Information transmission through parallel multi-task-based recognition of high-resolution multiplexed orbital angular momentum
Jingwen Zhou, Yaling Yin, Jihong Tang, Yong Xia, Jianping Yin
Information transmission through parallel multi-task-based recognition of high-resolution multiplexed orbital angular momentum
Orbital angular momentums (OAMs) greatly enhance the channel capacity in free-space optical communication. However, demodulation of superposed OAM to recognize them separately is always difficult, especially upon multiplexing more OAMs. In this work, we report a directly recognition of multiplexed fractional OAM modes, without separating them, at a resolution of 0.1 with high accuracy, using a multi-task deep learning (MTDL) model, which has not been reported before. Namely, two-mode, four-mode, and eight-mode superposed OAM beams, experimentally generated with a hologram carrying both phase and amplitude information, are well recognized by the suitable MTDL model. Two applications in information transmission are presented: the first is for 256-ary OAM shift keying via multiplexed fractional OAMs; the second is for OAM division multiplexed information transmission in an eightfold speed. The encouraging results will expand the capacity in future free-space optical communication.
information transmission / orbital angular momentum / multi-task deep learning / holographic multiplexing / structured light
[1] |
A. E. Willner , H. Huang , Y. Yan , Y. Ren , N. Ahmed , G. Xie , C. Bao , L. Li , Y. Cao , Z. Zhao , J. Wang , M. P. J. Lavery , M. Tur , S. Ramachandran , A. F. Molisch , N. Ashrafi , S. Ashrafi . Optical communications using orbital angular momentum beams. Adv. Opt. Photonics, 2015, 7(1): 66
CrossRef
ADS
Google scholar
|
[2] |
H. Rubinsztein-Dunlop , A. Forbes , M. V. Berry , M. R. Dennis , D. L. Andrews , M. Mansuripur , C. Denz , C. Alpmann , P. Banzer , T. Bauer , E. Karimi , L. Marrucci , M. Padgett , M. Ritsch-Marte , N. M. Litchinitser , N. P. Bigelow , C. Rosales-Guzmán , A. Belmonte , J. P. Torres , T. W. Neely , M. Baker , R. Gordon , A. B. Stilgoe , J. Romero , A. G. White , R. Fickler , A. E. Willner , G. Xie , B. McMorran , A. M. Weiner . Roadmap on structured light. J. Opt., 2017, 19(1): 013001
CrossRef
ADS
Google scholar
|
[3] |
L. Allen , M. Beijersbergen , R. Spreeuw , J. Woerdman . Orbital angular momentum of light and transformation of Laguerre‒Gaussian laser modes. Phys. Rev. A, 1992, 45(11): 8185
CrossRef
ADS
Google scholar
|
[4] |
J. P. Yin , W. J. Gao , Y. F. Zhu . Generation of dark hollow beams and their applications. Prog. Opt., 2003, 45(11): 119
CrossRef
ADS
Google scholar
|
[5] |
M.J. Padgett, Orbital angular momentum 25 years on, Opt. Express 25(10), 11265 (2017) (Invited)
|
[6] |
Y. J. Shen , X. J. Wang , Z. W. Xie , C. J. Min , X. Fu , Q. Liu , M. L. Gong , X. C. Yuan . Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 2019, 8(1): 90
CrossRef
ADS
Google scholar
|
[7] |
A. Forbes , S. Ramachandran , Q. W. Zhan . Photonic angular momentum: Progress and perspectives. Nanophotonics, 2022, 11(4): 625
CrossRef
ADS
Google scholar
|
[8] |
S. J. Li , Z. Y. Li , G. S. Huang , X. B. Liu , R. Q. Li , X. Y. Cao . Digital coding transmissive metasurface for multi-OAM-beam. Front. Phys., 2022, 17(6): 62501
CrossRef
ADS
Google scholar
|
[9] |
L. Jin , Y. W. Huang , Z. W. Jin , R. C. Devlin , Z. G. Dong , S. T. Mei , M. H. Jiang , W. T. Chen , Z. Wei , H. Liu , J. H. Teng , A. Danner , X. P. Li , S. M. Xiao , S. Zhang , C. Y. Yu , J. K. W. Yang , F. Capasso , C. W. Qiu . Dielectric multi-momentum meta-transformer in the visible. Nat. Commun., 2019, 10(1): 4789
CrossRef
ADS
Google scholar
|
[10] |
X. Y. Fang , H. J. Wang , H. C. Yang , Z. L. Ye , Y. M. Wang , Y. Zhang , X. P. Hu , S. N. Zhu , M. Xiao . Multichannel nonlinear holography in a two-dimensional nonlinear photonic crystal. Phys. Rev. A, 2020, 102(4): 043506
CrossRef
ADS
Google scholar
|
[11] |
J. J. Guo , Y. P. Zhang , H. Ye , L. Y. Wang , P. C. Chen , D. J. Mao , C. Z. Xie , Z. H. Chen , X. W. Wu , M. Xiao , Y. Zhang . Spatially structured-mode multiplexing holography for high-capacity security encryption. ACS Photonics, 2023, 10(3): 757
CrossRef
ADS
Google scholar
|
[12] |
A. E. Willner , Z. Zhao , C. Liu , R. Zhang , H. Song , K. Pang , K. Manukyan , H. Song , X. Su , G. Xie , Y. Ren , Y. Yan , M. Tur , A. F. Molisch , R. W. Boyd , H. Zhou , N. Hu , A. Minoofar , H. Huang . Perspectives on advances in high-capacity, free-space communications using multiplexing of orbital-angular-momentum beams. APL Photonics, 2021, 6(3): 030901
CrossRef
ADS
Google scholar
|
[13] |
J. Lin , X. C. Yuan , S. H. Tao , R. E. Burge . Multiplexing free-space optical signals using superimposed collinear orbital angular momentum states. Appl. Opt., 2007, 46(21): 4680
CrossRef
ADS
Google scholar
|
[14] |
J. Wang , J. Y. Yang , I. M. Fazal , N. Ahmed , Y. Yan , H. Huang , Y. X. Ren , Y. Yue , S. Dolinar , M. Tur , A. E. Willner . Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 2012, 6(7): 488
CrossRef
ADS
Google scholar
|
[15] |
N. Bozinovic , Y. Yue , Y. Ren , M. Tur , P. Kristensen , H. Huang , A. E. Willner , S. Ramachandran . Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340(6140): 1545
CrossRef
ADS
Google scholar
|
[16] |
G. Vallone , V. D’Ambrosio , A. Sponselli , S. Slussarenko , L. Marrucci , F. Sciarrino , P. Villoresi . Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett., 2014, 113(6): 060503
CrossRef
ADS
Google scholar
|
[17] |
H.HuangG.XieY.YanN.AhmedY.RenY.YueD.RogawskiM.J. WillnerB.I. ErkmenK.M. BirnbaumS.J. DolinarM.P. J. LaveryM.J. PadgettM.TurA.E. Willner, 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wave-length, Opt. Lett. 39(2), 197 (2014)
|
[18] |
M. Krenn , R. Fickler , M. Fink , J. Handsteiner , M. Malik , T. Scheidl , R. Ursin , A. Zeilinger . Communication with spatially modulated light through turbulent air across Vienna. New J. Phys., 2014, 16(11): 113028
CrossRef
ADS
Google scholar
|
[19] |
A. J. Willner , Y. Ren , G. Xie , Z. Zhao , Y. Cao , L. Li , N. Ahmed , Z. Wang , Y. Yan , P. Liao , C. Liu , M. Mirhosseini , R. W. Boyd , M. Tur , A. E. Willner . Experimental demonstration of 20 Gbit/s data encoding and 2 ns channel hopping using orbital angular momentum modes. Opt. Lett., 2015, 40(24): 5810
CrossRef
ADS
Google scholar
|
[20] |
M. Krenn , J. Handsteiner , M. Fink , R. Fickler , R. Ursin , M. Malik , A. Zeilinger . Twisted light transmission over 143 km. Proc. Natl. Acad. Sci. USA, 2016, 113(48): 13648
CrossRef
ADS
Google scholar
|
[21] |
H. Zhang , J. Zeng , X. Y. Lu , Z. Y. Wang , C. L. Zhao , Y. J. Cai . Review on fractional vortex beam. Nanophotonics, 2022, 11(2): 241
CrossRef
ADS
Google scholar
|
[22] |
Z. W. Liu , S. Yan , H. G. Liu , X. F. Chen . Superhigh-resolution recognition of optical vortex modes assisted by a deep-learning method. Phys. Rev. Lett., 2019, 123(18): 183902
CrossRef
ADS
Google scholar
|
[23] |
Y. Na , D. K. Ko . Adaptive demodulation by deep-learning-based identification of fractional orbital angular momentum modes with structural distortion due to atmospheric turbulence. Sci. Rep., 2021, 11(1): 23505
CrossRef
ADS
Google scholar
|
[24] |
J. Leach , M. Padgett , S. Barnett , S. Franke-Arnold , J. Courtial . Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett., 2002, 88(25): 257901
CrossRef
ADS
Google scholar
|
[25] |
G. Berkhout , M. Lavery , J. Courtial , M. Beijersbergen , M. Padgett . Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett., 2010, 105(15): 153601
CrossRef
ADS
Google scholar
|
[26] |
M. Mirhosseini , M. Malik , Z. Shi , R. Boyd . Efficient separation of the orbital angular momentum eigenstates of light. Nat. Commun., 2013, 4(1): 2781
CrossRef
ADS
Google scholar
|
[27] |
Y. H. Wen , I. Chremmos , Y. J. Chen , J. B. Zhu , Y. F. Zhang , S. Y. Yu . Spiral transformation for high-resolution and efficient sorting of optical vortex modes. Phys. Rev. Lett., 2018, 120(19): 193904
CrossRef
ADS
Google scholar
|
[28] |
G. Gibson , J. Courtial , M. J. Padgett , M. Vasnetsov , V. Pas’ko , S. M. Barnett , S. Franke-Arnold . Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 2004, 12(22): 5448
CrossRef
ADS
Google scholar
|
[29] |
T. Doster , A. T. Watnik . Machine learning approach to OAM beam demultiplexing via convolutional neural networks. Appl. Opt., 2017, 56(12): 3386
CrossRef
ADS
Google scholar
|
[30] |
S. Lohani , E. M. Knutson , M. O’Donnell , S. D. Huver , R. T. Glasser . On the use of deep neural networks in optical communications. Appl. Opt., 2018, 57(15): 4180
CrossRef
ADS
Google scholar
|
[31] |
S. Park , L. Cattell , J. Nichols , A. Watnik , T. Doster , G. Rohde . De-multiplexing vortex modes in optical communications using transport-based pattern recognition. Opt. Express, 2018, 26(4): 4004
CrossRef
ADS
Google scholar
|
[32] |
J. Li , M. Zhang , D. S. Wang . Adaptive demodulator using machine learning for orbital angular momentum shift keying. IEEE Photonics Technol. Lett., 2017, 29(17): 1455
CrossRef
ADS
Google scholar
|
[33] |
Q. S. Zhao , S. Q. Hao , Y. Wang , L. Wang , X. F. Wan , C. L. Xu . Mode detection of misaligned orbital angular momentum beams based on convolutional neural network. Appl. Opt., 2018, 57(35): 10152
CrossRef
ADS
Google scholar
|
[34] |
S. Lohani , R. T. Glasser . Turbulence correction with artificial neural networks. Opt. Lett., 2018, 43(11): 2611
CrossRef
ADS
Google scholar
|
[35] |
Q. H. Tian , Z. Li , K. Hu , L. Zhu , X. L. Pan , Q. Zhang , Y. J. Wang , F. Tian , X. L. Yin , X. J. Xin . Turbo-coded 16-ary OAM shift keying FSO communication system combining the CNN-based adaptive demodulator. Opt. Express, 2018, 26(21): 27849
CrossRef
ADS
Google scholar
|
[36] |
J. Li , M. Zhang , D. S. Wang , S. J. Wu , Y. Y. Zhan . Joint atmospheric turbulence detection and adaptive demodulation technique using the CNN for the OAM‒FSO communication. Opt. Express, 2018, 26(8): 10494
CrossRef
ADS
Google scholar
|
[37] |
Y. Z. Shi , Z. H. Ma , H. Y. Chen , Y. G. Ke , Y. Chen , X. X. Zhou . High-resolution recognition of FOAM modes via an improved EfficientNet V2 based convolutional neural network. Front. Phys., 2024, 19(3): 32205
CrossRef
ADS
Google scholar
|
[38] |
H.LuanD.LinK.LiW.MengM.GuX.Fang, 768-ary Laguerre‒Gaussian-mode shift keying free-space optical communication based on convolutional neural networks, Opt. Express 29(13), 19807 (2021)
|
[39] |
A. Maurer , M. Pontil , B. Paredes . The benefit of multitask representation learning. J. Mach. Learn. Res., 2016, 17(1): 2853
CrossRef
ADS
Google scholar
|
[40] |
Z. X. Mao , H. Y. Yu , M. Xia , S. Z. Pan , D. Wu , Y. L. Yin , Y. Xia , J. P. Yin . Broad bandwidth and highly efficient recognition of optical vortex modes achieved by the neural-network approach. Phys. Rev. Appl., 2020, 13(3): 034063
CrossRef
ADS
Google scholar
|
[41] |
J. Davis , D. Cottrell , J. Campos , M. Yzuel , I. Moreno . Encoding amplitude information onto phase-only filters. Appl. Opt., 1999, 38(23): 5004
CrossRef
ADS
Google scholar
|
[42] |
E. Bolduc , N. Bent , E. Santamato , E. Karimi , R. W. Boyd . Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram. Opt. Lett., 2013, 38(18): 3546
CrossRef
ADS
Google scholar
|
[43] |
K.ThungC.Wee, A brief review on multi-task learning, Multimedia Tools Appl. 77(22), 29705 (2018)
|
[44] |
Y. Zhang , Q. Yang . An overview of multi-task learning. Natl. Sci. Rev., 2018, 5(1): 30
CrossRef
ADS
Google scholar
|
[45] |
C.SzegedyL.WeiJ.YangqingP.SermanetS.ReedD.AnguelovD.ErhanV.VanhouckeA.Rabinovich, Going deeper with convolutions, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 1 (2015)
|
[46] |
S.XieR.B. GirshickP.DollárZ.TuK.He, Aggregated residual transformations for deep neural networks, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 5987 (2017)
|
[47] |
R.CollobertJ.Weston, A unified architecture for natural language processing: deep neural networks with multitask learning, in: Proceedings of the 25th International Conference on Machine Learning, Association for Computing Machinery: Helsinki, Finland, 160–167 (2008)
|
[48] |
X. Cui , W. Zhang , U. Finkler , G. Saon , M. Picheny , D. Kung . Distributed training of deep neural network acoustic models for automatic speech recognition: A comparison of current training strategies. IEEE Signal Process. Mag., 2020, 37(3): 39
CrossRef
ADS
Google scholar
|
[49] |
R.B. GirshickR.C. N. N. Fast, IEEE International Conference on Computer Vision (ICCV), 1440 (2015)
|
[50] |
B. L. Li , H. T. Luan , K. Y. Li , Q. Y. Chen , W. J. Meng , K. Cheng , M. Gu , X. Y. Fang . Orbital angular momentum optical communications enhanced by artificial intelligence. J. Opt., 2022, 24(9): 094003
CrossRef
ADS
Google scholar
|
[51] |
Z. S. Wan , H. Wang , Q. Liu , X. Fu , Y. J. Shen . Ultra-degree-of-freedom structured light for ultracapacity information carriers. ACS Photonics, 2023, 10(7): 2149
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |