Unveiling the geometric meaning of quantum entanglement: Discrete and continuous variable systems

Arthur Vesperini, Ghofrane Bel-Hadj-Aissa, Lorenzo Capra, Roberto Franzosi

PDF(5083 KB)
PDF(5083 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (5) : 51204. DOI: 10.1007/s11467-024-1403-x
RESEARCH ARTICLE

Unveiling the geometric meaning of quantum entanglement: Discrete and continuous variable systems

Author information +
History +

Abstract

We show that the manifold of quantum states is endowed with a rich and nontrivial geometric structure. We derive the Fubini−Study metric of the projective Hilbert space of a multi-qubit quantum system, endowing it with a Riemannian metric structure, and investigate its deep link with the entanglement of the states of this space. As a measure, we adopt the entanglement distance E preliminary proposed in Phys. Rev. A 101, 042129 (2020). Our analysis shows that entanglement has a geometric interpretation: E(|ψ) is the minimum value of the sum of the squared distances between |ψ and its conjugate states, namely the states vμσμ|ψ, where vμ are unit vectors and μ runs on the number of parties. Within the proposed geometric approach, we derive a general method to determine when two states are not the same state up to the action of local unitary operators. Furthermore, we prove that the entanglement distance, along with its convex roof expansion to mixed states, fulfils the three conditions required for an entanglement measure, that is: i) E(|ψ)=0 iff |ψ is fully separable; ii) E is invariant under local unitary transformations; iii) E does not increase under local operation and classical communications. Two different proofs are provided for this latter property. We also show that in the case of two qubits pure states, the entanglement distance for a state |ψ coincides with two times the square of the concurrence of this state. We propose a generalization of the entanglement distance to continuous variable systems. Finally, we apply the proposed geometric approach to the study of the entanglement magnitude and the equivalence classes properties, of three families of states linked to the Greenberger−Horne−Zeilinger states, the Briegel Raussendorf states and the W states. As an example of application for the case of a system with continuous variables, we have considered a system of two coupled Glauber coherent states.

Graphical abstract

Keywords

entanglements / quantum information / entanglement measure

Cite this article

Download citation ▾
Arthur Vesperini, Ghofrane Bel-Hadj-Aissa, Lorenzo Capra, Roberto Franzosi. Unveiling the geometric meaning of quantum entanglement: Discrete and continuous variable systems. Front. Phys., 2024, 19(5): 51204 https://doi.org/10.1007/s11467-024-1403-x

References

[1]
D. Cocchiarella , S. Scali , S. Ribisi , B. Nardi , G. Bel-Hadj-Aissa , R. Franzosi . Entanglement distance for arbitrary M-qudit hybrid systems. Phys. Rev. A, 2020, 101(4): 042129
CrossRef ADS Google scholar
[2]
O. Gühne , G. Toth . Entanglement detection. Phys. Rep., 2009, 474(1−6): 1
CrossRef ADS Google scholar
[3]
A. Nourmandipour , A. Vafafard , A. Mortezapour , R. Franzosi . Entanglement protection of classically driven qubits in a lossy cavity. Sci. Rep., 2021, 11(1): 16259
CrossRef ADS Google scholar
[4]
A. Vafafard , A. Nourmandipour , R. Franzosi . Multipartite stationary entanglement generation in the presence of dipole−dipole interaction in an optical cavity. Phys. Rev. A, 2022, 105(5): 052439
CrossRef ADS Google scholar
[5]
J. Sperling , I. A. Walmsley . Entanglement in macroscopic systems. Phys. Rev. A, 2017, 95(6): 062116
CrossRef ADS Google scholar
[6]
V. Giovannetti , S. Mancini , D. Vitali , P. Tombesi . Characterizing the entanglement of bipartite quantum systems. Phys. Rev. A, 2003, 67(2): 022320
CrossRef ADS Google scholar
[7]
A. Vesperini , G. Bel-Hadj-Aissa , R. Franzosi . Entanglement and quantum correlation measures for quantum multipartite mixed states. Sci. Rep., 2023, 13(1): 2852
CrossRef ADS Google scholar
[8]
A. Vesperini , R. Franzosi . Entanglement, quantum correlators, and connectivity in graph states. Adv. Quantum Technol., 2024, 7(2): 2300264
CrossRef ADS Google scholar
[9]
R. Horodecki , P. Horodecki , M. Horodecki , K. Horodecki . Quantum entanglement. Rev. Mod. Phys., 2009, 81(2): 865
CrossRef ADS Google scholar
[10]
S. Popescu , D. Rohrlich . Thermodynamics and the measure of entanglement. Phys. Rev. A, 1997, 56(5): R3319
CrossRef ADS Google scholar
[11]
W. K. Wootters . Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett., 1998, 80(10): 2245
CrossRef ADS Google scholar
[12]
C. H. Bennett , D. P. DiVincenzo , J. A. Smolin , W. K. Wootters . Mixed-state entanglement and quantum error correction. Phys. Rev. A, 1996, 54(5): 3824
CrossRef ADS Google scholar
[13]
C. H. Bennett , G. Brassard , S. Popescu , B. Schumacher , J. A. Smolin , W. K. Wootters . Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett., 1996, 76(5): 722
CrossRef ADS Google scholar
[14]
M. Horodecki , P. Horodecki , R. Horodecki . Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature?. Phys. Rev. Lett., 1998, 80(24): 5239
CrossRef ADS Google scholar
[15]
V. Vedral , M. B. Plenio , M. A. Rippin , P. L. Knight . Quantifying entanglement. Phys. Rev. Lett., 1997, 78(12): 2275
CrossRef ADS Google scholar
[16]
G. Adesso , T. R. Bromley , M. Cianciaruso . Measures and applications of quantum correlations. J. Phys. A Math. Theor., 2016, 49(47): 473001
CrossRef ADS Google scholar
[17]
W. Dür , G. Vidal , J. I. Cirac . Three qubits can be entangled in two inequivalent ways. Phys. Rev. A, 2000, 62(6): 062314
CrossRef ADS Google scholar
[18]
H. J. Briegel , R. Raussendorf . Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett., 2001, 86(5): 910
CrossRef ADS Google scholar
[19]
J. Eisert , H. J. Briegel . Schmidt measure as a tool for quantifying multiparticle entanglement. Phys. Rev. A, 2001, 64(2): 022306
CrossRef ADS Google scholar
[20]
K. Roszak . Measure of qubit-environment entanglement for pure dephasing evolutions. Phys. Rev. Res., 2020, 2(4): 043062
CrossRef ADS Google scholar
[21]
V. Coffman , J. Kundu , W. K. Wootters . Distributed entanglement. Phys. Rev. A, 2000, 61(5): 052306
CrossRef ADS Google scholar
[22]
A. R. R. Carvalho , F. Mintert , A. Buchleitner . Decoherence and multipartite entanglement. Phys. Rev. Lett., 2004, 93(23): 230501
CrossRef ADS Google scholar
[23]
S. L. Braunstein , C. M. Caves . Statistical distance and the geometry of quantum states. Phys. Rev. Lett., 1994, 72(22): 3439
CrossRef ADS Google scholar
[24]
A. M. Frydryszak , M. I. Samar , V. M. Tkachuk . Quantifying geometric measure of entanglement by mean value of spin and spin correlations with application to physical systems. Eur. Phys. J. D, 2017, 71(9): 233
CrossRef ADS Google scholar
[25]
L. Pezzé , A. Smerzi . Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett., 2009, 102(10): 100401
CrossRef ADS Google scholar
[26]
P. Hyllus , W. Laskowski , R. Krischek , C. Schwemmer , W. Wieczorek , H. Weinfurter , L. Pezzé , A. Smerzi . Fisher information and multiparticle entanglement. Phys. Rev. A, 2012, 85(2): 022321
CrossRef ADS Google scholar
[27]
S. Scali , R. Franzosi . Entanglement estimation in non-optimal qubit states. Ann. Phys., 2019, 411: 167995
CrossRef ADS Google scholar
[28]
J. P. Provost , G. Vallee . Riemannian structure on manifolds of quantum states. Commun. Math. Phys., 1980, 76(3): 289
CrossRef ADS Google scholar
[29]
G. Gibbons . Typical states and density matrices. J. Geom. Phys., 1992, 8(1−4): 147
CrossRef ADS Google scholar
[30]
D. C. Brody , L. P. Hughston . Geometric quantum mechanics. J. Geom. Phys., 2001, 38(1): 19
CrossRef ADS Google scholar
[31]
G. Vidal . Entanglement monotones. J. Mod. Opt., 2000, 47(2−3): 355
CrossRef ADS Google scholar
[32]
D.M. GreenbergerM.A. HorneA.Zeilinger, Going beyond Bell’s theorem, in: Bell’s Theorem, Quantum Theory and Conceptions of the Universe, edited by M. Kafatos, Springer Netherlands, Dordrecht, 1989, pp 69–72
[33]
A. Vesperini . Correlations and projective measurements in maximally entangled multipartite states. Ann. Phys., 2023, 457: 169406
CrossRef ADS Google scholar
[34]
Note that the other formula, proposed in Ref. [7] as a generalization of the ED to mixed state, in fact reduces to Eq. (31), and is hence also an entanglement monotone. The supplementary minimization process in the former serves only as a trick, which sometimes allow to overcome the difficulty of the usual minimization over all possible realizations {pj, ψj} of ρ as mixture of pure states.
[35]
W. K. Wootters . Entanglement of formation and concurrence. Quantum Inf. Comput., 2001, 1(1): 27
CrossRef ADS Google scholar
[36]
S. Wu , Y. Zhang . Multipartite pure-state entanglement and the generalized Greenberger−Horne−Zeilinger states. Phys. Rev. A, 2000, 63(1): 012308
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

We acknowledge the support from the Research Support Plan 2022 − Call for applications for funding allocation to research projects curiosity driven (F CUR) − Project “Entanglement Protection of Qubits’ Dynamics in a Cavity” – EPQDC and the support by the Italian National Group of Mathematical Physics (GNFM-INdAM). R. F. and A. V. would like to acknowledge INFN Pisa for the financial support to this activity.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5083 KB)

Accesses

Citations

Detail

Sections
Recommended

/