Unveiling the geometric meaning of quantum entanglement: Discrete and continuous variable systems
Arthur Vesperini, Ghofrane Bel-Hadj-Aissa, Lorenzo Capra, Roberto Franzosi
Unveiling the geometric meaning of quantum entanglement: Discrete and continuous variable systems
We show that the manifold of quantum states is endowed with a rich and nontrivial geometric structure. We derive the Fubini−Study metric of the projective Hilbert space of a multi-qubit quantum system, endowing it with a Riemannian metric structure, and investigate its deep link with the entanglement of the states of this space. As a measure, we adopt the entanglement distance E preliminary proposed in Phys. Rev. A 101, 042129 (2020). Our analysis shows that entanglement has a geometric interpretation: is the minimum value of the sum of the squared distances between and its conjugate states, namely the states , where are unit vectors and runs on the number of parties. Within the proposed geometric approach, we derive a general method to determine when two states are not the same state up to the action of local unitary operators. Furthermore, we prove that the entanglement distance, along with its convex roof expansion to mixed states, fulfils the three conditions required for an entanglement measure, that is: i) iff is fully separable; ii) E is invariant under local unitary transformations; iii) E does not increase under local operation and classical communications. Two different proofs are provided for this latter property. We also show that in the case of two qubits pure states, the entanglement distance for a state coincides with two times the square of the concurrence of this state. We propose a generalization of the entanglement distance to continuous variable systems. Finally, we apply the proposed geometric approach to the study of the entanglement magnitude and the equivalence classes properties, of three families of states linked to the Greenberger−Horne−Zeilinger states, the Briegel Raussendorf states and the W states. As an example of application for the case of a system with continuous variables, we have considered a system of two coupled Glauber coherent states.
entanglements / quantum information / entanglement measure
[1] |
D. Cocchiarella , S. Scali , S. Ribisi , B. Nardi , G. Bel-Hadj-Aissa , R. Franzosi . Entanglement distance for arbitrary M-qudit hybrid systems. Phys. Rev. A, 2020, 101(4): 042129
CrossRef
ADS
Google scholar
|
[2] |
O. Gühne , G. Toth . Entanglement detection. Phys. Rep., 2009, 474(1−6): 1
CrossRef
ADS
Google scholar
|
[3] |
A. Nourmandipour , A. Vafafard , A. Mortezapour , R. Franzosi . Entanglement protection of classically driven qubits in a lossy cavity. Sci. Rep., 2021, 11(1): 16259
CrossRef
ADS
Google scholar
|
[4] |
A. Vafafard , A. Nourmandipour , R. Franzosi . Multipartite stationary entanglement generation in the presence of dipole−dipole interaction in an optical cavity. Phys. Rev. A, 2022, 105(5): 052439
CrossRef
ADS
Google scholar
|
[5] |
J. Sperling , I. A. Walmsley . Entanglement in macroscopic systems. Phys. Rev. A, 2017, 95(6): 062116
CrossRef
ADS
Google scholar
|
[6] |
V. Giovannetti , S. Mancini , D. Vitali , P. Tombesi . Characterizing the entanglement of bipartite quantum systems. Phys. Rev. A, 2003, 67(2): 022320
CrossRef
ADS
Google scholar
|
[7] |
A. Vesperini , G. Bel-Hadj-Aissa , R. Franzosi . Entanglement and quantum correlation measures for quantum multipartite mixed states. Sci. Rep., 2023, 13(1): 2852
CrossRef
ADS
Google scholar
|
[8] |
A. Vesperini , R. Franzosi . Entanglement, quantum correlators, and connectivity in graph states. Adv. Quantum Technol., 2024, 7(2): 2300264
CrossRef
ADS
Google scholar
|
[9] |
R. Horodecki , P. Horodecki , M. Horodecki , K. Horodecki . Quantum entanglement. Rev. Mod. Phys., 2009, 81(2): 865
CrossRef
ADS
Google scholar
|
[10] |
S. Popescu , D. Rohrlich . Thermodynamics and the measure of entanglement. Phys. Rev. A, 1997, 56(5): R3319
CrossRef
ADS
Google scholar
|
[11] |
W. K. Wootters . Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett., 1998, 80(10): 2245
CrossRef
ADS
Google scholar
|
[12] |
C. H. Bennett , D. P. DiVincenzo , J. A. Smolin , W. K. Wootters . Mixed-state entanglement and quantum error correction. Phys. Rev. A, 1996, 54(5): 3824
CrossRef
ADS
Google scholar
|
[13] |
C. H. Bennett , G. Brassard , S. Popescu , B. Schumacher , J. A. Smolin , W. K. Wootters . Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett., 1996, 76(5): 722
CrossRef
ADS
Google scholar
|
[14] |
M. Horodecki , P. Horodecki , R. Horodecki . Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature?. Phys. Rev. Lett., 1998, 80(24): 5239
CrossRef
ADS
Google scholar
|
[15] |
V. Vedral , M. B. Plenio , M. A. Rippin , P. L. Knight . Quantifying entanglement. Phys. Rev. Lett., 1997, 78(12): 2275
CrossRef
ADS
Google scholar
|
[16] |
G. Adesso , T. R. Bromley , M. Cianciaruso . Measures and applications of quantum correlations. J. Phys. A Math. Theor., 2016, 49(47): 473001
CrossRef
ADS
Google scholar
|
[17] |
W. Dür , G. Vidal , J. I. Cirac . Three qubits can be entangled in two inequivalent ways. Phys. Rev. A, 2000, 62(6): 062314
CrossRef
ADS
Google scholar
|
[18] |
H. J. Briegel , R. Raussendorf . Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett., 2001, 86(5): 910
CrossRef
ADS
Google scholar
|
[19] |
J. Eisert , H. J. Briegel . Schmidt measure as a tool for quantifying multiparticle entanglement. Phys. Rev. A, 2001, 64(2): 022306
CrossRef
ADS
Google scholar
|
[20] |
K. Roszak . Measure of qubit-environment entanglement for pure dephasing evolutions. Phys. Rev. Res., 2020, 2(4): 043062
CrossRef
ADS
Google scholar
|
[21] |
V. Coffman , J. Kundu , W. K. Wootters . Distributed entanglement. Phys. Rev. A, 2000, 61(5): 052306
CrossRef
ADS
Google scholar
|
[22] |
A. R. R. Carvalho , F. Mintert , A. Buchleitner . Decoherence and multipartite entanglement. Phys. Rev. Lett., 2004, 93(23): 230501
CrossRef
ADS
Google scholar
|
[23] |
S. L. Braunstein , C. M. Caves . Statistical distance and the geometry of quantum states. Phys. Rev. Lett., 1994, 72(22): 3439
CrossRef
ADS
Google scholar
|
[24] |
A. M. Frydryszak , M. I. Samar , V. M. Tkachuk . Quantifying geometric measure of entanglement by mean value of spin and spin correlations with application to physical systems. Eur. Phys. J. D, 2017, 71(9): 233
CrossRef
ADS
Google scholar
|
[25] |
L. Pezzé , A. Smerzi . Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett., 2009, 102(10): 100401
CrossRef
ADS
Google scholar
|
[26] |
P. Hyllus , W. Laskowski , R. Krischek , C. Schwemmer , W. Wieczorek , H. Weinfurter , L. Pezzé , A. Smerzi . Fisher information and multiparticle entanglement. Phys. Rev. A, 2012, 85(2): 022321
CrossRef
ADS
Google scholar
|
[27] |
S. Scali , R. Franzosi . Entanglement estimation in non-optimal qubit states. Ann. Phys., 2019, 411: 167995
CrossRef
ADS
Google scholar
|
[28] |
J. P. Provost , G. Vallee . Riemannian structure on manifolds of quantum states. Commun. Math. Phys., 1980, 76(3): 289
CrossRef
ADS
Google scholar
|
[29] |
G. Gibbons . Typical states and density matrices. J. Geom. Phys., 1992, 8(1−4): 147
CrossRef
ADS
Google scholar
|
[30] |
D. C. Brody , L. P. Hughston . Geometric quantum mechanics. J. Geom. Phys., 2001, 38(1): 19
CrossRef
ADS
Google scholar
|
[31] |
G. Vidal . Entanglement monotones. J. Mod. Opt., 2000, 47(2−3): 355
CrossRef
ADS
Google scholar
|
[32] |
D.M. GreenbergerM.A. HorneA.Zeilinger, Going beyond Bell’s theorem, in: Bell’s Theorem, Quantum Theory and Conceptions of the Universe, edited by M. Kafatos, Springer Netherlands, Dordrecht, 1989, pp 69–72
|
[33] |
A. Vesperini . Correlations and projective measurements in maximally entangled multipartite states. Ann. Phys., 2023, 457: 169406
CrossRef
ADS
Google scholar
|
[34] |
Note that the other formula, proposed in Ref. [7] as a generalization of the ED to mixed state, in fact reduces to Eq. (31), and is hence also an entanglement monotone. The supplementary minimization process in the former serves only as a trick, which sometimes allow to overcome the difficulty of the usual minimization over all possible realizations {pj, ψj} of ρ as mixture of pure states.
|
[35] |
W. K. Wootters . Entanglement of formation and concurrence. Quantum Inf. Comput., 2001, 1(1): 27
CrossRef
ADS
Google scholar
|
[36] |
S. Wu , Y. Zhang . Multipartite pure-state entanglement and the generalized Greenberger−Horne−Zeilinger states. Phys. Rev. A, 2000, 63(1): 012308
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |