Multi-terminal pectin/chitosan hybrid electrolyte gated oxide neuromorphic transistor with multi-mode cognitive activities

Yan Li, You Jie Huang, Xin Li Chen, Wei Sheng Wang, Xin Huang, Hui Xiao, Li Qiang Zhu

PDF(15442 KB)
PDF(15442 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (5) : 53204. DOI: 10.1007/s11467-024-1401-z
RESEARCH ARTICLE

Multi-terminal pectin/chitosan hybrid electrolyte gated oxide neuromorphic transistor with multi-mode cognitive activities

Author information +
History +

Abstract

In order to fulfill the urgent requirements of functional products, circuit integration of different functional devices are commonly utilized. Thus, issues including production cycle, cost, and circuit crosstalk will get serious. Neuromorphic computing aims to break through the bottle neck of von Neumann architectures. Electronic devices with multi-operation modes, especially neuromorphic devices with multi-mode cognitive activities, would provide interesting solutions. Here, pectin/chitosan hybrid electrolyte gated oxide neuromorphic transistor was fabricated. With extremely strong proton related interfacial electric-double-layer coupling, the device can operate at low voltage of below 1 V. The device can also operate at multi-operation mode, including bottom gate mode, coplanar gate and pseudo-diode mode. Interestingly, the artificial synapse can work at low voltage of only 1 mV, exhibiting extremely low energy consumption of ~7.8 fJ, good signal-to-noise ratio of ~229.6 and sensitivity of ~23.6 dB. Both inhibitory and excitatory synaptic responses were mimicked on the pseudo-diode, demonstrating spike rate dependent plasticity activities. Remarkably, a linear classifier is proposed on the oxide neuromorphic transistor under synaptic metaplasticity mechanism. These results suggest great potentials of the oxide neuromorphic devices with multi-mode cognitive activities in neuromorphic platform.

Graphical abstract

Keywords

pectin/chitosan hybrid electrolyte / pseudo-diode function / multi-mode cognitive activities / ultrasensitive oxide neuromorphic device / linear data classifier

Cite this article

Download citation ▾
Yan Li, You Jie Huang, Xin Li Chen, Wei Sheng Wang, Xin Huang, Hui Xiao, Li Qiang Zhu. Multi-terminal pectin/chitosan hybrid electrolyte gated oxide neuromorphic transistor with multi-mode cognitive activities. Front. Phys., 2024, 19(5): 53204 https://doi.org/10.1007/s11467-024-1401-z

References

[1]
J. Backus . Can programming be liberated from the von Neumann style? A function style and its algebra of programs. Commun. ACM, 1978, 21(8): 613
CrossRef ADS Google scholar
[2]
M. D. Godfrey , D. F. Hendry . The computer as von Neumann planned it. IEEE Ann. Hist. Comput., 1993, 15(1): 11
CrossRef ADS Google scholar
[3]
R. Colom , S. Karama , R. E. Jung , R. J. Haier . Human intelligence and brain networks. Dialogues Clin. Neurosci., 2010, 12(4): 489
CrossRef ADS Google scholar
[4]
D. F. Lohman . Human intelligence: An introduction to advances in theory and research. Rev. Educ. Res., 1989, 59(4): 333
CrossRef ADS Google scholar
[5]
L. F. Abbott , W. G. Regehr . Synaptic computation. Nature, 2004, 431(7010): 796
CrossRef ADS Google scholar
[6]
E. J. Fuller , S. T. Keene , A. Melianas , Z. R. Wang , S. Agarwal , Y. Y. Li , Y. Tuchman , C. D. James , M. J. Marinella , J. J. Yang , A. Salleo , A. A. Talin . Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science, 2019, 364(6440): 570
CrossRef ADS Google scholar
[7]
M. M. Poo , J. L. Du , N. Y. Ip , Z. Q. Xiong , B. Xu , T. Tan . China brain project: Basic neuroscience, brain diseases, and brain-inspired computing. Neuron, 2016, 92(3): 591
CrossRef ADS Google scholar
[8]
M. A. Zidan , J. P. Strachan , W. D. Lu . The future of electronics based on memristive systems. Nat. Electron., 2018, 1(1): 22
CrossRef ADS Google scholar
[9]
C. Mead . Neuromorphic electronic systems. Proc. IEEE, 1990, 78(10): 1629
CrossRef ADS Google scholar
[10]
M. K. Kim , J. S. Lee . Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics. ACS Nano, 2018, 12(2): 1680
CrossRef ADS Google scholar
[11]
J. B. Chen , T. T. Guo , C. Y. Yang , J. W. Xu , L. Y. Gao , S. J. Jia , P. Zhang , J. T. Chen , Y. Zhao , J. Wang , X. Q. Zhang , Y. Li . Synaptic plasticity of a microfluidic memristor with a temporary memory function based on an ionic liquid in a capillary tube. J. Phys. Chem. C, 2023, 127(6): 3307
CrossRef ADS Google scholar
[12]
S. H. Jo , T. Chang , I. Ebong , B. B. Bhadviya , P. Mazumder , W. Lu . Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett., 2010, 10(4): 1297
CrossRef ADS Google scholar
[13]
H. Chen , X. G. Tang , Z. H. Shen , W. T. Guo , Q. J. Sun , Z. H. Tang , Y. P. Jiang . Emerging memristors and applications in reservoir computing. Front. Phys., 2024, 19(1): 13401
CrossRef ADS Google scholar
[14]
S. X. Liu , J. M. Zeng , Q. L. Chen , G. Liu . Recent advances in halide perovskite memristors: From materials to applications. Front. Phys., 2024, 19(2): 23501
CrossRef ADS Google scholar
[15]
L. Q. Zhu , C. J. Wan , L. Q. Guo , Y. Shi , Q. Wan . Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun., 2014, 5(1): 3158
CrossRef ADS Google scholar
[16]
C.GeC.X. LiuQ.L. ZhouQ.H. ZhangJ.Y. DuJ.K. LiC.WangL.GuG.Z. YangK.J. Jin, A ferrite synaptic transistor with topotactic transformation, Adv. Mater. 31(19), 1900379 (2019)
[17]
H. L. Park , H. Kim , D. Lim , H. Zhou , Y. H. Kim , Y. Lee , S. Park , T. W. Lee . Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light. Adv. Mater., 2020, 32(11): 1906899
CrossRef ADS Google scholar
[18]
Y. B. Guo , L. Q. Zhu . Recent progress in optoelectronic neuromorphic devices. Chin. Phys. B, 2020, 29(7): 078502
CrossRef ADS Google scholar
[19]
Y. C. Cai , J. Yang , F. Wang , S. H. Li , Y. R. Wang , X. Y. Zhan , F. M. Wang , R. Q. Cheng , Z. X. Wang , J. He . Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors. Front. Phys., 2023, 18(3): 33308
CrossRef ADS Google scholar
[20]
Q. Xia , J. J. Yang . Memristive crossbar arrays for brain-inspired computing. Nat. Mater., 2019, 18(4): 309
CrossRef ADS Google scholar
[21]
S. H. Kim , K. Hong , W. Xie , K. H. Lee , S. Zhang , T. P. Lodge , C. D. Frisbie . Electrolyte-gated transistors for organic and printed electronics. Adv. Mater., 2013, 25(13): 1822
CrossRef ADS Google scholar
[22]
Y. Li , C. Zhang , X. L. Zhao , Y. H. Tong , Q. X. Tang , Y. C. Liu . Ultrasensitive and degradable ultra-flexible synaptic transistors based on natural pectin. ACS Appl. Electron. Mater., 2022, 4(1): 316
CrossRef ADS Google scholar
[23]
R. W. Stoddart , A. J. Barrett , D. H. Northcote . Pectic polysaccharides of growing plant tissues. Biochem. J., 1967, 102(1): 194
CrossRef ADS Google scholar
[24]
T.WeymuthC.R. JacobM.Reiher, A local-mode model for understanding the dependence of the extended amide III vibrations on protein secondary structure, J. Phys. Chem. B 114(32), 10649 (2010)
[25]
C. J. Wan , Y. H. Liu , P. Feng , W. Wang , L. Q. Zhu , Z. P. Liu , Y. Shi , Q. Wan . Flexible metal oxide/graphene oxide hybrid neuromorphic transistors on flexible conducting graphene substrates. Adv. Mater., 2016, 28(28): 5878
CrossRef ADS Google scholar
[26]
H. Han , L. Q. Zhu , Z. Y. Ren , H. Xiao , L. Q. Guo . Poly (vinyl alcohol)/graphene oxide hybrid electrolyte gated oxide neuron transistors for multifunctional logic applications. J. Phys. D Appl. Phys., 2020, 53(11): 115106
CrossRef ADS Google scholar
[27]
L. Q. Guo , J. Tao , L. Q. Zhu , H. Xiao , W. T. Gao , F. Yu , Y. M. Fu . Starch-based biopolymer electrolyte gated oxide synaptic transistors. Org. Electron., 2018, 61: 312
CrossRef ADS Google scholar
[28]
C. J. Wan , L. Q. Zhu , X. Wan , Y. Shi , Q. Wan . Organic/inorganic hybrid synaptic transistors gated by proton conducting methylcellulose films. Appl. Phys. Lett., 2016, 108(4): 043508
CrossRef ADS Google scholar
[29]
Z. Y. Li , L. Q. Zhu , L. Q. Guo , Z. Y. Ren , H. Xiao , J. C. Cai . Mimicking neurotransmitter activity and realizing algebraic arithmetic on flexible protein-gated oxide neuromorphic transistors. ACS Appl. Mater. Interfaces, 2021, 13(6): 7784
CrossRef ADS Google scholar
[30]
Z. Y. Ren , Y. H. Kong , L. Ai , H. Xiao , W. S. Wang , Z. W. Shi , L. Q. Zhu . Proton gated oxide neuromorphic transistors with bionic vision enhancement and information decoding. J. Mater. Chem. C, 2022, 10(18): 7241
CrossRef ADS Google scholar
[31]
W. S. Wang , Z. W. Shi , X. L. Chen , Y. Li , H. Xiao , Y. H. Zeng , X. D. Pi , L. Q. Zhu . Biodegradable oxide neuromorphic transistors for neuromorphic computing and anxiety disorder emulation. ACS Appl. Mater. Interfaces, 2023, 15(40): 47640
CrossRef ADS Google scholar
[32]
H. S. Kim , H. Park , W. J. Cho . Biocompatible casein electrolyte-based electric-double-layer for artificial synaptic transistors. Nanomaterials (Basel), 2022, 12(15): 2596
CrossRef ADS Google scholar
[33]
D. H. Lee , H. Park , W. J. Cho . Synaptic transistors based on PVA: Chitosan biopolymer blended electric-double-layer with high ionic conductivity. Polymers (Basel), 2023, 15(4): 896
CrossRef ADS Google scholar
[34]
T. Y. Long , L. Q. Zhu , Z. Y. Ren , Y. B. Guo . Global modulatory heterosynaptic mechanisms in bio-polymer electrolyte gated oxide neuron transistors. J. Phys. D Appl. Phys., 2020, 53(43): 435105
CrossRef ADS Google scholar
[35]
W. Dou , W. Hou , Y. Y. Tan , X. M. Gan , Z. R. Xie , X. Yuan , L. H. Lei , J. L. Zhang . Flexible transparent electric-double-layer junctionless thin film transistors with low operating voltage. ECS J. Solid State Sci. Technol., 2021, 10(11): 115003
CrossRef ADS Google scholar
[36]
S. Ghoshal , J. Claassen . Spreading depolarization and acute ischaemia in subarachnoid haemorrhage: the role of mass depolarization waves. Brain, 2017, 140(10): 2527
CrossRef ADS Google scholar
[37]
W. Li , C. X. Wu , J. W. Hou , J. Sun , Q. S. Wang , P. P. Zhang , Y. Yu , M. Yang , M. Chen , B. F. Mo , Y. P. Wang , Y. G. Li . Higher sodium channel excitability in cardiac purkinje fibers: Implications for multifocal ectopic purkinje-related premature contractions. JACC Clin. Electrophysiol., 2023, 9(12): 2477
CrossRef ADS Google scholar
[38]
D. Debanne , N. C. Guerineau , B. H. Gahwiler , S. M. Thompson . Paired pulse facilitation and depression at unitary synapses in rat hippocampus quantal fluctuation affects subsequent release. J. Physiol., 1996, 491(1): 163
CrossRef ADS Google scholar
[39]
R. F. Waldeck , A. Pereda , D. S. Faber . Properties and plasticity of paired- pulse depression at a central synapse. J. Neurosci., 2000, 20(14): 5312
CrossRef ADS Google scholar
[40]
M. A. Mukhamedyarov , S. N. Grishin , A. L. Zefirov , A. Palotas . The mechanisms of multi-component paired-pulse facilitation of neurotransmitter release at the frog neuromuscular junction. Pflugers Arch., 2009, 458(3): 563
CrossRef ADS Google scholar
[41]
I. Sotiropoulos , J. L. Trejo . Brain metaplasticity. Neuroscience, 2021, 454: 1
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51972316 and U22A2075) and Ningbo Key Scientific and Technological Project (No. 2021Z116).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(15442 KB)

Accesses

Citations

Detail

Sections
Recommended

/