar
[8]
M. He , H. Sun , Q. L. He . Topological insulator: Spintronics and quantum computations. Front. Phys., 2019, 14(4): 43401
CrossRef ADS Google scholar
[9]
D. Aoki , J. P. Brison , J. Flouquet , K. Ishida , G. Knebel , Y. Tokunaga , Y. Yanase . Unconventional Superconductivity in UTe2. J. Phys.: Condens. Matter, 2022, 34(24): 243002
CrossRef ADS Google scholar
[10]
S. K. Ghosh , M. Smidman , T. Shang , J. F. Annett , A. D. Hillier , J. Quintanilla , H. Q. Yuan . Recent progress on superconductors with time-reversal symmetry breaking. J. Phys.: Condens. Matter, 2021, 33(3): 033001
CrossRef ADS Google scholar
[11]
E. Prada , P. San-Jose , M. W. A. de Moor , A. Geresdi , E. J. H. Lee , J. Klinovaja , D. Loss , J. Nygard , R. Aguado , L. P. Kouwenhoven . From Andreev to Majorana bound states in hybrid superconductor−semiconductor nanowires. Nat. Rev. Phys., 2020, 2(10): 575
CrossRef ADS Google scholar
[12]
Z. H. Wang , F. Xu , L. Li , D. H. Xu , B. Wang . Topological superconductors and exact mobility edges in non-Hermitian quasicrystals. Phys. Rev. B, 2022, 105(2): 024514
CrossRef ADS Google scholar
[13]
Z. H. Wang , F. Xu , L. Li , D. H. Xu , W. Q. Chen , B. Wang . Majorana polarization in non-Hermitian topological superconductors. Phys. Rev. B, 2021, 103(13): 134507
CrossRef ADS Google scholar
[14]
A. Y. Kitaev . Unpaired Majorana fermions in quantum wires. Phys. Uspekhi, 2001, 44(10S): 131
CrossRef ADS Google scholar
[15]
D. A. Ivanov . Non-Abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett., 2001, 86(2): 268
CrossRef ADS Google scholar
[16]
S. Ran , C. Eckberg , Q. P. Ding , Y. Furukawa , T. Metz , S. R. Saha , I. L. Liu , M. Zic , H. Kim , J. Paglione , N. P. Butch . Nearly ferromagnetic spin-triplet superconductivity. Science, 2019, 365(6454): 684
CrossRef ADS Google scholar
[17]
M.NovakS.SasakiM.KrienerK.SegawaY.Ando, Unusual nature of fully gapped superconductivity in In-doped SnTe, Phys. Rev. B 88, 140502(R) (2013)
[18]
L. Fu , C. L. Kane . Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Phys. Rev. Lett., 2008, 100(9): 096407
CrossRef ADS Google scholar
[19]
R. M. Lutchyn , J. D. Sau , S. Das Sarma . Majorana fermions and a topological phase transition in semiconductor−superconductor heterostructures. Phys. Rev. Lett., 2010, 105(7): 077001
CrossRef ADS Google scholar
[20]
Y. Oreg , G. Refael , F. von Oppen . Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett., 2010, 105(17): 177002
CrossRef ADS Google scholar
[21]
V. Mourik , K. Zuo , S. M. Frolov , S. R. Plissard , E. P. A. M. Bakkers , L. P. Kouwenhoven . Signatures of Majorana fermions in hybrid superconductor−semiconductor nanowire devices. Science, 2012, 336(6084): 1003
CrossRef ADS Google scholar
[22]
M. Deng , C. Yu , G. Huang , M. Larsson , P. Caroff , H. Xu . Anomalous zero-bias conductance peak in a NbCInSb nanowire−Nb hybrid device. Nano Lett., 2012, 12(12): 6414
CrossRef ADS Google scholar
[23]
A. Das , Y. Ronen , Y. Most , Y. Oreg , M. Heiblum , H. Shtrikman . Zero-bias peaks and splitting in an AlCInAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys., 2012, 8(12): 887
CrossRef ADS Google scholar
[24]
L. P. Rokhinson , X. Liu , J. K. Furdyna . The fractional a.c. Josephson effect in a semiconductor−superconductor nanowire as a signature of Majorana particles. Nat. Phys., 2012, 8(11): 795
CrossRef ADS Google scholar
[25]
H. O. H. Churchill , V. Fatemi , K. Grove-Rasmussen , M. T. Deng , P. Caroff , H. Q. Xu , C. M. Marcus . Superconductor−nanowire devices from tunneling to the multichannel regime: Zero-bias oscillations and magnetoconductance crossover. Phys. Rev. B, 2013, 87(24): 241401
CrossRef ADS Google scholar
[26]
A. D. K. Finck , D. J. Van Harlingen , P. K. Mohseni , K. Jung , X. Li . Anomalous modulation of a zero-bias peak in a hybrid nanowire−superconductor device. Phys. Rev. Lett., 2013, 110(12): 126406
CrossRef ADS Google scholar
[27]
S. M. Albrecht , A. P. Higginbotham , M. Madsen , F. Kuemmeth , T. S. Jespersen , J. Nygard , P. Krogstrup , C. M. Marcus . Exponential protection of zero modes in Majorana islands. Nature, 2016, 531(7593): 206
CrossRef ADS Google scholar
[28]
S. Nadj-Perge , I. K. Drozdov , J. Li , H. Chen , S. Jeon , J. Seo , A. H. MacDonald , B. A. Bernevig , A. Yazdani . Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science, 2014, 346(6209): 602
CrossRef ADS Google scholar
[29]
R. Pawlak , M. Kisiel , J. Klinovaja , T. Meier , S. Kawai , T. Glatzel , D. Loss , E. Meyer . Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface. npj Quantum Inf., 2016, 2: 16035
CrossRef ADS Google scholar
[30]
Z. H. Wang , F. Xu , L. Li , D. H. Xu , W. Q. Chen , B. Wang , H. Guo . Spin−orbit proximity effect and topological superconductivity in graphene/transition-metal dichalcogenide nanoribbons. New J. Phys., 2021, 23(12): 123002
CrossRef ADS Google scholar
[31]
Z. H. Wang , F. Xu , L. Li , D. H. Xu , W. Q. Chen , B. Wang . Majorana polarization in non-Hermitian topological superconductors. Phys. Rev. B, 2021, 103(13): 134507
CrossRef ADS Google scholar
[32]
Z. H. Wang , F. Xu , L. Li , R. Lü , B. Wang , W. Q. Chen . One-dimensional topological superconductivity at the edges of twisted bilayer graphene nanoribbons. Phys. Rev. B, 2019, 100(9): 094531
CrossRef ADS Google scholar
[33]
K. T. Law , P. A. Lee , T. K. Ng . Majorana fermion induced resonant Andreev reflection. Phys. Rev. Lett., 2009, 103(23): 237001
CrossRef ADS Google scholar
[34]
J. P. Xu , M. X. Wang , Z. L. Liu , J. F. Ge , X. Yang , C. Liu , Z. A. Xu , D. Guan , C. L. Gao , D. Qian , Y. Liu , Q. H. Wang , F. C. Zhang , Q. K. Xue , J. F. Jia . Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator−superconductor Bi2Te3/NbSe2 heterostructure. Phys. Rev. Lett., 2015, 114(1): 017001
CrossRef ADS Google scholar
[35]
W. DeGottardi , D. Sen , S. Vishveshwara . Majorana fermions in superconducting 1D systems having periodic, quasiperiodic, and disordered potentials. Phys. Rev. Lett., 2013, 110(14): 146404
CrossRef ADS Google scholar
[36]
I. Adagideli , M. Wimmer , A. Teker . Effects of electron scattering on the topological properties of nanowires: Majorana fermions from disorder and superlattices. Phys. Rev. B, 2014, 89(14): 144506
CrossRef ADS Google scholar
[37]
J. Liu , A. C. Potter , K. T. Law , P. A. Lee . Zero-bias peaks in the tunneling conductance of spin−orbit-coupled superconducting wires with and without majorana end-states. Phys. Rev. Lett., 2012, 109(26): 267002
CrossRef ADS Google scholar
[38]
D.I. PikulinJ.P. DahlhausM.WimmerH.SchomerusC.W. J. Beenakker, A zero-voltage conductance peak from weak antilocalization in a Majorana nanowire, New J. Phys. 14(12), 125011 (2012)
[39]
D.E. LiuH.U. Baranger, Detecting a Majorana-fermion zero mode using a quantum dot, Phys. Rev. B 84, 201308(R) (2011)
[40]
M.LeijnseK.Flensberg, Scheme to measure Majorana fermion lifetimes using a quantum dot, Phys. Rev. B 84, 140501(R) (2011)
[41]
H. Zhang , C. X. Liu , S. Gazibegovic , D. Xu , J. A. Logan , G. Wang , N. van Loo , J. D. S. Bommer , M. W. A. de Moor , D. Car , R. L. M. Op het Veld , P. J. van Veldhoven , S. Koelling , M. A. Verheijen , M. Pendharkar , D. J. Pennachio , B. Shojaei , J. S. Lee , C. J. Palmstrøm , E. P. A. M. Bakkers , S. D. Sarma , L. P. Kouwenhoven . Retracted article: Quantized Majorana conductance. Nature, 2018, 556(7699): 74
CrossRef ADS Google scholar
[42]
C. Moore , T. D. Stanescu , S. Tewari . Two-terminal charge tunneling: Disentangling Majorana zero modes from partially separated Andreev bound states in semiconductor−superconductor heterostructures. Phys. Rev. B, 2018, 97(16): 165302
CrossRef ADS Google scholar
[43]
C. Moore , C. C. Zeng , T. D. Stanescu , S. Tewari . Quantized zero-bias conductance plateau in semiconductor−superconductor heterostructures without topological Majorana zero modes. Phys. Rev. B, 2018, 98(15): 155314
CrossRef ADS Google scholar
[44]
Y. Mao , Q. F. Sun . Charge and spin transport through a normal lead coupled to an s-wave superconductor and a Majorana zero mode. Phys. Rev. B, 2021, 103(11): 115411
CrossRef ADS Google scholar
[45]
S. K. Watson , R. M. Potok , C. M. Marcus , V. Umansky . Experimental realization of a quantum spin pump. Phys. Rev. Lett., 2003, 91(25): 258301
CrossRef ADS Google scholar
[46]
Y. Tserkovnyak , A. Brataas , G. E. W. Bauer . Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett., 2002, 88(11): 117601
CrossRef ADS Google scholar
[47]
S. Dushenko , H. Ago , K. Kawahara , T. Tsuda , S. Kuwabata , T. Takenobu , T. Shinjo , Y. Ando , M. Shiraishi . Gate-tunable spin-charge conversion and the role of spin−orbit interaction in graphene. Phys. Rev. Lett., 2016, 116(16): 166102
CrossRef ADS Google scholar
[48]
K. Uchida , H. Adachi , T. An , T. Ota , M. Toda , B. Hillebrands , S. Maekawa , E. Saitoh . Long-range spin Seebeck effect and acoustic spin pumping. Nat. Mater., 2011, 10(10): 737
CrossRef ADS Google scholar
[49]
M. Weiler , M. Althammer , F. D. Czeschka , H. Huebl , M. S. Wagner , M. Opel , I. Imort , G. Reiss , A. Thomas , R. Gross , S. T. B. Goennenwein . Local charge and spin currents in magnetothermal landscapes. Phys. Rev. Lett., 2012, 108(10): 106602
CrossRef ADS Google scholar
[50]
H. Adachi , S. Maekawa . Theory of the acoustic spin pumping. Solid State Commun., 2014, 198: 22
CrossRef ADS Google scholar
[51]
O. Mosendz , J. E. Pearson , F. Y. Fradin , G. E. W. Bauer , S. D. Bader , A. Hoffmann . Quantifying spin Hall angles from spin pumping: Experiments and theory. Phys. Rev. Lett., 2010, 104(4): 046601
CrossRef ADS Google scholar
[52]
C. W. Sandweg , Y. Kajiwara , A. V. Chumak , A. A. Serga , V. I. Vasyuchka , M. B. Jungfleisch , E. Saitoh , B. Hillebrands . Spin pumping by parametrically excited exchange magnons. Phys. Rev. Lett., 2011, 106(21): 216601
CrossRef ADS Google scholar
[53]
F. D. Czeschka , L. Dreher , M. S. Brandt , M. Weiler , M. Althammer , I. M. Imort , G. Reiss , A. Thomas , W. Schoch , W. Limmer , H. Huebl , R. Gross , S. T. B. Goennenwein . Scaling behavior of the spin pumping effect in ferromagnet-platinum bilayers. Phys. Rev. Lett., 2011, 107(4): 046601
CrossRef ADS Google scholar
[54]
S. Dushenko , M. Koike , Y. Ando , T. Shinjo , M. Myronov , M. Shiraishi . Experimental demonstration of room-temperature spin transport in n-type germanium epilayers. Phys. Rev. Lett., 2015, 114(19): 196602
CrossRef ADS Google scholar
[55]
K. Ando , S. Takahashi , J. Ieda , H. Kurebayashi , T. Trypiniotis , C. H. W. Barnes , S. Maekawa , E. Saitoh . Electrically tunable spin injector free from the impedance mismatch problem. Nat. Mater., 2011, 10(9): 655
CrossRef ADS Google scholar
[56]
Z. Tang , E. Shikoh , H. Ago , K. Kawahara , Y. Ando , T. Shinjo , M. Shiraishi . Dynamically generated pure spin current in single-layer graphene. Phys. Rev. B, 2013, 87(14): 140401
CrossRef ADS Google scholar
[57]
J. B. S. Mendes , A. Aparecido-Ferreira , J. Holanda , A. Azevedo , S. M. Rezende . Efficient spin to charge current conversion in the 2D semiconductor MoS2 by spin pumping from yttrium iron garnet. Appl. Phys. Lett., 2018, 112(24): 242407
CrossRef ADS Google scholar
[58]
A. A. Zvyagin . Longitudinal spin pumping and topological superconductivity: Search for Majorana edge states. Phys. Rev. B, 2014, 89(21): 214420
CrossRef ADS Google scholar
[59]
A. A. Zvyagin . Dynamics of the Kitaev chain model under parametric pumping. Phys. Rev. B, 2014, 90(1): 014507
CrossRef ADS Google scholar
[60]
A. A. Zvyagin . Modulation of the longitudinal pumping in quantum spin systems. Phys. Rev. B, 2020, 101(17): 174408
CrossRef ADS Google scholar
[61]
V. F. Becerra , M. Trif , T. Hyart . Quantized spin pumping in topological ferromagnetic-superconducting nanowires. Phys. Rev. Lett., 2023, 130(23): 237002
CrossRef ADS Google scholar
[62]
B. G. Wang , J. Wang , H. Guo . Quantum spin field effect transistor. Phys. Rev. B, 2003, 67(9): 092408
CrossRef ADS Google scholar
[63]
E. Prada , R. Aguado , P. San-Jose . Measuring Majorana nonlocality and spin structure with a quantum dot. Phys. Rev. B, 2017, 96(8): 085418
CrossRef ADS Google scholar
[64]
Ö. M. Aksoy , J. R. Tolsma . Majorana zero modes in a quantum wire platform without Rashba spin−orbit coupling. Phys. Rev. B, 2020, 101(19): 195127
CrossRef ADS Google scholar
[65]
M. Büttiker . Role of quantum coherence in series resistors. Phys. Rev. B, 1986, 33(5): 3020
CrossRef ADS Google scholar
[66]
B. G. Wang , J. Wang , H. Guo . Shot noise of spin current. Phys. Rev. B, 2004, 69(15): 153301
CrossRef ADS Google scholar
[67]
B. Dong , H. L. Cui , X. L. Lei . Pumped spin-current and shot-noise spectra of a single quantum dot. Phys. Rev. Lett., 2005, 94(6): 066601
CrossRef ADS Google scholar
[68]
M. Matsuo , Y. Ohnuma , T. Kato , S. Maekawa . Spin current noise of the spin Seebeck effect and spin pumping. Phys. Rev. Lett., 2018, 120(3): 037201
CrossRef ADS Google scholar
[69]
S. K. Watson , R. M. Potok , C. M. Marcus , V. Umansky . Experimental realization of a quantum spin pump. Phys. Rev. Lett., 2003, 91(25): 258301
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 12034014) and the Shenzhen Natural Science Foundation (Grant No. 20231120172734001). The authors thank Z. R. Gong and Z. F. Jiang for useful discussions.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(4538 KB)

Accesses

Citations

Detail

Sections
Recommended

/