
Unveiling the geometric meaning of quantum entanglement: Discrete and continuous variable systems
Arthur Vesperini, Ghofrane Bel-Hadj-Aissa, Lorenzo Capra, Roberto Franzosi
Front. Phys. ›› 2024, Vol. 19 ›› Issue (5) : 51204.
Unveiling the geometric meaning of quantum entanglement: Discrete and continuous variable systems
We show that the manifold of quantum states is endowed with a rich and nontrivial geometric structure. We derive the Fubini−Study metric of the projective Hilbert space of a multi-qubit quantum system, endowing it with a Riemannian metric structure, and investigate its deep link with the entanglement of the states of this space. As a measure, we adopt the entanglement distance E preliminary proposed in Phys. Rev. A 101, 042129 (2020). Our analysis shows that entanglement has a geometric interpretation:
entanglements / quantum information / entanglement measure
[1] |
D. Cocchiarella , S. Scali , S. Ribisi , B. Nardi , G. Bel-Hadj-Aissa , R. Franzosi . Entanglement distance for arbitrary M-qudit hybrid systems. Phys. Rev. A, 2020, 101(4): 042129
CrossRef
ADS
Google scholar
|
[2] |
O. Gühne , G. Toth . Entanglement detection. Phys. Rep., 2009, 474(1−6): 1
CrossRef
ADS
Google scholar
|
[3] |
A. Nourmandipour , A. Vafafard , A. Mortezapour , R. Franzosi . Entanglement protection of classically driven qubits in a lossy cavity. Sci. Rep., 2021, 11(1): 16259
CrossRef
ADS
Google scholar
|
[4] |
A. Vafafard , A. Nourmandipour , R. Franzosi . Multipartite stationary entanglement generation in the presence of dipole−dipole interaction in an optical cavity. Phys. Rev. A, 2022, 105(5): 052439
CrossRef
ADS
Google scholar
|
[5] |
J. Sperling , I. A. Walmsley . Entanglement in macroscopic systems. Phys. Rev. A, 2017, 95(6): 062116
CrossRef
ADS
Google scholar
|
[6] |
V. Giovannetti , S. Mancini , D. Vitali , P. Tombesi . Characterizing the entanglement of bipartite quantum systems. Phys. Rev. A, 2003, 67(2): 022320
CrossRef
ADS
Google scholar
|
[7] |
A. Vesperini , G. Bel-Hadj-Aissa , R. Franzosi . Entanglement and quantum correlation measures for quantum multipartite mixed states. Sci. Rep., 2023, 13(1): 2852
CrossRef
ADS
Google scholar
|
[8] |
A. Vesperini , R. Franzosi . Entanglement, quantum correlators, and connectivity in graph states. Adv. Quantum Technol., 2024, 7(2): 2300264
CrossRef
ADS
Google scholar
|
[9] |
R. Horodecki , P. Horodecki , M. Horodecki , K. Horodecki . Quantum entanglement. Rev. Mod. Phys., 2009, 81(2): 865
CrossRef
ADS
Google scholar
|
[10] |
S. Popescu , D. Rohrlich . Thermodynamics and the measure of entanglement. Phys. Rev. A, 1997, 56(5): R3319
CrossRef
ADS
Google scholar
|
[11] |
W. K. Wootters . Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett., 1998, 80(10): 2245
CrossRef
ADS
Google scholar
|
[12] |
C. H. Bennett , D. P. DiVincenzo , J. A. Smolin , W. K. Wootters . Mixed-state entanglement and quantum error correction. Phys. Rev. A, 1996, 54(5): 3824
CrossRef
ADS
Google scholar
|
[13] |
C. H. Bennett , G. Brassard , S. Popescu , B. Schumacher , J. A. Smolin , W. K. Wootters . Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett., 1996, 76(5): 722
CrossRef
ADS
Google scholar
|
[14] |
M. Horodecki , P. Horodecki , R. Horodecki . Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature?. Phys. Rev. Lett., 1998, 80(24): 5239
CrossRef
ADS
Google scholar
|
[15] |
V. Vedral , M. B. Plenio , M. A. Rippin , P. L. Knight . Quantifying entanglement. Phys. Rev. Lett., 1997, 78(12): 2275
CrossRef
ADS
Google scholar
|
[16] |
G. Adesso , T. R. Bromley , M. Cianciaruso . Measures and applications of quantum correlations. J. Phys. A Math. Theor., 2016, 49(47): 473001
