
Hardware-efficient and fast three-qubit gate in superconducting quantum circuits
Xiao-Le Li, Ziyu Tao, Kangyuan Yi, Kai Luo, Libo Zhang, Yuxuan Zhou, Song Liu, Tongxing Yan, Yuanzhen Chen, Dapeng Yu
Front. Phys. ›› 2024, Vol. 19 ›› Issue (5) : 51205.
Hardware-efficient and fast three-qubit gate in superconducting quantum circuits
While the common practice of decomposing general quantum algorithms into a collection of single- and two-qubit gates is conceptually simple, in many cases it is possible to have more efficient solutions where quantum gates engaging multiple qubits are used. In the noisy intermediate-scale quantum (NISQ) era where a universal error correction is still unavailable, this strategy is particularly appealing since it can significantly reduce the computational resources required for executing quantum algorithms. In this work, we experimentally investigate a three-qubit Controlled-CPHASE-SWAP (CCZS) gate on superconducting quantum circuits. By exploiting the higher energy levels of superconducting qubits, we are able to realize a Fredkin-like CCZS gate with a duration of 40 ns, which is comparable to typical single- and two-qubit gates realized on the same platform. By performing quantum process tomography for the two target qubits, we obtain a process fidelity of
quantum computation / quantum gate / superconducting circuit
Fig.1 Schematics of the superconducting qubits and circuit diagram used in this work for a Controlled-CPHASE-SWAP (CCZS) gate. (a) Sketch of the device with three transmon qubits of tunable frequencies. Eeach qubit contains a SQUID (superconducting quantum interference device) ring whose magnetic flux can be varied by a current flowing on a on-chip flux line nearby (not shown), which in turn changes the qubit’s frequency. Each qubit is equipped with its own flux line, control line, and readout resonator (not shown) as widely used in the transmon-based superconducting quantum circuits. Adjacent qubits are coupled and share a common feedline for dispersive readout. (b) Schematics of our scheme decomposing a Fredkin-like CCZS gate into a sequence of three iSWAP operations (marked as ×) between adjacent qubits. Each iSWAP operation represents a coherent |
Tab.1 List of states after each step of the iSWAP gate. |
Initial state | After first | After | After last |
---|---|---|---|
Fig.4 Generation and benchmarking of a three-qubit GHZ state using our Fredkin-like CCZS gate. (a) The measured populations associated with the state of |
Fig.5 Demonstration of a controlled three-qubit iSWAP operation with an arbitrary angle. The populations of the |
[1] |
S. Krinner , N. Lacroix , A. Remm , A. Di Paolo , E. Genois , C. Leroux , C. Hellings , S. Lazar , F. Swiadek , J. Herrmann , G. J. Norris , C. K. Andersen , M. Müller , A. Blais , C. Eichler , A. Wallraff . Realizing repeated quantum error correction in a distance-three surface code. Nature, 2022, 605(7911): 669
CrossRef
ADS
Google scholar
|
[2] |
Y. Zhao , Y. Ye , H. L. Huang , Y. Zhang , D. Wu , H. Guan , Q. Zhu , Z. Wei , T. He , S. Cao , F. Chen , T. H. Chung , H. Deng , D. Fan , M. Gong , C. Guo , S. Guo , L. Han , N. Li , S. Li , Y. Li , F. Liang , J. Lin , H. Qian , H. Rong , H. Su , L. Sun , S. Wang , Y. Wu , Y. Xu , C. Ying , J. Yu , C. Zha , K. Zhang , Y. H. Huo , C. Y. Lu , C. Z. Peng , X. Zhu , J. W. Pan . Realization of an error-correcting surface code with superconducting qubits. Phys. Rev. Lett., 2022, 129(3): 030501
CrossRef
ADS
Google scholar
|
[3] |
Z. Ni , S. Li , X. Deng , Y. Cai , L. Zhang , W. Wang , Z. B. Yang , H. Yu , F. Yan , S. Liu , C. L. Zou , L. Sun , S. B. Zheng , Y. Xu , D. Yu . Beating the break-even point with a discrete-variable-encoded logical qubit. Nature, 2023, 616(7955): 56
CrossRef
ADS
Google scholar
|
[4] |
J. Preskill . Quantum computing in the NISQ era and beyond. Quantum, 2018, 2: 79
CrossRef
ADS
Google scholar
|
[5] |
K. Bharti , A. Cervera-Lierta , T. H. Kyaw , T. Haug , S. Alperin-Lea , A. Anand , M. Degroote , H. Heimonen , J. S. Kottmann , T. Menke , W. K. Mok , S. Sim , L. C. Kwek , A. Aspuru-Guzik . Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys., 2022, 94(1): 015004
CrossRef
ADS
Google scholar
|
[6] |
B. Cheng , X. H. Deng , X. Gu , Y. He , G. Hu , P. Huang , J. Li , B. C. Lin , D. Lu , Y. Lu , C. Qiu , H. Wang , T. Xin , S. Yu , M. H. Yung , J. Zeng , S. Zhang , Y. Zhong , X. Peng , F. Nori , D. Yu . Noisy intermediate-scale quantum computers. Front. Phys., 2023, 18(2): 21308
CrossRef
ADS
Google scholar
|
[7] |
A. Peruzzo , J. McClean , P. Shadbolt , M. H. Yung , X. Q. Zhou , P. J. Love , A. Aspuru-Guzik , J. L. O’Brien . A variational eigenvalue solver on a photonic quantum processor. Nat. Commun., 2014, 5(1): 4213
CrossRef
ADS
Google scholar
|
[8] |
A. Kandala , A. Mezzacapo , K. Temme , M. Takita , M. Brink , J. M. Chow , J. M. Gambetta . Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 2017, 549(7671): 242
CrossRef
ADS
Google scholar
|
[9] |
J. I. Colless , V. V. Ramasesh , D. Dahlen , M. S. Blok , M. E. Kimchi-Schwartz , J. R. McClean , J. Carter , W. A. de Jong , I. Siddiqi . Computation of molecular spectra on a quantum processor with an error-resilient algorithm. Phys. Rev. X, 2018, 8(1): 011021
CrossRef
ADS
Google scholar
|
[10] |
F. Petiziol , M. Sameti , S. Carretta , S. Wimberger , F. Mintert . Quantum simulation of three-body interactions in weakly driven quantum systems. Phys. Rev. Lett., 2021, 126(25): 250504
CrossRef
ADS
Google scholar
|
[11] |
Z. Wang , Z. Y. Ge , Z. Xiang , X. Song , R. Z. Huang , P. Song , X. Y. Guo , L. Su , K. Xu , D. Zheng , H. Fan . Observation of emergent Z2 gauge invariance in a superconducting circuit. Phys. Rev. Res., 2022, 4(2): L022060
CrossRef
ADS
Google scholar
|
[12] |
X. Zhang , W. Jiang , J. Deng , K. Wang , J. Chen , P. Zhang , W. Ren , H. Dong , S. Xu , Y. Gao , F. Jin , X. Zhu , Q. Guo , H. Li , C. Song , A. V. Gorshkov , T. Iadecola , F. Liu , Z. X. Gong , Z. Wang , D. L. Deng , H. Wang . Digital quantum simulation of floquet symmetry-protected topological phases. Nature, 2022, 607(7919): 468
CrossRef
ADS
Google scholar
|
[13] |
M. S. Kang , J. Heo , S. G. Choi , S. Moon , S. W. Han . Optical Fredkin gate assisted by quantum dot within optical cavity under vacuum noise and sideband leakage. Sci. Rep., 2020, 10(1): 5123
CrossRef
ADS
Google scholar
|
[14] |
D. G. Cory , M. D. Price , W. Maas , E. Knill , R. Laflamme , W. H. Zurek , T. F. Havel , S. S. Somaroo . Experimental quantum error correction. Phys. Rev. Lett., 1998, 81(10): 2152
CrossRef
ADS
Google scholar
|
[15] |
B. P. Lanyon , M. Barbieri , M. P. Almeida , T. Jennewein , T. C. Ralph , K. J. Resch , G. J. Pryde , J. L. O’Brien , A. Gilchrist , A. G. White . Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys., 2009, 5(2): 134
CrossRef
ADS
Google scholar
|
[16] |
T. Monz , K. Kim , W. Hänsel , M. Riebe , A. S. Villar , P. Schindler , M. Chwalla , M. Hennrich , R. Blatt . Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett., 2009, 102(4): 040501
CrossRef
ADS
Google scholar
|
[17] |
A. Fedorov , L. Steffen , M. Baur , M. P. da Silva , A. Wallraff . Implementation of a Toffoli gate with superconducting circuits. Nature, 2012, 481(7380): 170
CrossRef
ADS
Google scholar
|
[18] |
T. Roy , S. Hazra , S. Kundu , M. Chand , M. P. Patankar , R. Vijay . Programmable superconducting processor with native three-qubit gates. Phys. Rev. Appl., 2020, 14(1): 014072
CrossRef
ADS
Google scholar
|
[19] |
X. Gu , J. Fernández-Pendás , P. Vikstål , T. Abad , C. Warren , A. Bengtsson , G. Tancredi , V. Shumeiko , J. Bylander , G. Johansson , A. F. Kockum . Fast multiqubit gates through simultaneous two-qubit gates. PRX Quantum, 2021, 2(4): 040348
CrossRef
ADS
Google scholar
|
[20] |
A. J. Baker , G. B. P. Huber , N. J. Glaser , F. Roy , I. Tsitsilin , S. Filipp , M. J. Hartmann . Single shot i-Toffoli gate in dispersively coupled superconducting qubits. Appl. Phys. Lett., 2022, 120(5): 054002
CrossRef
ADS
Google scholar
|
[21] |
Y. Kim , A. Morvan , L. B. Nguyen , R. K. Naik , C. Junger , L. Chen , J. M. Kreikebaum , D. I. Santiago , I. Siddiqi . High-fidelity three-qubit i-Toffoli gate for fixed-frequency superconducting qubits. Nat. Phys., 2022, 18(7): 783
CrossRef
ADS
Google scholar
|
[22] |
C. W. Warren , J. Fernández-Pendás , S. Ahmed , T. Abad , A. Bengtsson , J. Biznárová , K. Debnath , X. Gu , C. Križan , A. Osman , A. F. Roudsari , P. Delsing , G. Johansson , A. F. Kockum , G. Tancredi , J. Bylander . Extensive characterization and implementation of a family of three-qubit gates at the coherence limit. npj Quantum Inf., 2023, 9: 44
CrossRef
ADS
Google scholar
|
[23] |
L. B. Nguyen , Y. Kim , A. Hashim , N. Goss , B. Marinelli , B. Bhandari , D. Das , R. K. Naik , J. M. Kreikebaum , A. N. Jordan , D. I. Santiago , I. Siddiqi . Programmable Heisenberg interactions between floquet qubits. Nat. Phys., 2024, 20(2): 240
CrossRef
ADS
Google scholar
|
[24] |
R. B. Patel , J. Ho , F. Ferreyrol , T. C. Ralph , G. J. Pryde . A quantum Fredkin gate. Sci. Adv., 2016, 2(3): e1501531
CrossRef
ADS
Google scholar
|
[25] |
W. Feng , D. Wang . Quantum Fredkin gate based on synthetic three-body interactions in superconducting circuits. Phys. Rev. A, 2020, 101(6): 062312
CrossRef
ADS
Google scholar
|
[26] |
P. Maity , M. Purkait . Implementation of a holonomic 3-qubit gate using Rydberg superatoms in a microwave cavity. Eur. Phys. J. Plus, 2022, 137(12): 1299
CrossRef
ADS
Google scholar
|
[27] |
Y. Li , L. Wan , H. Zhang , H. Zhu , Y. Shi , L. K. Chin , X. Zhou , L. C. Kwek , A. Q. Liu . Quantum Fredkin and Toffoli gates on a versatile programmable silicon photonic chip. npj Quantum Inf., 2022, 8: 112
CrossRef
ADS
Google scholar
|
[28] |
J. Koch , T. M. Yu , J. Gambetta , A. A. Houck , D. I. Schuster , J. Majer , A. Blais , M. H. Devoret , S. M. Girvin , R. J. Schoelkopf . Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A, 2007, 76(4): 042319
CrossRef
ADS
Google scholar
|
[29] |
Y. Xu , J. Chu , J. Yuan , J. Qiu , Y. Zhou , L. Zhang , X. Tan , Y. Yu , S. Liu , J. Li , F. Yan , D. Yu . High-fidelity, high-scalability two-qubit gate scheme for superconducting qubits. Phys. Rev. Lett., 2020, 125(24): 240503
CrossRef
ADS
Google scholar
|
[30] |
C. Song , K. Xu , W. Liu , C. Yang , S. B. Zheng , H. Deng , Q. Xie , K. Huang , Q. Guo , L. Zhang , P. Zhang , D. Xu , D. Zheng , X. Zhu , H. Wang , Y. A. Chen , C. Y. Lu , S. Han , J. W. Pan . 10-qubit entanglement and parallel logic operations with a superconducting circuit. Phys. Rev. Lett., 2017, 119(18): 180511
CrossRef
ADS
Google scholar
|
[31] |
P. Krantz , M. Kjaergaard , F. Yan , T. P. Orlando , S. Gustavsson , W. D. Oliver . A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev., 2019, 6(2): 021318
CrossRef
ADS
Google scholar
|
[32] |
J. Chu , X. He , Y. Zhou , J. Yuan , L. Zhang , Q. Guo , Y. Hai , Z. Han , C. K. Hu , W. Huang , H. Jia , D. Jiao , S. Li , Y. Liu , Z. Ni , L. Nie , X. Pan , J. Qiu , W. Wei , W. Nuerbolati , Z. Yang , J. Zhang , Z. Zhang , W. Zou , Y. Chen , X. Deng , X. Deng , L. Hu , J. Li , S. Liu , Y. Lu , J. Niu , D. Tan , Y. Xu , T. Yan , Y. Zhong , F. Yan , X. Sun , D. Yu . Scalable algorithm simplification using quantum AND logic. Nat. Phys., 2023, 19(1): 126
CrossRef
ADS
Google scholar
|
[33] |
C. K. Hu , J. Yuan , B. A. Veloso , J. Qiu , Y. Zhou , L. Zhang , J. Chu , O. Nurbolat , L. Hu , J. Li , Y. Xu , Y. Zhong , S. Liu , F. Yan , D. Tan , R. Bachelard , A. C. Santos , C. Villas-Boas , D. Yu . Native conditional iSWAP operation with superconducting artificial atoms. Phys. Rev. Appl., 2023, 20(3): 034072
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |