Information transmission through parallel multi-task-based recognition of high-resolution multiplexed orbital angular momentum

Jingwen Zhou, Yaling Yin, Jihong Tang, Yong Xia, Jianping Yin

PDF(7779 KB)
PDF(7779 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (5) : 52202. DOI: 10.1007/s11467-024-1402-y
RESEARCH ARTICLE

Information transmission through parallel multi-task-based recognition of high-resolution multiplexed orbital angular momentum

Author information +
History +

Abstract

Orbital angular momentums (OAMs) greatly enhance the channel capacity in free-space optical communication. However, demodulation of superposed OAM to recognize them separately is always difficult, especially upon multiplexing more OAMs. In this work, we report a directly recognition of multiplexed fractional OAM modes, without separating them, at a resolution of 0.1 with high accuracy, using a multi-task deep learning (MTDL) model, which has not been reported before. Namely, two-mode, four-mode, and eight-mode superposed OAM beams, experimentally generated with a hologram carrying both phase and amplitude information, are well recognized by the suitable MTDL model. Two applications in information transmission are presented: the first is for 256-ary OAM shift keying via multiplexed fractional OAMs; the second is for OAM division multiplexed information transmission in an eightfold speed. The encouraging results will expand the capacity in future free-space optical communication.

Graphical abstract

Keywords

information transmission / orbital angular momentum / multi-task deep learning / holographic multiplexing / structured light

Cite this article

Download citation ▾
Jingwen Zhou, Yaling Yin, Jihong Tang, Yong Xia, Jianping Yin. Information transmission through parallel multi-task-based recognition of high-resolution multiplexed orbital angular momentum. Front. Phys., 2024, 19(5): 52202 https://doi.org/10.1007/s11467-024-1402-y

References

[1]
A. E. Willner , H. Huang , Y. Yan , Y. Ren , N. Ahmed , G. Xie , C. Bao , L. Li , Y. Cao , Z. Zhao , J. Wang , M. P. J. Lavery , M. Tur , S. Ramachandran , A. F. Molisch , N. Ashrafi , S. Ashrafi . Optical communications using orbital angular momentum beams. Adv. Opt. Photonics, 2015, 7(1): 66
CrossRef ADS Google scholar
[2]
H. Rubinsztein-Dunlop , A. Forbes , M. V. Berry , M. R. Dennis , D. L. Andrews , M. Mansuripur , C. Denz , C. Alpmann , P. Banzer , T. Bauer , E. Karimi , L. Marrucci , M. Padgett , M. Ritsch-Marte , N. M. Litchinitser , N. P. Bigelow , C. Rosales-Guzmán , A. Belmonte , J. P. Torres , T. W. Neely , M. Baker , R. Gordon , A. B. Stilgoe , J. Romero , A. G. White , R. Fickler , A. E. Willner , G. Xie , B. McMorran , A. M. Weiner . Roadmap on structured light. J. Opt., 2017, 19(1): 013001
CrossRef ADS Google scholar
[3]
L. Allen , M. Beijersbergen , R. Spreeuw , J. Woerdman . Orbital angular momentum of light and transformation of Laguerre‒Gaussian laser modes. Phys. Rev. A, 1992, 45(11): 8185
CrossRef ADS Google scholar
[4]
J. P. Yin , W. J. Gao , Y. F. Zhu . Generation of dark hollow beams and their applications. Prog. Opt., 2003, 45(11): 119
CrossRef ADS Google scholar
[5]
M.J. Padgett, Orbital angular momentum 25 years on, Opt. Express 25(10), 11265 (2017) (Invited)
[6]
Y. J. Shen , X. J. Wang , Z. W. Xie , C. J. Min , X. Fu , Q. Liu , M. L. Gong , X. C. Yuan . Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 2019, 8(1): 90
CrossRef ADS Google scholar
[7]
A. Forbes , S. Ramachandran , Q. W. Zhan . Photonic angular momentum: Progress and perspectives. Nanophotonics, 2022, 11(4): 625
CrossRef ADS Google scholar
[8]
S. J. Li , Z. Y. Li , G. S. Huang , X. B. Liu , R. Q. Li , X. Y. Cao . Digital coding transmissive metasurface for multi-OAM-beam. Front. Phys., 2022, 17(6): 62501
CrossRef ADS Google scholar
[9]
L. Jin , Y. W. Huang , Z. W. Jin , R. C. Devlin , Z. G. Dong , S. T. Mei , M. H. Jiang , W. T. Chen , Z. Wei , H. Liu , J. H. Teng , A. Danner , X. P. Li , S. M. Xiao , S. Zhang , C. Y. Yu , J. K. W. Yang , F. Capasso , C. W. Qiu . Dielectric multi-momentum meta-transformer in the visible. Nat. Commun., 2019, 10(1): 4789
CrossRef ADS Google scholar
[10]
X. Y. Fang , H. J. Wang , H. C. Yang , Z. L. Ye , Y. M. Wang , Y. Zhang , X. P. Hu , S. N. Zhu , M. Xiao . Multichannel nonlinear holography in a two-dimensional nonlinear photonic crystal. Phys. Rev. A, 2020, 102(4): 043506
CrossRef ADS Google scholar
[11]
J. J. Guo , Y. P. Zhang , H. Ye , L. Y. Wang , P. C. Chen , D. J. Mao , C. Z. Xie , Z. H. Chen , X. W. Wu , M. Xiao , Y. Zhang . Spatially structured-mode multiplexing holography for high-capacity security encryption. ACS Photonics, 2023, 10(3): 757
CrossRef ADS Google scholar
[12]
A. E. Willner , Z. Zhao , C. Liu , R. Zhang , H. Song , K. Pang , K. Manukyan , H. Song , X. Su , G. Xie , Y. Ren , Y. Yan , M. Tur , A. F. Molisch , R. W. Boyd , H. Zhou , N. Hu , A. Minoofar , H. Huang . Perspectives on advances in high-capacity, free-space communications using multiplexing of orbital-angular-momentum beams. APL Photonics, 2021, 6(3): 030901
CrossRef ADS Google scholar
[13]
J. Lin , X. C. Yuan , S. H. Tao , R. E. Burge . Multiplexing free-space optical signals using superimposed collinear orbital angular momentum states. Appl. Opt., 2007, 46(21): 4680
CrossRef ADS Google scholar
[14]
J. Wang , J. Y. Yang , I. M. Fazal , N. Ahmed , Y. Yan , H. Huang , Y. X. Ren , Y. Yue , S. Dolinar , M. Tur , A. E. Willner . Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 2012, 6(7): 488
CrossRef ADS Google scholar
[15]
N. Bozinovic , Y. Yue , Y. Ren , M. Tur , P. Kristensen , H. Huang , A. E. Willner , S. Ramachandran . Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340(6140): 1545
CrossRef ADS Google scholar
[16]
G. Vallone , V. D’Ambrosio , A. Sponselli , S. Slussarenko , L. Marrucci , F. Sciarrino , P. Villoresi . Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett., 2014, 113(6): 060503
CrossRef ADS Google scholar
[17]
H.HuangG.XieY.YanN.AhmedY.RenY.YueD.RogawskiM.J. WillnerB.I. ErkmenK.M. BirnbaumS.J. DolinarM.P. J. LaveryM.J. PadgettM.TurA.E. Willner, 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wave-length, Opt. Lett. 39(2), 197 (2014)
[18]
M. Krenn , R. Fickler , M. Fink , J. Handsteiner , M. Malik , T. Scheidl , R. Ursin , A. Zeilinger . Communication with spatially modulated light through turbulent air across Vienna. New J. Phys., 2014, 16(11): 113028
CrossRef ADS Google scholar
[19]
A. J. Willner , Y. Ren , G. Xie , Z. Zhao , Y. Cao , L. Li , N. Ahmed , Z. Wang , Y. Yan , P. Liao , C. Liu , M. Mirhosseini , R. W. Boyd , M. Tur , A. E. Willner . Experimental demonstration of 20 Gbit/s data encoding and 2 ns channel hopping using orbital angular momentum modes. Opt. Lett., 2015, 40(24): 5810
CrossRef ADS Google scholar
[20]
M. Krenn , J. Handsteiner , M. Fink , R. Fickler , R. Ursin , M. Malik , A. Zeilinger . Twisted light transmission over 143 km. Proc. Natl. Acad. Sci. USA, 2016, 113(48): 13648
CrossRef ADS Google scholar
[21]
H. Zhang , J. Zeng , X. Y. Lu , Z. Y. Wang , C. L. Zhao , Y. J. Cai . Review on fractional vortex beam. Nanophotonics, 2022, 11(2): 241
CrossRef ADS Google scholar
[22]
Z. W. Liu , S. Yan , H. G. Liu , X. F. Chen . Superhigh-resolution recognition of optical vortex modes assisted by a deep-learning method. Phys. Rev. Lett., 2019, 123(18): 183902
CrossRef ADS Google scholar
[23]
Y. Na , D. K. Ko . Adaptive demodulation by deep-learning-based identification of fractional orbital angular momentum modes with structural distortion due to atmospheric turbulence. Sci. Rep., 2021, 11(1): 23505
CrossRef ADS Google scholar
[24]
J. Leach , M. Padgett , S. Barnett , S. Franke-Arnold , J. Courtial . Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett., 2002, 88(25): 257901
CrossRef ADS Google scholar
[25]
G. Berkhout , M. Lavery , J. Courtial , M. Beijersbergen , M. Padgett . Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett., 2010, 105(15): 153601
CrossRef ADS Google scholar
[26]
M. Mirhosseini , M. Malik , Z. Shi , R. Boyd . Efficient separation of the orbital angular momentum eigenstates of light. Nat. Commun., 2013, 4(1): 2781
CrossRef ADS Google scholar
[27]
Y. H. Wen , I. Chremmos , Y. J. Chen , J. B. Zhu , Y. F. Zhang , S. Y. Yu . Spiral transformation for high-resolution and efficient sorting of optical vortex modes. Phys. Rev. Lett., 2018, 120(19): 193904
CrossRef ADS Google scholar
[28]
G. Gibson , J. Courtial , M. J. Padgett , M. Vasnetsov , V. Pas’ko , S. M. Barnett , S. Franke-Arnold . Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 2004, 12(22): 5448
CrossRef ADS Google scholar
[29]
T. Doster , A. T. Watnik . Machine learning approach to OAM beam demultiplexing via convolutional neural networks. Appl. Opt., 2017, 56(12): 3386
CrossRef ADS Google scholar
[30]
S. Lohani , E. M. Knutson , M. O’Donnell , S. D. Huver , R. T. Glasser . On the use of deep neural networks in optical communications. Appl. Opt., 2018, 57(15): 4180
CrossRef ADS Google scholar
[31]
S. Park , L. Cattell , J. Nichols , A. Watnik , T. Doster , G. Rohde . De-multiplexing vortex modes in optical communications using transport-based pattern recognition. Opt. Express, 2018, 26(4): 4004
CrossRef ADS Google scholar
[32]
J. Li , M. Zhang , D. S. Wang . Adaptive demodulator using machine learning for orbital angular momentum shift keying. IEEE Photonics Technol. Lett., 2017, 29(17): 1455
CrossRef ADS Google scholar
[33]
Q. S. Zhao , S. Q. Hao , Y. Wang , L. Wang , X. F. Wan , C. L. Xu . Mode detection of misaligned orbital angular momentum beams based on convolutional neural network. Appl. Opt., 2018, 57(35): 10152
CrossRef ADS Google scholar
[34]
S. Lohani , R. T. Glasser . Turbulence correction with artificial neural networks. Opt. Lett., 2018, 43(11): 2611
CrossRef ADS Google scholar
[35]
Q. H. Tian , Z. Li , K. Hu , L. Zhu , X. L. Pan , Q. Zhang , Y. J. Wang , F. Tian , X. L. Yin , X. J. Xin . Turbo-coded 16-ary OAM shift keying FSO communication system combining the CNN-based adaptive demodulator. Opt. Express, 2018, 26(21): 27849
CrossRef ADS Google scholar
[36]
J. Li , M. Zhang , D. S. Wang , S. J. Wu , Y. Y. Zhan . Joint atmospheric turbulence detection and adaptive demodulation technique using the CNN for the OAM‒FSO communication. Opt. Express, 2018, 26(8): 10494
CrossRef ADS Google scholar
[37]
Y. Z. Shi , Z. H. Ma , H. Y. Chen , Y. G. Ke , Y. Chen , X. X. Zhou . High-resolution recognition of FOAM modes via an improved EfficientNet V2 based convolutional neural network. Front. Phys., 2024, 19(3): 32205
CrossRef ADS Google scholar
[38]
H.LuanD.LinK.LiW.MengM.GuX.Fang, 768-ary Laguerre‒Gaussian-mode shift keying free-space optical communication based on convolutional neural networks, Opt. Express 29(13), 19807 (2021)
[39]
A. Maurer , M. Pontil , B. Paredes . The benefit of multitask representation learning. J. Mach. Learn. Res., 2016, 17(1): 2853
CrossRef ADS Google scholar
[40]
Z. X. Mao , H. Y. Yu , M. Xia , S. Z. Pan , D. Wu , Y. L. Yin , Y. Xia , J. P. Yin . Broad bandwidth and highly efficient recognition of optical vortex modes achieved by the neural-network approach. Phys. Rev. Appl., 2020, 13(3): 034063
CrossRef ADS Google scholar
[41]
J. Davis , D. Cottrell , J. Campos , M. Yzuel , I. Moreno . Encoding amplitude information onto phase-only filters. Appl. Opt., 1999, 38(23): 5004
CrossRef ADS Google scholar
[42]
E. Bolduc , N. Bent , E. Santamato , E. Karimi , R. W. Boyd . Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram. Opt. Lett., 2013, 38(18): 3546
CrossRef ADS Google scholar
[43]
K.ThungC.Wee, A brief review on multi-task learning, Multimedia Tools Appl. 77(22), 29705 (2018)
[44]
Y. Zhang , Q. Yang . An overview of multi-task learning. Natl. Sci. Rev., 2018, 5(1): 30
CrossRef ADS Google scholar
[45]
C.SzegedyL.WeiJ.YangqingP.SermanetS.ReedD.AnguelovD.ErhanV.VanhouckeA.Rabinovich, Going deeper with convolutions, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 1 (2015)
[46]
S.XieR.B. GirshickP.DollárZ.TuK.He, Aggregated residual transformations for deep neural networks, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 5987 (2017)
[47]
R.CollobertJ.Weston, A unified architecture for natural language processing: deep neural networks with multitask learning, in: Proceedings of the 25th International Conference on Machine Learning, Association for Computing Machinery: Helsinki, Finland, 160–167 (2008)
[48]
X. Cui , W. Zhang , U. Finkler , G. Saon , M. Picheny , D. Kung . Distributed training of deep neural network acoustic models for automatic speech recognition: A comparison of current training strategies. IEEE Signal Process. Mag., 2020, 37(3): 39
CrossRef ADS Google scholar
[49]
R.B. GirshickR.C. N. N. Fast, IEEE International Conference on Computer Vision (ICCV), 1440 (2015)
[50]
B. L. Li , H. T. Luan , K. Y. Li , Q. Y. Chen , W. J. Meng , K. Cheng , M. Gu , X. Y. Fang . Orbital angular momentum optical communications enhanced by artificial intelligence. J. Opt., 2022, 24(9): 094003
CrossRef ADS Google scholar
[51]
Z. S. Wan , H. Wang , Q. Liu , X. Fu , Y. J. Shen . Ultra-degree-of-freedom structured light for ultracapacity information carriers. ACS Photonics, 2023, 10(7): 2149
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

Financial supports are from the National Natural Science Foundation of China (Grant Nos. 12174115, 91836103, and 11834003).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(7779 KB)

Accesses

Citations

Detail

Sections
Recommended

/