Hardware-efficient and fast three-qubit gate in superconducting quantum circuits

Xiao-Le Li, Ziyu Tao, Kangyuan Yi, Kai Luo, Libo Zhang, Yuxuan Zhou, Song Liu, Tongxing Yan, Yuanzhen Chen, Dapeng Yu

PDF(3181 KB)
PDF(3181 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (5) : 51205. DOI: 10.1007/s11467-024-1405-8
RESEARCH ARTICLE

Hardware-efficient and fast three-qubit gate in superconducting quantum circuits

Author information +
History +

Abstract

While the common practice of decomposing general quantum algorithms into a collection of single- and two-qubit gates is conceptually simple, in many cases it is possible to have more efficient solutions where quantum gates engaging multiple qubits are used. In the noisy intermediate-scale quantum (NISQ) era where a universal error correction is still unavailable, this strategy is particularly appealing since it can significantly reduce the computational resources required for executing quantum algorithms. In this work, we experimentally investigate a three-qubit Controlled-CPHASE-SWAP (CCZS) gate on superconducting quantum circuits. By exploiting the higher energy levels of superconducting qubits, we are able to realize a Fredkin-like CCZS gate with a duration of 40 ns, which is comparable to typical single- and two-qubit gates realized on the same platform. By performing quantum process tomography for the two target qubits, we obtain a process fidelity of 86.0% and 81.1% for the control qubit being prepared in |0 and |1, respectively. We also show that our scheme can be readily extended to realize a general CCZS gate with an arbitrary swap angle. The results reported here provide valuable additions to the toolbox for achieving large-scale hardware-efficient quantum circuits.

Graphical abstract

Keywords

quantum computation / quantum gate / superconducting circuit

Cite this article

Download citation ▾
Xiao-Le Li, Ziyu Tao, Kangyuan Yi, Kai Luo, Libo Zhang, Yuxuan Zhou, Song Liu, Tongxing Yan, Yuanzhen Chen, Dapeng Yu. Hardware-efficient and fast three-qubit gate in superconducting quantum circuits. Front. Phys., 2024, 19(5): 51205 https://doi.org/10.1007/s11467-024-1405-8

References

[1]
S. Krinner , N. Lacroix , A. Remm , A. Di Paolo , E. Genois , C. Leroux , C. Hellings , S. Lazar , F. Swiadek , J. Herrmann , G. J. Norris , C. K. Andersen , M. Müller , A. Blais , C. Eichler , A. Wallraff . Realizing repeated quantum error correction in a distance-three surface code. Nature, 2022, 605(7911): 669
CrossRef ADS Google scholar
[2]
Y. Zhao , Y. Ye , H. L. Huang , Y. Zhang , D. Wu , H. Guan , Q. Zhu , Z. Wei , T. He , S. Cao , F. Chen , T. H. Chung , H. Deng , D. Fan , M. Gong , C. Guo , S. Guo , L. Han , N. Li , S. Li , Y. Li , F. Liang , J. Lin , H. Qian , H. Rong , H. Su , L. Sun , S. Wang , Y. Wu , Y. Xu , C. Ying , J. Yu , C. Zha , K. Zhang , Y. H. Huo , C. Y. Lu , C. Z. Peng , X. Zhu , J. W. Pan . Realization of an error-correcting surface code with superconducting qubits. Phys. Rev. Lett., 2022, 129(3): 030501
CrossRef ADS Google scholar
[3]
Z. Ni , S. Li , X. Deng , Y. Cai , L. Zhang , W. Wang , Z. B. Yang , H. Yu , F. Yan , S. Liu , C. L. Zou , L. Sun , S. B. Zheng , Y. Xu , D. Yu . Beating the break-even point with a discrete-variable-encoded logical qubit. Nature, 2023, 616(7955): 56
CrossRef ADS Google scholar
[4]
J. Preskill . Quantum computing in the NISQ era and beyond. Quantum, 2018, 2: 79
CrossRef ADS Google scholar
[5]
K. Bharti , A. Cervera-Lierta , T. H. Kyaw , T. Haug , S. Alperin-Lea , A. Anand , M. Degroote , H. Heimonen , J. S. Kottmann , T. Menke , W. K. Mok , S. Sim , L. C. Kwek , A. Aspuru-Guzik . Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys., 2022, 94(1): 015004
CrossRef ADS Google scholar
[6]
B. Cheng , X. H. Deng , X. Gu , Y. He , G. Hu , P. Huang , J. Li , B. C. Lin , D. Lu , Y. Lu , C. Qiu , H. Wang , T. Xin , S. Yu , M. H. Yung , J. Zeng , S. Zhang , Y. Zhong , X. Peng , F. Nori , D. Yu . Noisy intermediate-scale quantum computers. Front. Phys., 2023, 18(2): 21308
CrossRef ADS Google scholar
[7]
A. Peruzzo , J. McClean , P. Shadbolt , M. H. Yung , X. Q. Zhou , P. J. Love , A. Aspuru-Guzik , J. L. O’Brien . A variational eigenvalue solver on a photonic quantum processor. Nat. Commun., 2014, 5(1): 4213
CrossRef ADS Google scholar
[8]
A. Kandala , A. Mezzacapo , K. Temme , M. Takita , M. Brink , J. M. Chow , J. M. Gambetta . Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 2017, 549(7671): 242
CrossRef ADS Google scholar
[9]
J. I. Colless , V. V. Ramasesh , D. Dahlen , M. S. Blok , M. E. Kimchi-Schwartz , J. R. McClean , J. Carter , W. A. de Jong , I. Siddiqi . Computation of molecular spectra on a quantum processor with an error-resilient algorithm. Phys. Rev. X, 2018, 8(1): 011021
CrossRef ADS Google scholar
[10]
F. Petiziol , M. Sameti , S. Carretta , S. Wimberger , F. Mintert . Quantum simulation of three-body interactions in weakly driven quantum systems. Phys. Rev. Lett., 2021, 126(25): 250504
CrossRef ADS Google scholar
[11]
Z. Wang , Z. Y. Ge , Z. Xiang , X. Song , R. Z. Huang , P. Song , X. Y. Guo , L. Su , K. Xu , D. Zheng , H. Fan . Observation of emergent Z2 gauge invariance in a superconducting circuit. Phys. Rev. Res., 2022, 4(2): L022060
CrossRef ADS Google scholar
[12]
X. Zhang , W. Jiang , J. Deng , K. Wang , J. Chen , P. Zhang , W. Ren , H. Dong , S. Xu , Y. Gao , F. Jin , X. Zhu , Q. Guo , H. Li , C. Song , A. V. Gorshkov , T. Iadecola , F. Liu , Z. X. Gong , Z. Wang , D. L. Deng , H. Wang . Digital quantum simulation of floquet symmetry-protected topological phases. Nature, 2022, 607(7919): 468
CrossRef ADS Google scholar
[13]
M. S. Kang , J. Heo , S. G. Choi , S. Moon , S. W. Han . Optical Fredkin gate assisted by quantum dot within optical cavity under vacuum noise and sideband leakage. Sci. Rep., 2020, 10(1): 5123
CrossRef ADS Google scholar
[14]
D. G. Cory , M. D. Price , W. Maas , E. Knill , R. Laflamme , W. H. Zurek , T. F. Havel , S. S. Somaroo . Experimental quantum error correction. Phys. Rev. Lett., 1998, 81(10): 2152
CrossRef ADS Google scholar
[15]
B. P. Lanyon , M. Barbieri , M. P. Almeida , T. Jennewein , T. C. Ralph , K. J. Resch , G. J. Pryde , J. L. O’Brien , A. Gilchrist , A. G. White . Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys., 2009, 5(2): 134
CrossRef ADS Google scholar
[16]
T. Monz , K. Kim , W. Hänsel , M. Riebe , A. S. Villar , P. Schindler , M. Chwalla , M. Hennrich , R. Blatt . Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett., 2009, 102(4): 040501
CrossRef ADS Google scholar
[17]
A. Fedorov , L. Steffen , M. Baur , M. P. da Silva , A. Wallraff . Implementation of a Toffoli gate with superconducting circuits. Nature, 2012, 481(7380): 170
CrossRef ADS Google scholar
[18]
T. Roy , S. Hazra , S. Kundu , M. Chand , M. P. Patankar , R. Vijay . Programmable superconducting processor with native three-qubit gates. Phys. Rev. Appl., 2020, 14(1): 014072
CrossRef ADS Google scholar
[19]
X. Gu , J. Fernández-Pendás , P. Vikstål , T. Abad , C. Warren , A. Bengtsson , G. Tancredi , V. Shumeiko , J. Bylander , G. Johansson , A. F. Kockum . Fast multiqubit gates through simultaneous two-qubit gates. PRX Quantum, 2021, 2(4): 040348
CrossRef ADS Google scholar
[20]
A. J. Baker , G. B. P. Huber , N. J. Glaser , F. Roy , I. Tsitsilin , S. Filipp , M. J. Hartmann . Single shot i-Toffoli gate in dispersively coupled superconducting qubits. Appl. Phys. Lett., 2022, 120(5): 054002
CrossRef ADS Google scholar
[21]
Y. Kim , A. Morvan , L. B. Nguyen , R. K. Naik , C. Junger , L. Chen , J. M. Kreikebaum , D. I. Santiago , I. Siddiqi . High-fidelity three-qubit i-Toffoli gate for fixed-frequency superconducting qubits. Nat. Phys., 2022, 18(7): 783
CrossRef ADS Google scholar
[22]
C. W. Warren , J. Fernández-Pendás , S. Ahmed , T. Abad , A. Bengtsson , J. Biznárová , K. Debnath , X. Gu , C. Križan , A. Osman , A. F. Roudsari , P. Delsing , G. Johansson , A. F. Kockum , G. Tancredi , J. Bylander . Extensive characterization and implementation of a family of three-qubit gates at the coherence limit. npj Quantum Inf., 2023, 9: 44
CrossRef ADS Google scholar
[23]
L. B. Nguyen , Y. Kim , A. Hashim , N. Goss , B. Marinelli , B. Bhandari , D. Das , R. K. Naik , J. M. Kreikebaum , A. N. Jordan , D. I. Santiago , I. Siddiqi . Programmable Heisenberg interactions between floquet qubits. Nat. Phys., 2024, 20(2): 240
CrossRef ADS Google scholar
[24]
R. B. Patel , J. Ho , F. Ferreyrol , T. C. Ralph , G. J. Pryde . A quantum Fredkin gate. Sci. Adv., 2016, 2(3): e1501531
CrossRef ADS Google scholar
[25]
W. Feng , D. Wang . Quantum Fredkin gate based on synthetic three-body interactions in superconducting circuits. Phys. Rev. A, 2020, 101(6): 062312
CrossRef ADS Google scholar
[26]
P. Maity , M. Purkait . Implementation of a holonomic 3-qubit gate using Rydberg superatoms in a microwave cavity. Eur. Phys. J. Plus, 2022, 137(12): 1299
CrossRef ADS Google scholar
[27]
Y. Li , L. Wan , H. Zhang , H. Zhu , Y. Shi , L. K. Chin , X. Zhou , L. C. Kwek , A. Q. Liu . Quantum Fredkin and Toffoli gates on a versatile programmable silicon photonic chip. npj Quantum Inf., 2022, 8: 112
CrossRef ADS Google scholar
[28]
J. Koch , T. M. Yu , J. Gambetta , A. A. Houck , D. I. Schuster , J. Majer , A. Blais , M. H. Devoret , S. M. Girvin , R. J. Schoelkopf . Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A, 2007, 76(4): 042319
CrossRef ADS Google scholar
[29]
Y. Xu , J. Chu , J. Yuan , J. Qiu , Y. Zhou , L. Zhang , X. Tan , Y. Yu , S. Liu , J. Li , F. Yan , D. Yu . High-fidelity, high-scalability two-qubit gate scheme for superconducting qubits. Phys. Rev. Lett., 2020, 125(24): 240503
CrossRef ADS Google scholar
[30]
C. Song , K. Xu , W. Liu , C. Yang , S. B. Zheng , H. Deng , Q. Xie , K. Huang , Q. Guo , L. Zhang , P. Zhang , D. Xu , D. Zheng , X. Zhu , H. Wang , Y. A. Chen , C. Y. Lu , S. Han , J. W. Pan . 10-qubit entanglement and parallel logic operations with a superconducting circuit. Phys. Rev. Lett., 2017, 119(18): 180511
CrossRef ADS Google scholar
[31]
P. Krantz , M. Kjaergaard , F. Yan , T. P. Orlando , S. Gustavsson , W. D. Oliver . A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev., 2019, 6(2): 021318
CrossRef ADS Google scholar
[32]
J. Chu , X. He , Y. Zhou , J. Yuan , L. Zhang , Q. Guo , Y. Hai , Z. Han , C. K. Hu , W. Huang , H. Jia , D. Jiao , S. Li , Y. Liu , Z. Ni , L. Nie , X. Pan , J. Qiu , W. Wei , W. Nuerbolati , Z. Yang , J. Zhang , Z. Zhang , W. Zou , Y. Chen , X. Deng , X. Deng , L. Hu , J. Li , S. Liu , Y. Lu , J. Niu , D. Tan , Y. Xu , T. Yan , Y. Zhong , F. Yan , X. Sun , D. Yu . Scalable algorithm simplification using quantum AND logic. Nat. Phys., 2023, 19(1): 126
CrossRef ADS Google scholar
[33]
C. K. Hu , J. Yuan , B. A. Veloso , J. Qiu , Y. Zhou , L. Zhang , J. Chu , O. Nurbolat , L. Hu , J. Li , Y. Xu , Y. Zhong , S. Liu , F. Yan , D. Tan , R. Bachelard , A. C. Santos , C. Villas-Boas , D. Yu . Native conditional iSWAP operation with superconducting artificial atoms. Phys. Rev. Appl., 2023, 20(3): 034072
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the Key-Area Research and Development Program of Guangdong Province (No. 2018B030326001), the National Natural Science Foundation of China (Nos. 12074166 and 12004162), and the Guangdong Provincial Key Laboratory (No. 2019B121203002).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(3181 KB)

Accesses

Citations

Detail

Sections
Recommended

/