CrossRef
ADS
Google scholar
|
[17] |
W. Dür , G. Vidal , J. I. Cirac . Three qubits can be entangled in two inequivalent ways. Phys. Rev. A, 2000, 62(6): 062314
CrossRef
ADS
Google scholar
|
[18] |
H. J. Briegel , R. Raussendorf . Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett., 2001, 86(5): 910
CrossRef
ADS
Google scholar
|
[19] |
J. Eisert , H. J. Briegel . Schmidt measure as a tool for quantifying multiparticle entanglement. Phys. Rev. A, 2001, 64(2): 022306
CrossRef
ADS
Google scholar
|
[20] |
K. Roszak . Measure of qubit-environment entanglement for pure dephasing evolutions. Phys. Rev. Res., 2020, 2(4): 043062
CrossRef
ADS
Google scholar
|
[21] |
V. Coffman , J. Kundu , W. K. Wootters . Distributed entanglement. Phys. Rev. A, 2000, 61(5): 052306
CrossRef
ADS
Google scholar
|
[22] |
A. R. R. Carvalho , F. Mintert , A. Buchleitner . Decoherence and multipartite entanglement. Phys. Rev. Lett., 2004, 93(23): 230501
CrossRef
ADS
Google scholar
|
[23] |
S. L. Braunstein , C. M. Caves . Statistical distance and the geometry of quantum states. Phys. Rev. Lett., 1994, 72(22): 3439
CrossRef
ADS
Google scholar
|
[24] |
A. M. Frydryszak , M. I. Samar , V. M. Tkachuk . Quantifying geometric measure of entanglement by mean value of spin and spin correlations with application to physical systems. Eur. Phys. J. D, 2017, 71(9): 233
CrossRef
ADS
Google scholar
|
[25] |
L. Pezzé , A. Smerzi . Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett., 2009, 102(10): 100401
CrossRef
ADS
Google scholar
|
[26] |
P. Hyllus , W. Laskowski , R. Krischek , C. Schwemmer , W. Wieczorek , H. Weinfurter , L. Pezzé , A. Smerzi . Fisher information and multiparticle entanglement. Phys. Rev. A, 2012, 85(2): 022321
CrossRef
ADS
Google scholar
|
[27] |
S. Scali , R. Franzosi . Entanglement estimation in non-optimal qubit states. Ann. Phys., 2019, 411: 167995
CrossRef
ADS
Google scholar
|
[28] |
J. P. Provost , G. Vallee . Riemannian structure on manifolds of quantum states. Commun. Math. Phys., 1980, 76(3): 289
CrossRef
ADS
Google scholar
|
[29] |
G. Gibbons . Typical states and density matrices. J. Geom. Phys., 1992, 8(1−4): 147
CrossRef
ADS
Google scholar
|
[30] |
D. C. Brody , L. P. Hughston . Geometric quantum mechanics. J. Geom. Phys., 2001, 38(1): 19
CrossRef
ADS
Google scholar
|
[31] |
G. Vidal . Entanglement monotones. J. Mod. Opt., 2000, 47(2−3): 355
CrossRef
ADS
Google scholar
|
[32] |
D.M. GreenbergerM.A. HorneA.Zeilinger, Going beyond Bell’s theorem, in: Bell’s Theorem, Quantum Theory and Conceptions of the Universe, edited by M. Kafatos, Springer Netherlands, Dordrecht, 1989, pp 69–72
|
[33] |
A. Vesperini . Correlations and projective measurements in maximally entangled multipartite states. Ann. Phys., 2023, 457: 169406
CrossRef
ADS
Google scholar
|
[34] |
Note that the other formula, proposed in Ref. [7] as a generalization of the ED to mixed state, in fact reduces to Eq. (31), and is hence also an entanglement monotone. The supplementary minimization process in the former serves only as a trick, which sometimes allow to overcome the difficulty of the usual minimization over all possible realizations {pj, ψj} of ρ as mixture of pure states.
|
[35] |
W. K. Wootters . Entanglement of formation and concurrence. Quantum Inf. Comput., 2001, 1(1): 27
CrossRef
ADS
Google scholar
|
[36] |
S. Wu , Y. Zhang . Multipartite pure-state entanglement and the generalized Greenberger−Horne−Zeilinger states. Phys. Rev. A, 2000, 63(1): 012308
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |