General properties of the spectral form factor in open quantum systems
Yi-Neng Zhou, Tian-Gang Zhou, Pengfei Zhang
General properties of the spectral form factor in open quantum systems
The spectral form factor (SFF) can probe the eigenvalue statistic at different energy scales as its time variable varies. In closed quantum chaotic systems, the SFF exhibits a universal dip-ramp-plateau behavior, which reflects the spectrum rigidity of the Hamiltonian. In this work, we explore the general properties of SFF in open quantum systems. We find that in open systems the SFF first decays exponentially, followed by a linear increase at some intermediate time scale, and finally decreases to a saturated plateau value. We derive general relations between (i) the early-time decay exponent and Lindblad operators; (ii) the long-time plateau value and the number of steady states. We also explain the effective field theory perspective of general behaviors. We verify our theoretical predictions by numerically simulating the Sachdev−Ye−Kitaev (SYK) model, random matrix theory (RMT), and the Bose−Hubbard model.
spectral form factor / open quantum system / quantum chaos
[1] |
E. Brézin, A. Zee. Universality of the correlations between eigenvalues of large random matrices. Nucl. Phys. B, 1993, 402(3): 613
CrossRef
ADS
Google scholar
|
[2] |
E. Brézin, S. Hikami. Correlations of nearby levels induced by a random potential. Nucl. Phys. B, 1996, 479(3): 697
CrossRef
ADS
Google scholar
|
[3] |
S. Müller, S. Heusler, P. Braun, F. Haake, A. Altland. Periodic-orbit theory of universality in quantum chaos. Phys. Rev. E, 2005, 72(4): 046207
CrossRef
ADS
Google scholar
|
[4] |
J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, M. Tezuka. Black holes and random matrices. J. High Energy Phys., 2017, 2017(5): 118
CrossRef
ADS
Google scholar
|
[5] |
J. Liu. Spectral form factors and late time quantum chaos. Phys. Rev. D, 2018, 98(8): 086026
CrossRef
ADS
Google scholar
|
[6] |
P. Kos, M. Ljubotina, T. Prosen. Many-body quantum chaos: Analytic connection to random matrix theory. Phys. Rev. X, 2018, 8(2): 021062
CrossRef
ADS
Google scholar
|
[7] |
B. Bertini, P. Kos, T. Prosen. Exact spectral form factor in a minimal model of many-body quantum chaos. Phys. Rev. Lett., 2018, 121(26): 264101
CrossRef
ADS
Google scholar
|
[8] |
A. Chan, A. De Luca, J. T. Chalker. Spectral statistics in spatially extended chaotic quantum many-body systems. Phys. Rev. Lett., 2018, 121(6): 060601
CrossRef
ADS
Google scholar
|
[9] |
J. Kudler-Flam, L. Nie, S. Ryu. Conformal field theory and the web of quantum chaos diagnostics. J. High Energy Phys., 2020, 2020(1): 175
CrossRef
ADS
Google scholar
|
[10] |
D. Roy, T. Prosen. Random matrix spectral form factor in kicked interacting fermionic chains. Phys. Rev. E, 2020, 102(6): 060202
CrossRef
ADS
Google scholar
|
[11] |
M. Winer, B. Swingle. Hydrodynamic theory of the connected spectral form factor. Phys. Rev. X, 2022, 12(2): 021009
CrossRef
ADS
Google scholar
|
[12] |
D. Roy, D. Mishra, T. Prosen. Spectral form factor in a minimal bosonic model of many-body quantum chaos. Phys. Rev. E, 2022, 106(2): 024208
CrossRef
ADS
Google scholar
|
[13] |
R. Barney, M. Winer, C. L. Baldwin, B. Swingle, V. Galitski. Spectral statistics of a minimal quantum glass model. SciPost Phys., 2023, 15: 084
CrossRef
ADS
Google scholar
|
[14] |
P.SaadS. H. ShenkerD.Stanford, A semi-classical ramp in SYK and in gravity, arXiv: 1806.06840 (2018)
|
[15] |
H. Gharibyan, M. Hanada, S. H. Shenker, M. Tezuka. Onset of random matrix behavior in scrambling systems. J. High Energy Phys., 2018, 2018(7): 124
CrossRef
ADS
Google scholar
|
[16] |
M. Winer, S. K. Jian, B. Swingle. Exponential ramp in the quadratic Sachdev‒Ye‒Kitaev model. Phys. Rev. Lett., 2020, 125(25): 250602
CrossRef
ADS
Google scholar
|
[17] |
R.ShirP. Martinez-AzconaA.Chenu, Full range spectral correlations and their spectral form factors in chaotic and integrable models, arXiv: 2311.09292 (2023)
|
[18] |
Y.N. ZhouL. MaoH.Zhai, Rényi entropy dynamics and Lindblad spectrum for open quantum systems, Phys. Rev. Res. 3(4), 043060 (2021)
|
[19] |
G. Mazzucchi, W. Kozlowski, S. F. Caballero-Benitez, T. J. Elliott, I. B. Mekhov. Quantum measurement-induced dynamics of many-body ultracold bosonic and fermionic systems in optical lattices. Phys. Rev. A, 2016, 93(2): 023632
CrossRef
ADS
Google scholar
|
[20] |
Y. Li, X. Chen, M. P. A. Fisher. Quantum Zeno effect and the many-body entanglement transition. Phys. Rev. B, 2018, 98(20): 205136
CrossRef
ADS
Google scholar
|
[21] |
B. Skinner, J. Ruhman, A. Nahum. Measurement-induced phase transitions in the dynamics of entanglement. Phys. Rev. X, 2019, 9(3): 031009
CrossRef
ADS
Google scholar
|
[22] |
Y. Li, X. Chen, M. P. A. Fisher. Measurement-driven entanglement transition in hybrid quantum circuits. Phys. Rev. B, 2019, 100(13): 134306
CrossRef
ADS
Google scholar
|
[23] |
M. Szyniszewski, A. Romito, H. Schomerus. Entanglement transition from variable-strength weak measurements. Phys. Rev. B, 2019, 100(6): 064204
CrossRef
ADS
Google scholar
|
[24] |
A. Chan, R. M. Nandkishore, M. Pretko, G. Smith. Unitary-projective entanglement dynamics. Phys. Rev. B, 2019, 99(22): 224307
CrossRef
ADS
Google scholar
|
[25] |
R. Vasseur, A. C. Potter, Y. Z. You, A. W. W. Ludwig. Entanglement transitions from holographic random tensor networks. Phys. Rev. B, 2019, 100(13): 134203
CrossRef
ADS
Google scholar
|
[26] |
T. Zhou, A. Nahum. Emergent statistical mechanics of entanglement in random unitary circuits. Phys. Rev. B, 2019, 99(17): 174205
CrossRef
ADS
Google scholar
|
[27] |
M. J. Gullans, D. A. Huse. Scalable probes of measurement-induced criticality. Phys. Rev. Lett., 2020, 125(7): 070606
CrossRef
ADS
Google scholar
|
[28] |
C. M. Jian, Y. Z. You, R. Vasseur, A. W. W. Ludwig. Measurement-induced criticality in random quantum circuits. Phys. Rev. B, 2020, 101(10): 104302
CrossRef
ADS
Google scholar
|
[29] |
Y. Fuji, Y. Ashida. Measurement-induced quantum criticality under continuous monitoring. Phys. Rev. B, 2020, 102(5): 054302
CrossRef
ADS
Google scholar
|
[30] |
A. Zabalo, M. J. Gullans, J. H. Wilson, S. Gopalakrishnan, D. A. Huse, J. H. Pixley. Critical properties of the measurement-induced transition in random quantum circuits. Phys. Rev. B, 2020, 101(6): 060301
CrossRef
ADS
Google scholar
|
[31] |
M. J. Gullans, D. A. Huse. Dynamical purification phase transition induced by quantum measurements. Phys. Rev. X, 2020, 10(4): 041020
CrossRef
ADS
Google scholar
|
[32] |
S. Choi, Y. Bao, X. L. Qi, E. Altman. Quantum error correction in scrambling dynamics and measurement-induced phase transition. Phys. Rev. Lett., 2020, 125(3): 030505
CrossRef
ADS
Google scholar
|
[33] |
Y. Bao, S. Choi, E. Altman. Theory of the phase transition in random unitary circuits with measurements. Phys. Rev. B, 2020, 101(10): 104301
CrossRef
ADS
Google scholar
|
[34] |
A. Nahum, S. Roy, B. Skinner, J. Ruhman. Measurement and entanglement phase transitions in all-to-all quantum circuits, on quantum trees, and in Landau‒Ginsburg theory. PRX Quantum, 2021, 2(1): 010352
CrossRef
ADS
Google scholar
|
[35] |
R. Fan, S. Vijay, A. Vishwanath, Y. Z. You. Self-organized error correction in random unitary circuits with measurement. Phys. Rev. B, 2021, 103(17): 174309
CrossRef
ADS
Google scholar
|
[36] |
S. Sang, T. H. Hsieh. Measurement-protected quantum phases. Phys. Rev. Res., 2021, 3(2): 023200
CrossRef
ADS
Google scholar
|
[37] |
O. Alberton, M. Buchhold, S. Diehl. Entanglement transition in a monitored free-fermion chain: From extended criticality to area law. Phys. Rev. Lett., 2021, 126(17): 170602
CrossRef
ADS
Google scholar
|
[38] |
A. Lavasani, Y. Alavirad, M. Barkeshli. Measurement-induced topological entanglement transitions in symmetric random quantum circuits. Nat. Phys., 2021, 17(3): 342
CrossRef
ADS
Google scholar
|
[39] |
X. Turkeshi, A. Biella, R. Fazio, M. Dalmonte, M. Schiró. Measurement-induced entanglement transitions in the quantum Ising chain: From infinite to zero clicks. Phys. Rev. B, 2021, 103(22): 224210
CrossRef
ADS
Google scholar
|
[40] |
Y. Le Gal, X. Turkeshi, M. Schiró. Volume-to-area law entanglement transition in a non-Hermitian free fermionic Chain. SciPost Phys., 2023, 14: 138
CrossRef
ADS
Google scholar
|
[41] |
S. K. Jian, C. Liu, X. Chen, B. Swingle, P. Zhang. Measurement-induced phase transition in the monitored Sachdev‒Ye‒Kitaev model. Phys. Rev. Lett., 2021, 127(14): 140601
CrossRef
ADS
Google scholar
|
[42] |
P. Zhang, C. Liu, S. K. Jian, X. Chen. Universal entanglement transitions of free fermions with long-range non-unitary dynamics. Quantum, 2022, 6: 723
CrossRef
ADS
Google scholar
|
[43] |
C. Liu, P. Zhang, X. Chen. Non-unitary dynamics of Sachdev‒Ye‒Kitaev chain. SciPost Phys., 2021, 10: 048
CrossRef
ADS
Google scholar
|
[44] |
P. Zhang, S. K. Jian, C. Liu, X. Chen. Emergent replica conformal symmetry in non-Hermitian SYK2 chains. Quantum, 2021, 5: 579
CrossRef
ADS
Google scholar
|
[45] |
P. Zhang. Quantum entanglement in the Sachdev‒Ye‒Kitaev model and its generalizations. Front. Phys., 2022, 17(4): 43201
CrossRef
ADS
Google scholar
|
[46] |
S. Sahu, S. K. Jian, G. Bentsen, B. Swingle. Entanglement phases in large-n hybrid Brownian circuits with long-range couplings. Phys. Rev. B, 2022, 106(22): 224305
CrossRef
ADS
Google scholar
|
[47] |
C. Liu, H. Tang, H. Zhai. Krylov complexity in open quantum systems. Phys. Rev. Res., 2023, 5: 033085
CrossRef
ADS
Google scholar
|
[48] |
A. Bhattacharya, P. Nandy, P. P. Nath, H. Sahu. Operator growth and Krylov construction in dissipative open quantum systems. J. High Energy Phys., 2022, 2022(12): 81
CrossRef
ADS
Google scholar
|
[49] |
B. Bhattacharjee, X. Cao, P. Nandy, T. Pathak. Operator growth in open quantum systems: Lessons from the dissipative SYK. J. High Energy Phys., 2023, 2023(3): 54
CrossRef
ADS
Google scholar
|
[50] |
A. Bhattacharya, P. Nandy, P. P. Nath, H. Sahu. On Krylov complexity in open systems: An approach via bi-Lanczos algorithm. J. High Energy Phys., 2023, 2023: 66
CrossRef
ADS
Google scholar
|
[51] |
T. Can. Random Lindblad dynamics. J. Phys. A Math. Theor., 2019, 52(48): 485302
CrossRef
ADS
Google scholar
|
[52] |
J. Li, T. Prosen, A. Chan. Spectral statistics of non-Hermitian matrices and dissipative quantum chaos. Phys. Rev. Lett., 2021, 127(17): 170602
CrossRef
ADS
Google scholar
|
[53] |
P. Kos, B. Bertini, T. Prosen. Chaos and ergodicity in extended quantum systems with noisy driving. Phys. Rev. Lett., 2021, 126(19): 190601
CrossRef
ADS
Google scholar
|
[54] |
K. Kawabata, A. Kulkarni, J. Li, T. Numasawa, S. Ryu. Dynamical quantum phase transitions in SYK Lindbladians. Phys. Rev. B, 2023, 108: 075110
CrossRef
ADS
Google scholar
|
[55] |
Z. Xu, A. Chenu, T. Prosen, A. del Campo. Thermofield dynamics: Quantum chaos versus decoherence. Phys. Rev. B, 2021, 103(6): 064309
CrossRef
ADS
Google scholar
|
[56] |
J. Cornelius, Z. Xu, A. Saxena, A. Chenu, A. del Campo. Spectral filtering induced by non-Hermitian evolution with balanced gain and loss: Enhancing quantum chaos. Phys. Rev. Lett., 2022, 128(19): 190402
CrossRef
ADS
Google scholar
|
[57] |
A. S. Matsoukas-Roubeas, F. Roccati, J. Cornelius, Z. Xu, A. Chenu, A. del Campo. Non-Hermitian Hamiltonian deformations in quantum mechanics. J. High Energy Phys., 2023, 2023(1): 60
CrossRef
ADS
Google scholar
|
[58] |
F.RoccatiF. BalducciR.ShirA.Chenu, Diagnosing non-Hermitian many-body localization and quantum chaos via singular value decomposition, arXiv: 2311.16229 (2023)
|
[59] |
If we simply generalize the definition of the SFF for non-Hermitian systems as follows: Fγ(t)=1[ Z(0)]2∑ m,n e− i( ϵm− ϵn)t. where {ϵn} is the set of eigenvalues of the non-Hermitian system, and we denote the real and imaginary parts of the eigenvalues as αn and βn respectively. Since the energy eigenvalues of a general non-Hermitian system are complex, implying that the imaginary part βn is generally nonzero, from the definition we observe that Fγ(t)=1[ Z(0)]2∑ m,n e− i( αm− αn)te(βm−βn) t. Hence, for the set of m, n that satisfies βm −βn > 0, there will be an exponential growth term e(βm−βn) t in the above definition, resulting in the exponential growth of the SFF as time increases.
|
[60] |
P. Martinez-Azcona, A. Chenu. Analyticity constraints bound the decay of the spectral form factor. Quantum, 2022, 6: 852
CrossRef
ADS
Google scholar
|
[61] |
O. Agam, B. L. Altshuler, A. V. Andreev. Spectral statistics: From disordered to chaotic systems. Phys. Rev. Lett., 1995, 75(24): 4389
CrossRef
ADS
Google scholar
|
[62] |
E. B. Bogomolny, J. P. Keating. Gutzwiller’s trace formula and spectral statistics: Beyond the diagonal approximation. Phys. Rev. Lett., 1996, 77(8): 1472
CrossRef
ADS
Google scholar
|
[63] |
J. E. Tyson. Operator-Schmidt decompositions and the Fourier transform, with applications to the operator-Schmidt numbers of unitaries. J. Phys. Math. Gen., 2003, 36(39): 10101
CrossRef
ADS
Google scholar
|
[64] |
M. Zwolak, G. Vidal. Mixed-state dynamics in one-dimensional quantum lattice systems: A time-dependent superoperator renormalization algorithm. Phys. Rev. Lett., 2004, 93(20): 207205
CrossRef
ADS
Google scholar
|
[65] |
In this supplementary, we show (A) alternative definitions of SFF; (B) the derivation of the pre-factor α in early decay region; (C, D, E) detailed calculation of SFF in three examples; (F) possible experimental realization of SFF.
|
[66] |
In general, we think the types of different Lindblad operators will not change the general properties of the normalized SFF regarding its short-time exponential decay and long-time plateau behavior. Since the argument we provide just below Eq. (9) does not resume some specific form of the Lindblad operators. Nevertheless, different Lindblad operators may lead to a different number of steady states, thereby altering the value of θ. For example, let us consider a Hamiltonian H with charge conservation, such as our Bose‒Hubbard model. In the main text, we focus on Lindblad operators that preserve the particle number, ensuring that charge conservation is a strong U(1) symmetry of the open system. In this scenario, there is at least one steady state in each charge sector, resulting in at least N + 1 steady states in the full Fock space with arbitrary particle numbers. (Note that our discussions in the main text focus on a single charge sector.) In contrast, when some Lindblad operators couple different charge sectors, the system exhibits only a weak U(1) symmetry. Consequently, there may be only one steady state even in the full Fock space.
|
[67] |
P.SaadS. H. ShenkerD.Stanford, A semiclassical ramp in SYK and in gravity, arXiv: 1806.06840 (2018)
|
[68] |
L. Sá, P. Ribeiro, T. Prosen. Lindbladian dissipation of strongly-correlated quantum matter. Phys. Rev. Res., 2022, 4(2): L022068
CrossRef
ADS
Google scholar
|
[69] |
A. M. García-García, L. Sá, J. J. M. Verbaarschot, J. P. Zheng. Keldysh wormholes and anomalous relaxation in the dissipative Sachdev‒Ye‒Kitaev model. Phys. Rev. D, 2023, 107(10): 106006
CrossRef
ADS
Google scholar
|
[70] |
K. Kawabata, A. Kulkarni, J. Li, T. Numasawa, S. Ryu. Dynamical quantum phase transitions in Sachdev‒Ye‒Kitaev Lindbladians. Phys. Rev. B, 2023, 108(7): 075110
CrossRef
ADS
Google scholar
|
[71] |
H. Wang, C. Liu, P. Zhang, A. M. García-García. Entanglement transition and replica wormholes in the dissipative Sachdev‒Ye‒Kitaev model. Phys. Rev. D, 2024, 109(4): 046005
CrossRef
ADS
Google scholar
|
[72] |
Y. Z. You, A. W. W. Ludwig, C. Xu. Sachdev‒Ye‒Kitaev model and thermalization on the boundary of many-body localized fermionic symmetry-protected topological states. Phys. Rev. B, 2017, 95(11): 115150
CrossRef
ADS
Google scholar
|
[73] |
I. Danshita, A. Polkovnikov. Superfluid-to-Mott-insulator transition in the one-dimensional Bose‒Hubbard model for arbitrary integer filling factors. Phys. Rev. A, 2011, 84(6): 063637
CrossRef
ADS
Google scholar
|
[74] |
H. Shen, P. Zhang, R. Fan, H. Zhai. Out-of-time-order correlation at a quantum phase transition. Phys. Rev. B, 2017, 96(5): 054503
CrossRef
ADS
Google scholar
|
[75] |
I. Boettcher, P. Bienias, R. Belyansky, A. J. Kollár, A. V. Gorshkov. Quantum simulation of hyperbolic space with circuit quantum electrodynamics: From graphs to geometry. Phys. Rev. A, 2020, 102(3): 032208
CrossRef
ADS
Google scholar
|
[76] |
L. Pausch, A. Buchleitner, E. G. Carnio, A. Rodríguez. Optimal route to quantum chaos in the Bose–Hubbard model. J. Phys. A Math. Theor., 2022, 55(32): 324002
CrossRef
ADS
Google scholar
|
[77] |
S. Denisov, T. Laptyeva, W. Tarnowski, D. Chruscinski, K. Zyczkowski. Universal spectra of random Linblad operators. Phys. Rev. Lett., 2019, 123(14): 140403
CrossRef
ADS
Google scholar
|
[78] |
D. Poulin, R. Laflamme, G. J. Milburn, J. P. Paz. Testing integrability with a single bit of quantum information. Phys. Rev. A, 2003, 68(2): 022302
CrossRef
ADS
Google scholar
|
[79] |
D. V. Vasilyev, A. Grankin, M. A. Baranov, L. M. Sieberer, P. Zoller. Monitoring quantum simulators via quantum nondemolition couplings to atomic clock qubits. PRX Quantum, 2020, 1(2): 020302
CrossRef
ADS
Google scholar
|
[80] |
L. K. Joshi, A. Elben, A. Vikram, B. Vermersch, V. Galitski, P. Zoller. Probing many-body quantum chaos with quantum simulators. Phys. Rev. X, 2022, 12(1): 011018
CrossRef
ADS
Google scholar
|
[81] |
L.LeviandierM.LombardiR.Jost J.P. Pique, A tool to measure statistical level properties in very complex spectra, Phys. Rev. Lett. 56(23), 2449 (1986)
|
[82] |
J. P. Pique, Y. Chen, R. W. Field, J. L. Kinsey. Chaos and dynamics on 0.5–300 ps time scales in vibrationally excited acetylene: Fourier transform of stimulated-emission pumping spectrum. Phys. Rev. Lett., 1987, 58(5): 475
CrossRef
ADS
Google scholar
|
[83] |
T.GuhrH. A. Weidenmuller, Correlations in anticrossing spectra and scattering theory: Analytical aspects, Chem. Phys. 146(1‒2), 21 (1990)
|
[84] |
M. Lombardi, T. H. Seligman. Universal and nonuniversal statistical properties of levels and intensities for chaotic Rydberg molecules. Phys. Rev. A, 1993, 47(5): 3571
CrossRef
ADS
Google scholar
|
[85] |
E. J. Torres-Herrera, L. F. Santos. Dynamical manifestations of quantum chaos: Correlation hole and bulge. Philos. Trans. Royal Soc. A, 2017, 375(2108): 20160434
CrossRef
ADS
Google scholar
|
[86] |
H.P. BreuerF. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, Oxford, 2007
|
[87] |
Y. C. Cheng, R. J. Silbey. Markovian approximation in the relaxation of open quantum systems. J. Phys. Chem. B, 2005, 109: 21399
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |