Hardware-efficient and fast three-qubit gate in superconducting quantum circuits
Xiao-Le Li, Ziyu Tao, Kangyuan Yi, Kai Luo, Libo Zhang, Yuxuan Zhou, Song Liu, Tongxing Yan, Yuanzhen Chen, Dapeng Yu
Hardware-efficient and fast three-qubit gate in superconducting quantum circuits
While the common practice of decomposing general quantum algorithms into a collection of single- and two-qubit gates is conceptually simple, in many cases it is possible to have more efficient solutions where quantum gates engaging multiple qubits are used. In the noisy intermediate-scale quantum (NISQ) era where a universal error correction is still unavailable, this strategy is particularly appealing since it can significantly reduce the computational resources required for executing quantum algorithms. In this work, we experimentally investigate a three-qubit Controlled-CPHASE-SWAP (CCZS) gate on superconducting quantum circuits. By exploiting the higher energy levels of superconducting qubits, we are able to realize a Fredkin-like CCZS gate with a duration of 40 ns, which is comparable to typical single- and two-qubit gates realized on the same platform. By performing quantum process tomography for the two target qubits, we obtain a process fidelity of and for the control qubit being prepared in and , respectively. We also show that our scheme can be readily extended to realize a general CCZS gate with an arbitrary swap angle. The results reported here provide valuable additions to the toolbox for achieving large-scale hardware-efficient quantum circuits.
quantum computation / quantum gate / superconducting circuit
[1] |
S. Krinner , N. Lacroix , A. Remm , A. Di Paolo , E. Genois , C. Leroux , C. Hellings , S. Lazar , F. Swiadek , J. Herrmann , G. J. Norris , C. K. Andersen , M. Müller , A. Blais , C. Eichler , A. Wallraff . Realizing repeated quantum error correction in a distance-three surface code. Nature, 2022, 605(7911): 669
CrossRef
ADS
Google scholar
|
[2] |
Y. Zhao , Y. Ye , H. L. Huang , Y. Zhang , D. Wu , H. Guan , Q. Zhu , Z. Wei , T. He , S. Cao , F. Chen , T. H. Chung , H. Deng , D. Fan , M. Gong , C. Guo , S. Guo , L. Han , N. Li , S. Li , Y. Li , F. Liang , J. Lin , H. Qian , H. Rong , H. Su , L. Sun , S. Wang , Y. Wu , Y. Xu , C. Ying , J. Yu , C. Zha , K. Zhang , Y. H. Huo , C. Y. Lu , C. Z. Peng , X. Zhu , J. W. Pan . Realization of an error-correcting surface code with superconducting qubits. Phys. Rev. Lett., 2022, 129(3): 030501
CrossRef
ADS
Google scholar
|
[3] |
Z. Ni , S. Li , X. Deng , Y. Cai , L. Zhang , W. Wang , Z. B. Yang , H. Yu , F. Yan , S. Liu , C. L. Zou , L. Sun , S. B. Zheng , Y. Xu , D. Yu . Beating the break-even point with a discrete-variable-encoded logical qubit. Nature, 2023, 616(7955): 56
CrossRef
ADS
Google scholar
|
[4] |
J. Preskill . Quantum computing in the NISQ era and beyond. Quantum, 2018, 2: 79
CrossRef
ADS
Google scholar
|
[5] |
K. Bharti , A. Cervera-Lierta , T. H. Kyaw , T. Haug , S. Alperin-Lea , A. Anand , M. Degroote , H. Heimonen , J. S. Kottmann , T. Menke , W. K. Mok , S. Sim , L. C. Kwek , A. Aspuru-Guzik . Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys., 2022, 94(1): 015004
CrossRef
ADS
Google scholar
|
[6] |
B. Cheng , X. H. Deng , X. Gu , Y. He , G. Hu , P. Huang , J. Li , B. C. Lin , D. Lu , Y. Lu , C. Qiu , H. Wang , T. Xin , S. Yu , M. H. Yung , J. Zeng , S. Zhang , Y. Zhong , X. Peng , F. Nori , D. Yu . Noisy intermediate-scale quantum computers. Front. Phys., 2023, 18(2): 21308
CrossRef
ADS
Google scholar
|
[7] |
A. Peruzzo , J. McClean , P. Shadbolt , M. H. Yung , X. Q. Zhou , P. J. Love , A. Aspuru-Guzik , J. L. O’Brien . A variational eigenvalue solver on a photonic quantum processor. Nat. Commun., 2014, 5(1): 4213
CrossRef
ADS
Google scholar
|
[8] |
A. Kandala , A. Mezzacapo , K. Temme , M. Takita , M. Brink , J. M. Chow , J. M. Gambetta . Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 2017, 549(7671): 242
CrossRef
ADS
Google scholar
|
[9] |
J. I. Colless , V. V. Ramasesh , D. Dahlen , M. S. Blok , M. E. Kimchi-Schwartz , J. R. McClean , J. Carter , W. A. de Jong , I. Siddiqi . Computation of molecular spectra on a quantum processor with an error-resilient algorithm. Phys. Rev. X, 2018, 8(1): 011021
CrossRef
ADS
Google scholar
|
[10] |
F. Petiziol , M. Sameti , S. Carretta , S. Wimberger , F. Mintert . Quantum simulation of three-body interactions in weakly driven quantum systems. Phys. Rev. Lett., 2021, 126(25): 250504
CrossRef
ADS
Google scholar
|
[11] |
Z. Wang , Z. Y. Ge , Z. Xiang , X. Song , R. Z. Huang , P. Song , X. Y. Guo , L. Su , K. Xu , D. Zheng , H. Fan . Observation of emergent Z2 gauge invariance in a superconducting circuit. Phys. Rev. Res., 2022, 4(2): L022060
CrossRef
ADS
Google scholar
|
[12] |
X. Zhang , W. Jiang , J. Deng , K. Wang , J. Chen , P. Zhang , W. Ren , H. Dong , S. Xu , Y. Gao , F. Jin , X. Zhu , Q. Guo , H. Li , C. Song , A. V. Gorshkov , T. Iadecola , F. Liu , Z. X. Gong , Z. Wang , D. L. Deng , H. Wang . Digital quantum simulation of floquet symmetry-protected topological phases. Nature, 2022, 607(7919): 468
CrossRef
ADS
Google scholar
|
[13] |
M. S. Kang , J. Heo , S. G. Choi , S. Moon , S. W. Han . Optical Fredkin gate assisted by quantum dot within optical cavity under vacuum noise and sideband leakage. Sci. Rep., 2020, 10(1): 5123
CrossRef
ADS
Google scholar
|
[14] |
D. G. Cory , M. D. Price , W. Maas , E. Knill , R. Laflamme , W. H. Zurek , T. F. Havel , S. S. Somaroo . Experimental quantum error correction. Phys. Rev. Lett., 1998, 81(10): 2152
CrossRef
ADS
Google scholar
|
[15] |
B. P. Lanyon , M. Barbieri , M. P. Almeida , T. Jennewein , T. C. Ralph , K. J. Resch , G. J. Pryde , J. L. O’Brien , A. Gilchrist , A. G. White . Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys., 2009, 5(2): 134
CrossRef
ADS
Google scholar
|
[16] |
T. Monz , K. Kim , W. Hänsel , M. Riebe , A. S. Villar , P. Schindler , M. Chwalla , M. Hennrich , R. Blatt . Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett., 2009, 102(4): 040501
CrossRef
ADS
Google scholar
|
[17] |
A. Fedorov , L. Steffen , M. Baur , M. P. da Silva , A. Wallraff . Implementation of a Toffoli gate with superconducting circuits. Nature, 2012, 481(7380): 170
CrossRef
ADS
Google scholar
|
[18] |
T. Roy , S. Hazra , S. Kundu , M. Chand , M. P. Patankar , R. Vijay . Programmable superconducting processor with native three-qubit gates. Phys. Rev. Appl., 2020, 14(1): 014072
CrossRef
ADS
Google scholar
|
[19] |
X. Gu , J. Fernández-Pendás , P. Vikstål , T. Abad , C. Warren , A. Bengtsson , G. Tancredi , V. Shumeiko , J. Bylander , G. Johansson , A. F. Kockum . Fast multiqubit gates through simultaneous two-qubit gates. PRX Quantum, 2021, 2(4): 040348
CrossRef
ADS
Google scholar
|
[20] |
A. J. Baker , G. B. P. Huber , N. J. Glaser , F. Roy , I. Tsitsilin , S. Filipp , M. J. Hartmann . Single shot i-Toffoli gate in dispersively coupled superconducting qubits. Appl. Phys. Lett., 2022, 120(5): 054002
CrossRef
ADS
Google scholar
|
[21] |
Y. Kim , A. Morvan , L. B. Nguyen , R. K. Naik , C. Junger , L. Chen , J. M. Kreikebaum , D. I. Santiago , I. Siddiqi . High-fidelity three-qubit i-Toffoli gate for fixed-frequency superconducting qubits. Nat. Phys., 2022, 18(7): 783
CrossRef
ADS
Google scholar
|
[22] |
C. W. Warren , J. Fernández-Pendás , S. Ahmed , T. Abad , A. Bengtsson , J. Biznárová , K. Debnath , X. Gu , C. Križan , A. Osman , A. F. Roudsari , P. Delsing , G. Johansson , A. F. Kockum , G. Tancredi , J. Bylander . Extensive characterization and implementation of a family of three-qubit gates at the coherence limit. npj Quantum Inf., 2023, 9: 44
CrossRef
ADS
Google scholar
|
[23] |
L. B. Nguyen , Y. Kim , A. Hashim , N. Goss , B. Marinelli , B. Bhandari , D. Das , R. K. Naik , J. M. Kreikebaum , A. N. Jordan , D. I. Santiago , I. Siddiqi . Programmable Heisenberg interactions between floquet qubits. Nat. Phys., 2024, 20(2): 240
CrossRef
ADS
Google scholar
|
[24] |
R. B. Patel , J. Ho , F. Ferreyrol , T. C. Ralph , G. J. Pryde . A quantum Fredkin gate. Sci. Adv., 2016, 2(3): e1501531
CrossRef
ADS
Google scholar
|
[25] |
W. Feng , D. Wang . Quantum Fredkin gate based on synthetic three-body interactions in superconducting circuits. Phys. Rev. A, 2020, 101(6): 062312
CrossRef
ADS
Google scholar
|
[26] |
P. Maity , M. Purkait . Implementation of a holonomic 3-qubit gate using Rydberg superatoms in a microwave cavity. Eur. Phys. J. Plus, 2022, 137(12): 1299
CrossRef
ADS
Google scholar
|
[27] |
Y. Li , L. Wan , H. Zhang , H. Zhu , Y. Shi , L. K. Chin , X. Zhou , L. C. Kwek , A. Q. Liu . Quantum Fredkin and Toffoli gates on a versatile programmable silicon photonic chip. npj Quantum Inf., 2022, 8: 112
CrossRef
ADS
Google scholar
|
[28] |
J. Koch , T. M. Yu , J. Gambetta , A. A. Houck , D. I. Schuster , J. Majer , A. Blais , M. H. Devoret , S. M. Girvin , R. J. Schoelkopf . Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A, 2007, 76(4): 042319
CrossRef
ADS
Google scholar
|
[29] |
Y. Xu , J. Chu , J. Yuan , J. Qiu , Y. Zhou , L. Zhang , X. Tan , Y. Yu , S. Liu , J. Li , F. Yan , D. Yu . High-fidelity, high-scalability two-qubit gate scheme for superconducting qubits. Phys. Rev. Lett., 2020, 125(24): 240503
CrossRef
ADS
Google scholar
|
[30] |
C. Song , K. Xu , W. Liu , C. Yang , S. B. Zheng , H. Deng , Q. Xie , K. Huang , Q. Guo , L. Zhang , P. Zhang , D. Xu , D. Zheng , X. Zhu , H. Wang , Y. A. Chen , C. Y. Lu , S. Han , J. W. Pan . 10-qubit entanglement and parallel logic operations with a superconducting circuit. Phys. Rev. Lett., 2017, 119(18): 180511
CrossRef
ADS
Google scholar
|
[31] |
P. Krantz , M. Kjaergaard , F. Yan , T. P. Orlando , S. Gustavsson , W. D. Oliver . A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev., 2019, 6(2): 021318
CrossRef
ADS
Google scholar
|
[32] |
J. Chu , X. He , Y. Zhou , J. Yuan , L. Zhang , Q. Guo , Y. Hai , Z. Han , C. K. Hu , W. Huang , H. Jia , D. Jiao , S. Li , Y. Liu , Z. Ni , L. Nie , X. Pan , J. Qiu , W. Wei , W. Nuerbolati , Z. Yang , J. Zhang , Z. Zhang , W. Zou , Y. Chen , X. Deng , X. Deng , L. Hu , J. Li , S. Liu , Y. Lu , J. Niu , D. Tan , Y. Xu , T. Yan , Y. Zhong , F. Yan , X. Sun , D. Yu . Scalable algorithm simplification using quantum AND logic. Nat. Phys., 2023, 19(1): 126
CrossRef
ADS
Google scholar
|
[33] |
C. K. Hu , J. Yuan , B. A. Veloso , J. Qiu , Y. Zhou , L. Zhang , J. Chu , O. Nurbolat , L. Hu , J. Li , Y. Xu , Y. Zhong , S. Liu , F. Yan , D. Tan , R. Bachelard , A. C. Santos , C. Villas-Boas , D. Yu . Native conditional iSWAP operation with superconducting artificial atoms. Phys. Rev. Appl., 2023, 20(3): 034072
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |