Atom-field dynamics in curved spacetime

Syed Masood A. S. Bukhari, Li-Gang Wang

PDF(4652 KB)
PDF(4652 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (5) : 54203. DOI: 10.1007/s11467-024-1400-0
TOPICAL REVIEW

Atom-field dynamics in curved spacetime

Author information +
History +

Abstract

Some aspects of atom-field interactions in curved spacetime are reviewed. Of great interest are quantum radiative and entanglement processes arising out of Rindler and black hole spacetimes, which involve the role of Hawking−Unruh and dynamical Casimir effects. Most of the discussion surrounds the radiative part of interactions. For this, we specifically reassess the conventional understandings of atomic radiative transitions and energy level shifts in curved spacetime. We also briefly outline the status quo of entanglement dynamics study in curved spacetime, and highlight literature related to some novel insights, like entanglement harvesting. On one hand, the study of the role played by spacetime curvature in quantum radiative and informational phenomena has implications for fundamental physics, notably the gravity-quantum interface. In particular, one examines the viability of the Equivalence Principle, which is at the heart of Einstein’s general theory of relativity. On the other hand, it can be instructive for manipulating quantum information and light propagation in arbitrary geometries. Some issues related to nonthermal effects of acceleration are also discussed.

Graphical abstract

Keywords

atom-field interactions / general relativity / Minkowski and curved spacetime / quantum field theory in curved spacetime / light−matter interactions / spontaneous excitations

Cite this article

Download citation ▾
Syed Masood A. S. Bukhari, Li-Gang Wang. Atom-field dynamics in curved spacetime. Front. Phys., 2024, 19(5): 54203 https://doi.org/10.1007/s11467-024-1400-0

References

[1]
G. A. Mourou, T. Tajima, S. V. Bulanov. Optics in the relativistic regime. Rev. Mod. Phys., 2006, 78(2): 309
CrossRef ADS Google scholar
[2]
H. Walther, B. T. H. Varcoe, B. G. Englert, T. Becker. Cavity quantum electrodynamics. Rep. Prog. Phys., 2006, 69(5): 1325
CrossRef ADS Google scholar
[3]
D. E. Chang, J. S. Douglas, A. González-Tudela, C. L. Hung, H. J. Kimble. Quantum matter built from nanoscopic lattices of atoms and photons. Rev. Mod. Phys., 2018, 90(3): 031002
CrossRef ADS Google scholar
[4]
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, I. Carusotto. Topological photonics. Rev. Mod. Phys., 2019, 91(1): 015006
CrossRef ADS Google scholar
[5]
G. M. Harry (for the LIGO Scientific Collaboration). Advanced LIGO: The next generation of gravitational wave detectors. Class. Quantum Gravity, 2010, 27(8): 084006
CrossRef ADS Google scholar
[6]
Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, H. Yamamoto (The KAGRA Collaboration). Interferometer design of the KAGRA gravitational wave detector. Phys. Rev. D, 2013, 88: 043007
CrossRef ADS Google scholar
[7]
K.L. DooleyJ. R. LeongT.AdamsC.AffeldtA.Bisht C.BoganJ. DegallaixC.GräfS.HildJ.Hough A.KhalaidovskiN.LastzkaJ.Lough H.LückD. MacleodL.NuttallM.PrijateljR.Schnabel E.SchreiberJ. SlutskyB.SorazuK.A. StrainH.VahlbruchM.WasB.WillkeH.Wittel K.DanzmannH. Grote, GEO 600 and the GEO-HF upgrade program: Successes and challenges, Class. Quantum Gravity 33(7), 075009 (2016)
[8]
H. Yu, . (LIGO Scientific). . Quantum correlations between light and the kilogram-mass mirrors of LIGO. Nature, 2020, 583(7814): 43
CrossRef ADS Google scholar
[9]
F. Acernese, . (The Virgo Collaboration). . Quantum backaction on kg-scale mirrors: Observation of radiation pressure noise in the advanced Virgo detector. Phys. Rev. Lett., 2020, 125(13): 131101
CrossRef ADS Google scholar
[10]
M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko, C. W. Clark. Search for new physics with atoms and molecules. Rev. Mod. Phys., 2018, 90(2): 025008
CrossRef ADS Google scholar
[11]
V. H. Schultheiss, S. Batz, A. Szameit, F. Dreisow, S. Nolte, A. Tünnermann, S. Longhi, U. Peschel. Optics in curved space. Phys. Rev. Lett., 2010, 105(14): 143901
CrossRef ADS Google scholar
[12]
V. H. Schultheiss, S. Batz, U. Peschel. Light in curved two-dimensional space. Adv. Phys. X, 2020, 5(1): 1759451
CrossRef ADS Google scholar
[13]
U. Leonhardt, T. G. Philbin. General relativity in electrical engineering. New J. Phys., 2006, 8(10): 247
CrossRef ADS Google scholar
[14]
T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. Konig, U. Leonhardt. Fiber-optical analog of the event horizon. Science, 2008, 319(5868): 1367
CrossRef ADS Google scholar
[15]
R.BekensteinY.KabessaY.Sharabi O.TalN. EnghetaG.EisensteinA.J. AgranatM.Segev, in: 2016 Conference on Lasers and Electro-Optics (CLEO), 1 (2016)
[16]
A. Patsyk, M. A. Bandres, R. Bekenstein, M. Segev. Observation of accelerating wave packets in curved space. Phys. Rev. X, 2018, 8(1): 011001
CrossRef ADS Google scholar
[17]
D.FaccioF. BelgiornoS.CacciatoriV.GoriniS.Liberati U.Moschella (Eds.), Analogue Gravity Phenomenology, Vol. 870, 2013
[18]
C. Viermann, M. Sparn, N. Liebster, M. Hans, E. Kath, Á. Parra-López, M. Tolosa-Simeón, N. Sánchez-Kuntz, T. Haas, H. Strobel, S. Floerchinger, M. K. Oberthaler. Quantum field simulator for dynamics in curved spacetime. Nature, 2022, 611(7935): 260
CrossRef ADS Google scholar
[19]
R. Lopp, E. S. Martín-Martinez, D. N. Page. Relativity and quantum optics: Accelerated atoms in optical cavities. Class. Quantum Gravity, 2018, 35(22): 224001
CrossRef ADS Google scholar
[20]
M. O. Scully, S. Fulling, D. Lee, D. N. Page, W. Schleich, A. Svidzinsky. Quantum optics approach to radiation from atoms falling into a black hole. Proc. Natl. Acad. Sci. USA, 2018, 115(32): 8131
CrossRef ADS Google scholar
[21]
E. Martín-Martínez, T. R. Perche, B. de S. L. Torres. General relativistic quantum optics: Finite-size particle detector models in curved spacetimes. Phys. Rev. D, 2020, 101(4): 045017
CrossRef ADS Google scholar
[22]
M. S. Zhan, Q. Y. Cai, B. C. Zhang. Gravitational effects of atomic and molecular systems. Sci. Sin. Phys. Mech. Astron., 2014, 44(9): 879
CrossRef ADS Google scholar
[23]
U.Leonhardt, Essential Quantum Optics, Cambridge: Cambridge University Press, 2010
[24]
I. Boettcher, P. Bienias, R. Belyansky, A. J. Kollár, A. V. Gorshkov. Quantum simulation of hyperbolic space with circuit quantum electrodynamics: From graphs to geometry. Phys. Rev. A, 2020, 102(3): 032208
CrossRef ADS Google scholar
[25]
D. G. Garcia, G. J. Chaplain, J. Bĕlín, T. Tyc, C. Englert, J. Courtial. Optical triangulations of curved spaces. Optica, 2020, 7: 142
CrossRef ADS Google scholar
[26]
J. Steinhauer. Observation of quantum Hawking radiation and its entanglement in an analogue black hole. Nat. Phys., 2016, 12(10): 959
CrossRef ADS Google scholar
[27]
U. Leonhardt. Questioning the recent observation of quantum Hawking radiation. Ann. Phys., 2018, 530(5): 1700114
CrossRef ADS Google scholar
[28]
J. Hu, L. Feng, Z. Zhang, C. Chin. Quantum simulation of Unruh radiation. Nat. Phys., 2019, 15(8): 785
CrossRef ADS Google scholar
[29]
T. Sheng, J. Qian, X. Li, Y. Niu, S. Gong. Quantum simulation of the Unruh effect with a Rydberg-dressed Bose‒Einstein condensate. Phys. Rev. A, 2021, 103(1): 013301
CrossRef ADS Google scholar
[30]
L. Parker. Quantized fields and particle creation in expanding universes. I. Phys. Rev., 1969, 183(5): 1057
CrossRef ADS Google scholar
[31]
L.Parker, Quantized fields and particle creation in expanding universes. II, Phys. Rev. D 3(2), 346 (1971) [Erratum: Phys. Rev. D 3, 2546 (1971)]
[32]
L. Parker. Particle creation and particle number in an expanding universe. J. Phys. A Math. Theor., 2012, 45(37): 374023
CrossRef ADS Google scholar
[33]
S.EckelA. KumarT.JacobsonI.B. SpielmanG.K. Campbell, A rapidly expanding Bose‒Einstein condensate: An expanding universe in the lab, Phys. Rev. X 8(2), 021021 (2018)
[34]
R. P. Schmit, B. G. Taketani, F. K. Wilhelm. Quantum simulation of particle creation in curved space-time. PLoS One, 2020, 15(3): e0229382
CrossRef ADS Google scholar
[35]
P. M. Alsing, G. J. Milburn. Teleportation with a uniformly accelerated partner. Phys. Rev. Lett., 2003, 91(18): 180404
CrossRef ADS Google scholar
[36]
I. Fuentes-Schuller, R. B. Mann. Alice falls into a black hole: Entanglement in noninertial frames. Phys. Rev. Lett., 2005, 95(12): 120404
CrossRef ADS Google scholar
[37]
T. G. Downes, I. Fuentes, T. C. Ralph. Entangling moving cavities in noninertial frames. Phys. Rev. Lett., 2011, 106(21): 210502
CrossRef ADS Google scholar
[38]
A. Peres, D. R. Terno. Quantum information and relativity theory. Rev. Mod. Phys., 2004, 76(1): 93
CrossRef ADS Google scholar
[39]
R. B. Mann, T. C. Ralph. Relativistic quantum information. Class. Quantum Gravity, 2012, 29(22): 220301
CrossRef ADS Google scholar
[40]
P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, T. E. Tessier. Entanglement of Dirac fields in noninertial frames. Phys. Rev. A, 2006, 74(3): 032326
CrossRef ADS Google scholar
[41]
J.WangJ. Jing, Multipartite entanglement of fermionic systems in noninertial frames, Phys. Rev. A 83, 022314 (2011), arXiv: 1012.4268 [quant-ph] [Erratum: Phys. Rev. A 97, 029902 (2018)]
[42]
N. Friis, D. E. Bruschi, J. Louko, I. Fuentes. Motion generates entanglement. Phys. Rev. D, 2012, 85(8): 081701
CrossRef ADS Google scholar
[43]
D. E. Bruschi, A. Dragan, A. R. Lee, I. Fuentes, J. Louko. Relativistic motion generates quantum gates and entanglement resonances. Phys. Rev. Lett., 2013, 111(9): 090504
CrossRef ADS Google scholar
[44]
Z. Liu, J. Zhang, R. B. Mann, H. Yu. Does acceleration assist entanglement harvesting. Phys. Rev. D, 2022, 105(8): 085012
CrossRef ADS Google scholar
[45]
R.LoppE. Martin-MartinezD.N. Page, Relativity and quantum optics: Accelerated atoms in optical cavities, Class. Quant. Grav. 35, 224001 (2018), arXiv: 1806.10158 [quant-ph]
[46]
E. Martín-Martínez, T. R. Perche, B. de S. L. Torres. General relativistic quantum optics: Finite-size particle detector models in curved spacetimes. Phys. Rev. D, 2020, 101(4): 045017
CrossRef ADS Google scholar
[47]
C. Sabín, D. E. Bruschi, M. Ahmadi, I. Fuentes. Phonon creation by gravitational waves. New J. Phys., 2014, 16(8): 085003
CrossRef ADS Google scholar
[48]
D. Rätzel, R. Howl, J. Lindkvist, I. Fuentes. Dynamical response of Bose–Einstein condensates to oscillating gravitational fields. New J. Phys., 2018, 20(7): 073044
CrossRef ADS Google scholar
[49]
R. Schützhold. Interaction of a Bose‒Einstein condensate with a gravitational wave. Phys. Rev. D, 2018, 98(10): 105019
CrossRef ADS Google scholar
[50]
R. Howl, L. Hackermüller, D. E. Bruschi, I. Fuentes. Gravity in the quantum lab. Adv. Phys. X, 2018, 3(1): 1383184
CrossRef ADS Google scholar
[51]
P.CollasD. Klein, The Dirac equation in curved space-time: A guide for calculations, Springer Briefs in Physics, Springer, 2019, arXiv: 1809.02764 [gr-qc]
[52]
M.O. ScullyM. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1997
[53]
G.CompagnoR. PassanteF.Persico, Atom-Field Interactions and Dressed Atoms, Cambridge Studies in Modern Optics, Cambridge University Press, 1995
[54]
W. G. Unruh. Notes on black-hole evaporation. Phys. Rev. D, 1976, 14(4): 870
CrossRef ADS Google scholar
[55]
S. A. Fulling. Nonuniqueness of canonical field quantization in riemannian space-time. Phys. Rev. D, 1973, 7(10): 2850
CrossRef ADS Google scholar
[56]
P. C. W. Davies. Scalar production in Schwarzschild and Rindler metrics. J. Phys. Math. Gen., 1975, 8(4): 609
CrossRef ADS Google scholar
[57]
L. C. B. Crispino, A. Higuchi, G. E. A. Matsas. The Unruh effect and its applications. Rev. Mod. Phys., 2008, 80(3): 787
CrossRef ADS Google scholar
[58]
F. Rohrlich. The definition of electromagnetic radiation. Nuovo Cim., 1961, 21(5): 811
CrossRef ADS Google scholar
[59]
F. Rohrlich. The definition of electromagnetic radiation. Nuovo Cim., 1961, 21(5): 811
CrossRef ADS Google scholar
[60]
D. G. Boulware. Radiation from a uniformly accelerated charge. Ann. Phys., 1980, 124(1): 169
CrossRef ADS Google scholar
[61]
S. W. Hawking. Particle creation by black holes. Commun. Math. Phys., 1975, 43(3): 199
CrossRef ADS Google scholar
[62]
E. Frodden, N. Valdés. Unruh effect: Introductory notes to quantum effects for accelerated observers. Int. J. Mod. Phys. A, 2018, 33(27): 1830026
CrossRef ADS Google scholar
[63]
H.B. G. Casimir, Indag. Math. 10, 261 (1948)
[64]
M.BordagG. L. KlimchitskayaU.Mohideen V.M. Mostepanenko, Advances in the Casimir Effect, Vol. 145, Oxford University Press, 2009
[65]
G. T. Moore. Quantum theory of the electromagnetic field in a variable-length one-dimensional cavity. J. Math. Phys., 1970, 11(9): 2679
CrossRef ADS Google scholar
[66]
V. V. Dodonov. Fifty years of the dynamical Casimir effect. MDPI Physics, 2020, 2(1): 67
CrossRef ADS Google scholar
[67]
S. A. Fulling, P. C. W. Davies. Radiation from a moving mirror in two dimensional space-time: Conformal anomaly. Proc. R. Soc. Lond. A, 1976, 348(1654): 393
CrossRef ADS Google scholar
[68]
P. C. W. Davies, S. A. Fulling. Quantum vacuum energy in two dimensional space-times. Proc. R. Soc. Lond. A, 1977, 354(1676): 59
CrossRef ADS Google scholar
[69]
P.R. AndersonM.R. R. GoodC.R. Evans, Black hole − moving mirror I: An exact correspondence, in: 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, Vol. 2 (2017), pp 1701–1704, arXiv: 1507.03489 [gr-qc]
[70]
M.R. R. GoodP.R. AndersonC.R. Evans, Black hole − moving mirror II: Particle creation, in: 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, Vol. 2 (2017), pp 1705–1708, arXiv: 1507.05048 [gr-qc]
[71]
A. Belyanin, V. V. Kocharovsky, F. Capasso, E. Fry, M. S. Zubairy, M. O. Scully. Quantum electrodynamics of accelerated atoms in free space and in cavities. Phys. Rev. A, 2006, 74(2): 023807
CrossRef ADS Google scholar
[72]
M. O. Scully. Laser entropy: From lasers and masers to Bose condensates and black holes. Phys. Scr., 2020, 95: 024002
[73]
M. P. E. Lock, I. Fuentes. Dynamical Casimir effect in curved spacetime. New J. Phys., 2017, 19(7): 073005
CrossRef ADS Google scholar
[74]
S. Chandrasekhar. The solution of Dirac’s equation in Kerr geometry. Proc. R. Soc. Lond. A, 1976, 349(1659): 571
CrossRef ADS Google scholar
[75]
B. Carter, R. G. McLenaghan. Generalized total angular momentum operator for the Dirac equation in curved space-time. Phys. Rev. D, 1979, 19(4): 1093
CrossRef ADS Google scholar
[76]
G. V. Shishkin. Some exact solutions of the Dirac equation in gravitational fields. Class. Quantum Gravity, 1991, 8(1): 175
CrossRef ADS Google scholar
[77]
F.FinsterM. Reintjes, The Dirac Equation and the Normalization of its Solutions in a Closed Friedmann−Robertson‒Walker Universe, Class. Quant. Grav. 26, 105021 (2009), arXiv: 0901.0602 [math-ph]
[78]
P.CollasD. Klein, Dirac particles in a gravitational shock wave, Class. Quant. Grav. 35, 125006 (2018), arXiv: 1801.02756 [gr-qc]
[79]
L. Parker. One-electron atom in curved space-time. Phys. Rev. Lett., 1980, 44(23): 1559
CrossRef ADS Google scholar
[80]
L. Parker. The atom as a probe of curved space-time. Gen. Relativ. Gravit., 1981, 13(4): 307
CrossRef ADS Google scholar
[81]
L. Parker. One-electron atom as a probe of spacetime curvature. Phys. Rev. D, 1980, 22(8): 1922
CrossRef ADS Google scholar
[82]
L. Parker. Self-forces and atoms in gravitational fields. Phys. Rev. D, 1981, 24(2): 535
CrossRef ADS Google scholar
[83]
F. Pinto. Rydberg atoms in curved space-time. Phys. Rev. Lett., 1993, 70(25): 3839
CrossRef ADS Google scholar
[84]
L. Parker, D. Vollick, I. Redmount. Atomic spectra in the gravitational field of a collapsing prolate spheroid. Phys. Rev. D, 1997, 56(4): 2113
CrossRef ADS Google scholar
[85]
G. de A. Marques, V. B. Bezerra. Hydrogen atom in the gravitational fields of topological defects. Phys. Rev. D, 2002, 66(10): 105011
CrossRef ADS Google scholar
[86]
Z. H. Zhao, Y. X. Liu, X. G. Li. Energy-level shifts of a stationary hydrogen atom in a static external gravitational field with Schwarzschild geometry. Phys. Rev. D, 2007, 76(6): 064016
CrossRef ADS Google scholar
[87]
J. Carvalho, C. Furtado, F. Moraes. Dirac oscillator interacting with a topological defect. Phys. Rev. A, 2011, 84(3): 032109
CrossRef ADS Google scholar
[88]
A. Roura. Quantum probe of space-time curvature. Science, 2022, 375(6577): 142
CrossRef ADS Google scholar
[89]
E. R. Caianiello. Is there a maximal acceleration. Lett. Nuovo Cimento, 1981, 32(3): 65
CrossRef ADS Google scholar
[90]
G. Lambiase, G. Papini, G. Scarpetta. Maximal acceleration corrections to the Lamb shift of hydrogen, deuterium and He+. Phys. Lett. A, 1998, 244(5): 349
CrossRef ADS Google scholar
[91]
E. Benedetto, A. Feoli. Unruh temperature with maximal acceleration. Mod. Phys. Lett. A, 2015, 30(13): 1550075
CrossRef ADS Google scholar
[92]
A. Higuchi, G. E. A. Matsas, D. Sudarsky. Do static sources outside a Schwarzschild black hole radiate. Phys. Rev. D, 1997, 56(10): R6071
CrossRef ADS Google scholar
[93]
L. C. B. Crispino, S. R. Dolan, E. S. Oliveira. Electromagnetic wave scattering by Schwarzschild black holes. Phys. Rev. Lett., 2009, 102(23): 231103
CrossRef ADS Google scholar
[94]
C. F. B. Macedo, L. C. S. Leite, E. S. Oliveira, S. R. Dolan, L. C. B. Crispino. Absorption of planar massless scalar waves by Kerr black holes. Phys. Rev. D, 2013, 88(6): 064033
CrossRef ADS Google scholar
[95]
V. Cardoso, R. Vicente. Moving black holes: Energy extraction, absorption cross section, and the ring of fire. Phys. Rev. D, 2019, 100(8): 084001
CrossRef ADS Google scholar
[96]
R.BritoV. CardosoP.Pani, Superradiance ‒ the 2020 Edition, Lect. Notes Phys. 906, 1 (2015), arXiv: 1501.06570 [gr-qc]
[97]
C. Bambi. Testing black hole candidates with electromagnetic radiation. Rev. Mod. Phys., 2017, 89(2): 025001
CrossRef ADS Google scholar
[98]
R. Passante. Dispersion interactions between neutral atoms and the quantum electrodynamical vacuum. Symmetry (Basel), 2018, 10(12): 735
CrossRef ADS Google scholar
[99]
M.P. HobsonG. P. EfstathiouA.N. Lasenby, General Relativity: An Introduction for Physicists, 2006
[100]
C.W. MisnerK. S. ThorneJ.A. Wheeler, Gravitation, San Francisco: W. H. Freeman, 1973
[101]
S.Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, 1972
[102]
M.Socolovsky, Rindler space and Unruh effect, arXiv: 1304.2833 [gr-qc] (2013)
[103]
W. Rindler. Kruskal space and the uniformly accelerated frame. Am. J. Phys., 1966, 34(12): 1174
CrossRef ADS Google scholar
[104]
E.Martin-MartinezN.C. Menicucci, Entanglement in curved spacetimes and cosmology, Class. Quant. Grav. 31, 214001 (2014), arXiv: 1408.3420 [quant-ph]
[105]
N.D. BirrellP.C. W. Davies, Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics, Cambridge: Cambridge University Press, 1984
[106]
T.Jacobson, Introduction to quantum fields in curved space- time and the hawking effect, in: Lectures on Quantum Gravity, edited by A. Gomberoff and D. Marolf, Springer US, Boston, MA, 2005, pp 39–89
[107]
L.E. ParkerD. Toms, Quantum Field Theory in Curved Spacetime: Quantized Field and Gravity, Cambridge Mono-graphs on Mathematical Physics, Cambridge: Cambridge University Press, 2009
[108]
S.M. Carroll, Spacetime and Geometry, Cambridge: Cambridge University Press, 2019
[109]
A.AlmheiriD. MarolfJ.PolchinskiJ.Sully, Black holes: Complementarity or firewalls? J. High Energy Phys. 02, 062 (2013), arXiv: 1207.3123 [hep-th]
[110]
S.D. Mathur, The information paradox: A pedagogical introduction, Class. Quant. Grav. 26, 224001 (2009), arXiv: 0909.1038 [hep-th]
[111]
C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori, P. Delsing. Observation of the dynamical Casimir effect in a superconducting circuit. Nature, 2011, 479(7373): 376
CrossRef ADS Google scholar
[112]
P. Lähteenmäki, G. S. Paraoanu, J. Hassel, P. J. Hakonen. Dynamical Casimir effect in a Josephson metamaterial. Proc. Natl. Acad. Sci. USA, 2013, 110(11): 4234
CrossRef ADS Google scholar
[113]
J. C. Jaskula, G. B. Partridge, M. Bonneau, R. Lopes, J. Ruaudel, D. Boiron, C. I. Westbrook. Acoustic analog to the dynamical Casimir effect in a Bose‒Einstein condensate. Phys. Rev. Lett., 2012, 109(22): 220401
CrossRef ADS Google scholar
[114]
M.T. JaekelS. Reynaud, Movement and fluctuations of the vacuum, Rep. Prog. Phys. 60, 863 (1997), arXiv: quant-ph/9706035
[115]
V. V. Dodonov. Dynamical Casimir effect: Some theoretical aspects. J. Phys. Conf. Ser., 2009, 161: 012027
CrossRef ADS Google scholar
[116]
E.NicolaiXIX . On a dynamical illustration of the pressure of radiation, Lond. Edinb. Dublin Philos. Mag. J. Sci. 49(289), 171 (1925)
[117]
W. E. Lamb, R. C. Retherford. Fine structure of the hydrogen atom by a microwave method. Phys. Rev., 1947, 72(3): 241
CrossRef ADS Google scholar
[118]
T. A. Welton. Some observable effects of the quantum-mechanical fluctuations of the electromagnetic field. Phys. Rev., 1948, 74(9): 1157
CrossRef ADS Google scholar
[119]
J. R. Ackerhalt, P. L. Knight, J. H. Eberly. Radiation reaction and radiative frequency shifts. Phys. Rev. Lett., 1973, 30(10): 456
CrossRef ADS Google scholar
[120]
P. W. Milonni, J. R. Ackerhalt, W. A. Smith. Interpretation of radiative corrections in spontaneous emission. Phys. Rev. Lett., 1973, 31(15): 958
CrossRef ADS Google scholar
[121]
J. Audretsch, R. Müller. Spontaneous excitation of an accelerated atom: The contributions of vacuum fluctuations and radiation reaction. Phys. Rev. A, 1994, 50(2): 1755
CrossRef ADS Google scholar
[122]
J. Dalibard, J. Dupont-Roc, C. Cohen-Tannoudji. Vacuum fluctuations and radiation reaction: Identification of their respective contributions. J. Phys. (Paris), 1982, 43(11): 1617
CrossRef ADS Google scholar
[123]
J. Dalibard, J. Dupont-Roc, C. Cohen-Tannoudji. Dynamics of a small system coupled to a reservoir: Reservoir fluctuations and self-reaction. J. Phys. (Paris), 1984, 45(4): 637
CrossRef ADS Google scholar
[124]
S.HawkingW. Israel, General Relativity: An Einstein Centenary Survey, 2010
[125]
Z. Zhu, H. W. Yu, S. Lu. Spontaneous excitation of an accelerated hydrogen atom coupled with electromagnetic vacuum fluctuations. Phys. Rev. D, 2006, 73(10): 107501
CrossRef ADS Google scholar
[126]
J. Chen, J. Hu, H. Yu. Spontaneous excitation of a circularly accelerated atom coupled with vacuum Dirac field fluctuations. Ann. Phys., 2015, 353: 317
CrossRef ADS Google scholar
[127]
W. Zhou. Is the Fulling–Davies–Unruh effect valid for the case of an atom coupled to quantum electromagnetic field. Mod. Phys. Lett. A, 2016, 31(34): 1650189
CrossRef ADS Google scholar
[128]
W. Zhou, H. Yu. Spontaneous excitation of a uniformly accelerated atom coupled to vacuum Dirac field fluctuations. Phys. Rev. A, 2012, 86(3): 033841
CrossRef ADS Google scholar
[129]
P. Langlois. Causal particle detectors and topology. Ann. Phys., 2006, 321(9): 2027
CrossRef ADS Google scholar
[130]
L. Rizzuto, S. Spagnolo. Energy-level shifts of a uniformly accelerated atom between two reflecting plates. Phys. Scr., 2011, 2011: 014021
CrossRef ADS Google scholar
[131]
A. Zhang. The formalism for energy changing rate of an accelerated atom coupled with electromagnetic vacuum fluctuations. Found. Phys., 2016, 46(9): 1199
CrossRef ADS Google scholar
[132]
G. Barton, A. Calogeracos. Transition rates in atoms constrained to move relativistically. J. Opt. B, 2005, 7(3): S21
CrossRef ADS Google scholar
[133]
G. Barton, A. Calogeracos. Acceleration-induced radiative excitation of ground-state atoms. J. Phys. A Math. Theor., 2008, 41(16): 164030
CrossRef ADS Google scholar
[134]
A. Calogeracos. Spontaneous excitation of an accelerated atom: (i) Acceleration of infinite duration (the Unruh effect), (ii) acceleration of finite duration. Results Phys., 2016, 6: 377
CrossRef ADS Google scholar
[135]
J. M. Raimond, M. Brune, S. Haroche. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys., 2001, 73(3): 565
CrossRef ADS Google scholar
[136]
G. Menezes, N. F. Svaiter. Radiative processes of uniformly accelerated entangled atoms. Phys. Rev. A, 2016, 93(5): 052117
CrossRef ADS Google scholar
[137]
T. Yu, J. H. Eberly. Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett., 2004, 93(14): 140404
CrossRef ADS Google scholar
[138]
E. AriasJ. G. Dueñas, G. Menezes , N. F. Svaiter., Boundary effects on radiative processes of two entangled atoms, J. High Energy Phys. 07, 147 (2016), arXiv: 1510.00047 [quant-ph]
[139]
C. Zhang, W. Zhou. Radiative processes of two accelerated entangled atoms near boundaries. Symmetry (Basel), 2019, 11(12): 1515
CrossRef ADS Google scholar
[140]
G. Menezes, N. F. Svaiter. Vacuum fluctuations and radiation reaction in radiative processes of entangled states. Phys. Rev. A, 2015, 92(6): 062131
CrossRef ADS Google scholar
[141]
W. Zhou, H. Yu. Radiation-reaction-induced transitions of two maximally entangled atoms in noninertial motion. Phys. Rev. D, 2020, 101(2): 025009
CrossRef ADS Google scholar
[142]
W. Zhou, H. Yu. Collective transitions of two entangled atoms and the Fulling‒Davies‒Unruh effect. Phys. Rev. D, 2020, 101(8): 085009
CrossRef ADS Google scholar
[143]
G. Menezes, N. F. Svaiter. Radiative processes of uniformly accelerated entangled atoms. Phys. Rev. A, 2016, 93(5): 052117
CrossRef ADS Google scholar
[144]
R. Passante. Radiative level shifts of an accelerated hydrogen atom and the Unruh effect in quantum electrodynamics. Phys. Rev. A, 1998, 57(3): 1590
CrossRef ADS Google scholar
[145]
L. Rizzuto, S. Spagnolo. Lamb shift of a uniformly accelerated hydrogen atom in the presence of a conducting plate. Phys. Rev. A, 2009, 79(6): 062110
CrossRef ADS Google scholar
[146]
J.AudretschR. MuellerM.Holzmann, Generalized Unruh effect and Lamb shift for atoms on arbitrary stationary trajectories, Class. Quant. Grav. 12, 2927 (1995), arXiv: quant-ph/9510025
[147]
J. Audretsch, R. Müller. Radiative energy shifts of an accelerated two-level system. Phys. Rev. A, 1995, 52(1): 629
CrossRef ADS Google scholar
[148]
K. P. Marzlin, J. Audretsch. States insensitive to the Unruh effect in multilevel detectors. Phys. Rev. D, 1998, 57(2): 1045
CrossRef ADS Google scholar
[149]
J. Audretsch, K. P. Marzlin. Ramsey fringes in atomic interferometry: Measurability of the influence of space-time curvature. Phys. Rev. A, 1994, 50(3): 2080
CrossRef ADS Google scholar
[150]
G. J. Olmo. Hydrogen atom in Palatini theories of gravity. Phys. Rev. D, 2008, 77(8): 084021
CrossRef ADS Google scholar
[151]
D.SinghN. Mobed, Local space-time curvature effects on quantum orbital angular momentum, Class. Quant. Grav. 28, 105024 (2011), arXiv: 1101.1030 [gr-qc]
[152]
L. K. Wong, A. C. Davis. One-electron atoms in screened modified gravity. Phys. Rev. D, 2017, 95(10): 104010
CrossRef ADS Google scholar
[153]
P. Brax, A. C. Davis, B. Elder, L. K. Wong. Constraining screened fifth forces with the electron magnetic moment. Phys. Rev. D, 2018, 97(8): 084050
CrossRef ADS Google scholar
[154]
D. O. Sabulsky, I. Dutta, E. A. Hinds, B. Elder, C. Burrage, E. J. Copeland. Experiment to detect dark energy forces using atom interferometry. Phys. Rev. Lett., 2019, 123(6): 061102
CrossRef ADS Google scholar
[155]
D. W. Sciama, P. Candelas, D. Deutsch. Quantum field theory, horizons and thermodynamics. Adv. Phys., 1981, 30(3): 327
CrossRef ADS Google scholar
[156]
J. B. Hartle, S. W. Hawking. Path-integral derivation of black-hole radiance. Phys. Rev. D, 1976, 13(8): 2188
CrossRef ADS Google scholar
[157]
G. Papini. Maximal acceleration and radiative processes. Mod. Phys. Lett. A, 2015, 30(31): 1550166
CrossRef ADS Google scholar
[158]
A. Higuchi, G. E. A. Matsas, D. Sudarsky. Interaction of Hawking radiation with static sources outside a Schwarzschild black hole. Phys. Rev. D, 1998, 58(10): 104021
CrossRef ADS Google scholar
[159]
L.C. B. CrispinoA.HiguchiG.E. A. Matsas, Quantization of the electromagnetic field outside static black holes and its application to low-energy phenomena, Phys. Rev. D 63, 124008 (2001), arXiv: gr-qc/0011070 [Erratum: Phys. Rev. D 80, 029906 (2009)]
[160]
J. Castineiras, I. P. Costa e Silva, G. E. A. Matsas. Do static sources respond to massive scalar particles from the Hawking radiation as uniformly accelerated ones do in the inertial vacuum. Phys. Rev. D, 2003, 67(6): 067502
CrossRef ADS Google scholar
[161]
S. M. Christensen, S. A. Fulling. Trace anomalies and the Hawking effect. Phys. Rev. D, 1977, 15(8): 2088
CrossRef ADS Google scholar
[162]
P. Candelas. Vacuum polarization in Schwarzschild spacetime. Phys. Rev. D, 1980, 21(8): 2185
CrossRef ADS Google scholar
[163]
H. W. Yu, W. Zhou. Do static atoms outside a Schwarzschild black hole spontaneously excite. Phys. Rev. D, 2007, 76(4): 044023
CrossRef ADS Google scholar
[164]
W.ZhouH. Yu, Spontaneous excitation of a static multilevel atom coupled with electromagnetic vacuum fluctuations in Schwarzschild spacetime, Class. Quant. Grav. 29, 085003 (2012), arXiv: 1203.5867 [gr-qc]
[165]
H. W. Yu, W. Zhou. Relationship between Hawking radiation from black holes and spontaneous excitation of atoms. Phys. Rev. D, 2007, 76(2): 027503
CrossRef ADS Google scholar
[166]
M. Cliché, A. Kempf. Vacuum entanglement enhancement by a weak gravitational field. Phys. Rev. D, 2011, 83(4): 045019
CrossRef ADS Google scholar
[167]
G. Menezes. Radiative processes of two entangled atoms outside a Schwarzschild black hole. Phys. Rev. D, 2016, 94(10): 105008
CrossRef ADS Google scholar
[168]
Y. Chen, J. Hu, H. Yu. Collective transitions of two entangled atoms near a Schwarzschild black hole. Phys. Rev. D, 2023, 107(2): 025015
CrossRef ADS Google scholar
[169]
H. Yu, H. W. Yu, Z. Zhu. Spontaneous absorption of an accelerated hydrogen atom near a conducting plane in vacuum. Phys. Rev. D, 2006, 74(4): 044032
CrossRef ADS Google scholar
[170]
M.Visser, The Kerr spacetime: A brief introduction, in: Kerr fest: Black holes in astrophysics, general relativity and quantum gravity, 2007, arXiv: 0706.0622 [gr-qc]
[171]
T. Jacobson. Note on Hartle‒Hawking vacua. Phys. Rev. D, 1994, 50(10): R6031
CrossRef ADS Google scholar
[172]
G.Menezes, Spontaneous excitation of an atom in a Kerr spacetime, Phys. Rev. D 95, 065015 (2017), arXiv: 1611.00056 [gr-qc] [Erratum: Phys. Rev. D 97, 029901 (2018)]
[173]
V. P. Frolov, K. S. Thorne. Renormalized stress-energy tensor near the horizon of a slowly evolving, rotating black hole. Phys. Rev. D, 1989, 39(8): 2125
CrossRef ADS Google scholar
[174]
A. C. Ottewill, E. Winstanley. Renormalized stress tensor in Kerr space-time: General results. Phys. Rev. D, 2000, 62(8): 084018
CrossRef ADS Google scholar
[175]
A. A. Starobinskii. Amplification of electromagnetic and gravitational waves scattered by a rotating “black hole”. Sov. Phys. JETP, 1973, 64: 48
[176]
W. G. Unruh. Second quantization in the Kerr metric. Phys. Rev. D, 1974, 10(10): 3194
CrossRef ADS Google scholar
[177]
A. L. Matacz, P. C. W. Davies, A. C. Ottewill. Quantum vacuum instability near rotating stars. Phys. Rev. D, 1993, 47(4): 1557
CrossRef ADS Google scholar
[178]
G. Menezes. Entanglement dynamics in a Kerr spacetime. Phys. Rev. D, 2018, 97(8): 085021
CrossRef ADS Google scholar
[179]
X. Liu, Z. Tian, J. Wang, J. Jing. Radiative process of two entanglement atoms in de Sitter spacetime. Phys. Rev. D, 2018, 97(10): 105030
CrossRef ADS Google scholar
[180]
W. Zhou, H. W. Yu. Lamb shift for static atoms outside a Schwarzschild black hole. Phys. Rev. D, 2010, 82(10): 104030
CrossRef ADS Google scholar
[181]
D. Meschede, W. Jhe, E. A. Hinds. Radiative properties of atoms near a conducting plane: An old problem in a new light. Phys. Rev. A, 1990, 41(3): 1587
CrossRef ADS Google scholar
[182]
G. W. Gibbons, S. W. Hawking. Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D, 1977, 15(10): 2738
CrossRef ADS Google scholar
[183]
W. Zhou, H. W. Yu. Lamb shift in de Sitter spacetime. Phys. Rev. D, 2010, 82(12): 124067
CrossRef ADS Google scholar
[184]
W.ZhouH. Yu, Can spacetime curvature induced corrections to Lamb shift be observable? J. High Energy Phys. 10, 172 (2012), arXiv: 1204.2015 [gr-qc]
[185]
S. Cheng, J. Hu, H. Yu. Spontaneous excitation of an accelerated atom coupled with quantum fluctuations of spacetime. Phys. Rev. D, 2019, 100(2): 025010
CrossRef ADS Google scholar
[186]
H. Cai, Z. Ren. Radiative properties of an inertial multilevel atom in a compactified Minkowski spacetime. Class. Quantum Gravity, 2019, 36(16): 165001
CrossRef ADS Google scholar
[187]
J. Hu, H. Yu. Entanglement dynamics for uniformly accelerated two-level atoms. Phys. Rev. A, 2015, 91(1): 012327
CrossRef ADS Google scholar
[188]
Y. Chen, J. Hu, H. Yu. Entanglement generation for uniformly accelerated atoms assisted by environment-induced interatomic interaction and the loss of the anti-Unruh effect. Phys. Rev. D, 2022, 105(4): 045013
CrossRef ADS Google scholar
[189]
Y.ZhouJ. HuH.Yu, Entanglement dynamics for Unruh‒DeWitt detectors interacting with massive scalar fields: The Unruh and anti-Unruh effects, J. High Energy Phys. 09, 088 (2021), arXiv: 2105.14735 [gr-qc]
[190]
M. S. Soares, G. Menezes, N. F. Svaiter. Entanglement dynamics: Generalized master equation for uniformly accelerated two-level systems. Phys. Rev. A, 2022, 106(6): 062440
CrossRef ADS Google scholar
[191]
J.HuH.Yu, Entanglement generation outside a Schwarzschild black hole and the Hawking effect, J. High Energy Phys. 08, 137 (2011), arXiv: 1109.0335 [hep-th]
[192]
P. He, H. Yu, J. Hu. Entanglement dynamics for static two-level atoms in cosmic string spacetime. Eur. Phys. J. C, 2020, 80(2): 134
CrossRef ADS Google scholar
[193]
Z. Huang. Quantum entanglement for atoms coupling to fluctuating electromagnetic field in the cosmic string spacetime. Quantum Inform. Process., 2021, 20(5): 173
CrossRef ADS Google scholar
[194]
X.LiuZ. TianJ.Jing, Entanglement dynamics in κ-deformed spacetime, arXiv: 2309.08135 [hep-th] (2023)
[195]
S.KukitaY. Nambu, Entanglement dynamics in de Sitter spacetime, Class. Quant. Grav. 34, 235010 (2017), arXiv: 1706.09175 [gr-qc]
[196]
J.YanB. Zhang, Effect of spacetime dimensions on quantum entanglement between two uniformly accelerated atoms, J. High Energy Phys. 10, 051 (2022), arXiv: 2206.13681 [gr-qc]
[197]
J.YanB. ZhangQ.Cai, Reveal the lost entanglement for accelerated atoms in the high-dimensional spacetime, arXiv: 2311.04610 [hep-th] (2023)
[198]
A.Salam, Molecular Quantum Electrodynamics: Long-Range Intermolecular Interactions, Wiley Publishing, 2009
[199]
A. Salam. Molecular quantum electrodynamics in the Heisenberg picture: A field theoretic viewpoint. Int. Rev. Phys. Chem., 2008, 27(3): 405
CrossRef ADS Google scholar
[200]
F. Fassioli, A. Olaya-Castro. Distribution of entanglement in light-harvesting complexes and their quantum efficiency. New J. Phys., 2010, 12(8): 085006
CrossRef ADS Google scholar
[201]
J. Preto, M. Pettini. Resonant long-range interactions between polar macromolecules. Phys. Lett. A, 2013, 377(8): 587
CrossRef ADS Google scholar
[202]
J. Galego, C. Climent, F. J. Garcia-Vidal, J. Feist. Cavity Casimir‒Polder forces and their effects in ground-state chemical reactivity. Phys. Rev. X, 2019, 9(2): 021057
CrossRef ADS Google scholar
[203]
G. Fiscelli, L. Rizzuto, R. Passante. Dispersion interaction between two hydrogen atoms in a static electric field. Phys. Rev. Lett., 2020, 124(1): 013604
CrossRef ADS Google scholar
[204]
D. L. Andrews, D. P. Craig, T. Thirunamachandran. Molecular quantum electrodynamics in chemical physics. Int. Rev. Phys. Chem., 1989, 8(4): 339
CrossRef ADS Google scholar
[205]
H. B. Casimir, D. Polder. The influence of retardation on the London-van der Waals forces. Phys. Rev., 1948, 73(4): 360
CrossRef ADS Google scholar
[206]
J.F. Babb, in: Advances in Atomic, Molecular, and Optical Physics, Elsevier, 2010, pp 1–20
[207]
J. Zhang, H. Yu. Casimir‒Polder-like force on an atom outside a Schwarzschild black hole. Phys. Rev. A, 2011, 84(4): 042103
CrossRef ADS Google scholar
[208]
J. Zhang, H. Yu. Far-zone interatomic Casimir‒Polder potential between two ground-state atoms outside a Schwarzschild black hole. Phys. Rev. A, 2013, 88(6): 064501
CrossRef ADS Google scholar
[209]
A.NotoR. Passante, van der Waals interaction energy between two atoms moving with uniform acceleration, Phys. Rev. D 88(2), 025041 (2013)
[210]
J. Marino, A. Noto, R. Passante. Thermal and nonthermal signatures of the Unruh effect in Casimir‒Polder forces. Phys. Rev. Lett., 2014, 113(2): 020403
CrossRef ADS Google scholar
[211]
G. Barton. Long-range Casimir‒Polder‒Feinberg‒Sucher intermolecular potential at nonzero temperature. Phys. Rev. A, 2001, 64(3): 032102
CrossRef ADS Google scholar
[212]
D. Singleton, S. Wilburn, Hawking radiation. Unruh radiation, and the equivalence principle. Phys. Rev. Lett., 2011, 107(8): 081102
CrossRef ADS Google scholar
[213]
M. Smerlak, S. Singh. New perspectives on Hawking radiation. Phys. Rev. D, 2013, 88(10): 104023
CrossRef ADS Google scholar
[214]
L. Hodgkinson, J. Louko, A. C. Ottewill. Static detectors and circular‒geodesic detectors on the Schwarzschild black hole. Phys. Rev. D, 2014, 89(10): 104002
CrossRef ADS Google scholar
[215]
C. Singha. Remarks on distinguishability of Schwarzschild spacetime and thermal Minkowski spacetime using Resonance Casimir–Polder interaction. Mod. Phys. Lett. A, 2019, 35(2): 1950356
CrossRef ADS Google scholar
[216]
G. Menezes, C. Kiefer, J. Marino. Thermal and nonthermal scaling of the Casimir‒Polder interaction in a black hole spacetime. Phys. Rev. D, 2017, 95(8): 085014
CrossRef ADS Google scholar
[217]
L. H. Ford, M. P. Hertzberg, J. Karouby. Quantum gravitational force between polarizable objects. Phys. Rev. Lett., 2016, 116(15): 151301
CrossRef ADS Google scholar
[218]
P. Wu, J. Hu, H. Yu. Quantum correction to classical gravitational interaction between two polarizable objects. Phys. Lett. B, 2016, 763: 40
CrossRef ADS Google scholar
[219]
J. Hu, H. Yu. Gravitational Casimir–Polder effect. Phys. Lett. B, 2017, 767: 16
CrossRef ADS Google scholar
[220]
Z. Huang. Quantum correlation affected by quantum gravitational fluctuation. Class. Quantum Gravity, 2019, 36(15): 155001
CrossRef ADS Google scholar
[221]
Y. Hu, J. Hu, H. Yu. Quantum gravitational interaction between two objects induced by external gravitational radiation fields. Phys. Rev. D, 2020, 101(6): 066015
CrossRef ADS Google scholar
[222]
W. Zhou, S. Cheng, H. Yu. Interatomic interaction of two ground-state atoms in vacuum: Contributions of vacuum fluctuations and radiation reaction. Phys. Rev. A, 2021, 103(1): 012227
CrossRef ADS Google scholar
[223]
S. Cheng, W. Zhou, H. Yu. Probing long-range properties of vacuum altered by uniformly accelerating two spatially separated Unruh‒DeWitt detectors. Phys. Lett. B, 2022, 834: 137440
CrossRef ADS Google scholar
[224]
W. Zhou, S. Cheng, H. Yu. Understanding thermal nature of de Sitter spacetime via inter-detector interaction. Phys. Lett. B, 2023, 844: 138097
CrossRef ADS Google scholar
[225]
R. H. Dicke. Coherence in spontaneous radiation processes. Phys. Rev., 1954, 93(1): 99
CrossRef ADS Google scholar
[226]
M. O. Scully, E. S. Fry, C. H. R. Ooi, K. Wódkiewicz. Directed spontaneous emission from an extended ensemble of N atoms: Timing is everything. Phys. Rev. Lett., 2006, 96(1): 010501
CrossRef ADS Google scholar
[227]
C. H. Raymond Ooi, Y. Rostovtsev, M. O. Scully. Two-photon correlation of radiation emitted by two excited atoms: Detailed analysis of a Dicke problem. Laser Phys., 2007, 17(7): 956
CrossRef ADS Google scholar
[228]
M. O. Scully. Collective lamb shift in single photon Dicke superradiance. Phys. Rev. Lett., 2009, 102(14): 143601
CrossRef ADS Google scholar
[229]
G.JuzeliūnasD.L. Andrews, Quantum electrodynamics of resonance energy transfer, in: Advances in Chemical Physics, John Wiley & Sons, 2000, pp 357–410
[230]
W. D. Phillips. Nobel lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys., 1998, 70(3): 721
CrossRef ADS Google scholar
[231]
G. K. Brennen, I. H. Deutsch, P. S. Jessen. Entangling dipole‒dipole interactions for quantum logic with neutral atoms. Phys. Rev. A, 2000, 61(6): 062309
CrossRef ADS Google scholar
[232]
P. R. Berman. Interaction energy of nonidentical atoms. Phys. Rev. A, 2015, 91(4): 042127
CrossRef ADS Google scholar
[233]
P. W. Milonni, S. M. H. Rafsanjani. Distance dependence of two-atom dipole interactions with one atom in an excited state. Phys. Rev. A, 2015, 92(6): 062711
CrossRef ADS Google scholar
[234]
M. Donaire, R. Guérout, A. Lambrecht. Quasiresonant van der Waals interaction between nonidentical atoms. Phys. Rev. Lett., 2015, 115(3): 033201
CrossRef ADS Google scholar
[235]
U. D. Jentschura, C. M. Adhikari, V. Debierre. Virtual resonant emission and oscillatory long-range tails in van der Waals interactions of excited states: QED treatment and applications. Phys. Rev. Lett., 2017, 118(12): 123001
CrossRef ADS Google scholar
[236]
L. Rizzuto, M. Lattuca, J. Marino, A. Noto, S. Spagnolo, W. Zhou, R. Passante. Nonthermal effects of acceleration in the resonance interaction between two uniformly accelerated atoms. Phys. Rev. A, 2016, 94(1): 012121
CrossRef ADS Google scholar
[237]
W. Zhou, R. Passante, L. Rizzuto. Resonance interaction energy between two accelerated identical atoms in a coaccelerated frame and the Unruh effect. Phys. Rev. D, 2016, 94(10): 105025
CrossRef ADS Google scholar
[238]
W. Zhou, R. Passante, L. Rizzuto. Resonance dipole–dipole interaction between two accelerated atoms in the presence of a reflecting plane boundary. Symmetry (Basel), 2018, 10(6): 185
CrossRef ADS Google scholar
[239]
W. Zhou, H. Yu. Resonance interatomic energy in a Schwarzschild spacetime. Phys. Rev. D, 2017, 96(4): 045018
CrossRef ADS Google scholar
[240]
W. Zhou, H. Yu. Boundarylike behaviors of the resonance interatomic energy in a cosmic string spacetime. Phys. Rev. D, 2018, 97(4): 045007
CrossRef ADS Google scholar
[241]
P. D. Nation, J. R. Johansson, M. P. Blencowe, F. Nori. Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys., 2012, 84(1): 1
CrossRef ADS Google scholar
[242]
J. Haro, E. Elizalde. Hamiltonian approach to the dynamical Casimir effect. Phys. Rev. Lett., 2006, 97(13): 130401
CrossRef ADS Google scholar
[243]
D. F. Mundarain, P. A. Maia Neto. Quantum radiation in a plane cavity with moving mirrors. Phys. Rev. A, 1998, 57(2): 1379
CrossRef ADS Google scholar
[244]
D. A. R. Dalvit, F. D. Mazzitelli. Creation of photons in an oscillating cavity with two moving mirrors. Phys. Rev. A, 1999, 59(4): 3049
CrossRef ADS Google scholar
[245]
D. T. Alves, E. R. Granhen, W. P. Pires. Quantum radiation reaction force on a one-dimensional cavity with two relativistic moving mirrors. Phys. Rev. D, 2010, 82(4): 045028
CrossRef ADS Google scholar
[246]
C. D. Fosco, A. Giraldo, F. D. Mazzitelli. Dynamical Casimir effect for semitransparent mirrors. Phys. Rev. D, 2017, 96(4): 045004
CrossRef ADS Google scholar
[247]
R. M. E. Souza, F. Impens, P. A. M. Neto. Microscopic dynamical Casimir effect. Phys. Rev. A, 2018, 97(3): 032514
CrossRef ADS Google scholar
[248]
L. Lo, C. K. Law. Quantum radiation from a shaken two-level atom in vacuum. Phys. Rev. A, 2018, 98(6): 063807
CrossRef ADS Google scholar
[249]
L. Lo, P. T. Fong, C. K. Law. Dynamical Casimir effect in resonance fluorescence. Phys. Rev. A, 2020, 102(3): 033703
CrossRef ADS Google scholar
[250]
I. H. Brevik, K. A. Milton, S. D. Odintsov, K. E. Osetrin. Dynamical Casimir effect and quantum cosmology. Phys. Rev. D, 2000, 62(6): 064005
CrossRef ADS Google scholar
[251]
M. Wittemer, F. Hakelberg, P. Kiefer, J. P. Schröder, C. Fey, R. Schützhold, U. Warring, T. Schaetz. Phonon pair creation by inflating quantum fluctuations in an ion trap. Phys. Rev. Lett., 2019, 123(18): 180502
CrossRef ADS Google scholar
[252]
D. A. R. Dalvit, P. A. Maia Neto. Decoherence via the dynamical Casimir effect. Phys. Rev. Lett., 2000, 84(5): 798
CrossRef ADS Google scholar
[253]
M. A. Andreata, V. V. Dodonov. Dynamics of entanglement between field modes in a one-dimensional cavity with a vibrating boundary. J. Opt. B, 2005, 7: S11
CrossRef ADS Google scholar
[254]
W.CongE. TjoaR.B. Mann, Entanglement harvesting with moving mirrors, J. High Energy Phys. 06, 021 (2019), arXiv: 1810.07359 [quant-ph] [Erratum: J. High Energy Phys. 07, 051 (2019)]
[255]
J. S. Ben-Benjamin, M. O. Scully, S. A. Fulling, D. M. Lee, D. N. Page, A. A. Svidzinsky, M. S. Zubairy, M. J. Duff, R. Glauber, W. P. Schleich, W. G. Unruh. Unruh acceleration radiation revisited. Int. J. Mod. Phys. A, 2019, 34(28): 1941005
CrossRef ADS Google scholar
[256]
A. A. Svidzinsky, J. S. Ben-Benjamin, S. A. Fulling, D. N. Page. Excitation of an atom by a uniformly accelerated mirror through virtual transitions. Phys. Rev. Lett., 2018, 121(7): 071301
CrossRef ADS Google scholar
[257]
A. A. Svidzinsky. Excitation of a uniformly moving atom through vacuum fluctuations. Phys. Rev. Res., 2019, 1(3): 033027
CrossRef ADS Google scholar
[258]
S. A. Fulling, J. H. Wilson. The equivalence principle at work in radiation from unaccelerated atoms and mirrors. Phys. Scr., 2019, 94(1): 014004
CrossRef ADS Google scholar
[259]
M.R. R. Good, Quantized scalar fields under the influence of moving mirror and anisotropic curved spacetime, Ph. D. thesis, North Carolina University, 2011
[260]
R. D. Carlitz, R. S. Willey. Reflections on moving mirrors. Phys. Rev. D, 1987, 36(8): 2327
CrossRef ADS Google scholar
[261]
J. Haro, E. Elizalde. Black hole collapse simulated by vacuum fluctuations with a moving semitransparent mirror. Phys. Rev. D, 2008, 77(4): 045011
CrossRef ADS Google scholar
[262]
N. Nicolaevici. Semitransparency effects in the moving mirror model for Hawking radiation. Phys. Rev. D, 2009, 80(12): 125003
CrossRef ADS Google scholar
[263]
W. R. Walker, P. C. W. Davies. An exactly soluble moving-mirror problem. J. Phys. Math. Gen., 1982, 15(9): L477
CrossRef ADS Google scholar
[264]
M. R. R. Good, P. R. Anderson, C. R. Evans. Time dependence of particle creation from accelerating mirrors. Phys. Rev. D, 2013, 88(2): 025023
CrossRef ADS Google scholar
[265]
M. R. R. Good, P. R. Anderson, C. R. Evans. Mirror reflections of a black hole. Phys. Rev. D, 2016, 94(6): 065010
CrossRef ADS Google scholar
[266]
M. R. R. Good, E. V. Linder. Slicing the vacuum: New accelerating mirror solutions of the dynamical Casimir effect. Phys. Rev. D, 2017, 96(12): 125010
CrossRef ADS Google scholar
[267]
M. R. R. Good, E. V. Linder, F. Wilczek. Finite thermal particle creation of Casimir light. Mod. Phys. Lett. A, 2020, 35(3): 2040006
CrossRef ADS Google scholar
[268]
B. Mintz, C. Farina, P. A. Maia Neto, R. B. Rodrigues. Particle creation by a moving boundary with a Robin boundary condition. J. Phys. Math. Gen., 2006, 39(36): 11325
CrossRef ADS Google scholar
[269]
G. Barton, A. Calogeracos. On the quantum electrodynamics of a dispersive mirror. Ann. Phys., 1995, 238(2): 227
CrossRef ADS Google scholar
[270]
A. Calogeracos, G. Barton. On the quantum electrodynamics of a dispersive mirror. Ann. Phys., 1995, 238(2): 268
CrossRef ADS Google scholar
[271]
R. Golestanian, M. Kardar. Mechanical response of vacuum. Phys. Rev. Lett., 1997, 78(18): 3421
CrossRef ADS Google scholar
[272]
R. Golestanian, M. Kardar. Path-integral approach to the dynamic Casimir effect with fluctuating boundaries. Phys. Rev. A, 1998, 58(3): 1713
CrossRef ADS Google scholar
[273]
V. Sopova, L. H. Ford. Energy density in the Casimir effect. Phys. Rev. D, 2002, 66(4): 045026
CrossRef ADS Google scholar
[274]
C. R. Galley, R. O. Behunin, B. L. Hu. Oscillator-field model of moving mirrors in quantum optomechanics. Phys. Rev. A, 2013, 87(4): 043832
CrossRef ADS Google scholar
[275]
Q. Wang, W. G. Unruh. Motion of a mirror under infinitely fluctuating quantum vacuum stress. Phys. Rev. D, 2014, 89(8): 085009
CrossRef ADS Google scholar
[276]
Q. Wang, W. G. Unruh. Mirror moving in quantum vacuum of a massive scalar field. Phys. Rev. D, 2015, 92(6): 063520
CrossRef ADS Google scholar
[277]
W. R. Walker. Particle and energy creation by moving mirrors. Phys. Rev. D, 1985, 31(4): 767
CrossRef ADS Google scholar
[278]
A.FabbriJ. Navarro-Salas, Modeling Black Hole Evaporation, 2005
[279]
F. Sorge. Casimir effect in a weak gravitational field. Class. Quantum Gravity, 2005, 22(23): 5109
CrossRef ADS Google scholar
[280]
F. Sorge. Casimir effect in a weak gravitational field: Schwinger’s approach. Class. Quantum Gravity, 2019, 36(23): 235006
CrossRef ADS Google scholar
[281]
L.C. CeleriF. PascoalM.H. Y. Moussa, Action of the gravitational field on the dynamical Casimir effect, Class. Quant. Grav. 26, 105014 (2009), arXiv: 0809.3706 [quant-ph]
[282]
D. Rätzel, F. Schneiter, D. Braun, T. Bravo, R. Howl, M. P. E. Lock, I. Fuentes. Frequency spectrum of an optical resonator in a curved spacetime. New J. Phys., 2018, 20(5): 053046
CrossRef ADS Google scholar
[283]
F. Sorge, J. H. Wilson. Casimir effect in free fall towards a Schwarzschild black hole. Phys. Rev. D, 2019, 100(10): 105007
CrossRef ADS Google scholar
[284]
J. H. Wilson, F. Sorge, S. A. Fulling. Tidal and nonequilibrium Casimir effects in free fall. Phys. Rev. D, 2020, 101(6): 065007
CrossRef ADS Google scholar
[285]
S. Fagnocchi, S. Finazzi, S. Liberati, M. Kormos, A. Trombettoni. Relativistic Bose–Einstein condensates: A new system for analogue models of gravity. New J. Phys., 2010, 12(9): 095012
CrossRef ADS Google scholar
[286]
N. Friis, A. R. Lee, J. Louko. Scalar, spinor, and photon fields under relativistic cavity motion. Phys. Rev. D, 2013, 88(6): 064028
CrossRef ADS Google scholar
[287]
A.P. C. M. LimaG.AlencarC.R. Muniz R.R. Landim, Null second order corrections to Casimir energy in weak gravitational field, J. Cosmol. Astropart. Phys. 07, 011 (2019), arXiv: 1903.00512 [hep-th]
[288]
M.O. ScullyV. V. KocharovskyA.Belyanin E.FryF. Capasso, Enhancing acceleration radiation from ground-state atoms via cavity quantum electrodynamics, Phys. Rev. Lett. 91, 243004 (2003), arXiv: quant-ph/0305178
[289]
B. P. Dolan, A. Hunter-McCabe, J. Twamley. Shaking photons from the vacuum: Acceleration radiation from vibrating atoms. New J. Phys., 2020, 22(3): 033026
CrossRef ADS Google scholar
[290]
M. O. Scully, A. A. Svidzinsky, W. Unruh. Causality in acceleration radiation. Phys. Rev. Res., 2019, 1(3): 033115
CrossRef ADS Google scholar
[291]
M.R. R. Good, Reflections on a black mirror, in: 2nd LeCosPA Symposium: Everything about Gravity, Celebrating the Centenary of Einstein’s General Relativity, 2016, arXiv: 1602.00683 [gr-qc]
[292]
M. R. R. Good. Extremal Hawking radiation. Phys. Rev. D, 2020, 101(10): 104050
CrossRef ADS Google scholar
[293]
M. R. R. Good, A. Zhakenuly, E. V. Linder. Mirror at the edge of the universe: Reflections on an accelerated boundary correspondence with de Sitter cosmology. Phys. Rev. D, 2020, 102(4): 045020
CrossRef ADS Google scholar
[294]
J. D. Bekenstein. Black holes and entropy. Phys. Rev. D, 1973, 7(8): 2333
CrossRef ADS Google scholar
[295]
V. Alfaro, S. Fubini, G. Furlan. Conformal invariance in quantum mechanics. Nuovo Cimento A Serie, 1976, 34: 569
CrossRef ADS Google scholar
[296]
H. E. Camblong, C. R. Ordonez. Black hole thermodynamics from near-horizon conformal quantum mechanics. Phys. Rev. D, 2005, 71(10): 104029
CrossRef ADS Google scholar
[297]
H. E. Camblong, C. R. Ordonez. Semiclassical methods in curved spacetime and black hole thermodynamics. Phys. Rev. D, 2005, 71(12): 124040
CrossRef ADS Google scholar
[298]
H. E. Camblong, A. Chakraborty, C. R. Ordonez. Near-horizon aspects of acceleration radiation by free fall of an atom into a black hole. Phys. Rev. D, 2020, 102(8): 085010
CrossRef ADS Google scholar
[299]
A.AziziH. E. CamblongA.ChakrabortyC.R. OrdonezM.O. Scully, Quantum optics meets black hole thermodynamics via conformal quantum mechanics: I. Master equation for acceleration radiation, Phys. Rev. D 104, 084086 (2021), arXiv: 2108.07570 [gr-qc]
[300]
A.AziziH. E. CamblongA.ChakrabortyC.R. OrdonezM.O. Scully, Quantum optics meets black hole thermodynamics via conformal quantum mechanics: II. Thermodynamics of acceleration radiation, Phys. Rev. D 104, 084085 (2021), arXiv: 2108.07572 [gr-qc]
[301]
J.M. MaldacenaN.Seiberg, Flux-vacua in two dimensional string theory, J. High Energy Phys. 09, 077 (2005), arXiv: hep-th/0506141
[302]
T. Morita. Thermal emission from semiclassical dynamical systems. Phys. Rev. Lett., 2019, 122(10): 101603
CrossRef ADS Google scholar
[303]
M. Maitra, D. Maity, B. R. Majhi. Near horizon symmetries, emergence of Goldstone modes and thermality. Eur. Phys. J. Plus, 2020, 135(6): 483
CrossRef ADS Google scholar
[304]
S. Dalui, B. R. Majhi. Near-horizon local instability and quantum thermality. Phys. Rev. D, 2020, 102(12): 124047
CrossRef ADS Google scholar
[305]
S. Dalui, B. R. Majhi, P. Mishra. Horizon induces instability locally and creates quantum thermality. Phys. Rev. D, 2020, 102(4): 044006
CrossRef ADS Google scholar
[306]
S. Dalui, B. R. Majhi. Horizon thermalization of Kerr black hole through local instability. Phys. Lett. B, 2022, 826: 136899
CrossRef ADS Google scholar
[307]
S. Dalui, B. R. Majhi, T. Padmanabhan. Thermal nature of a generic null surface. Phys. Rev. D, 2021, 104(12): 124080
CrossRef ADS Google scholar
[308]
G.R. KaneB. R. Majhi, Thermality of horizon through near horizon instability: A path integral approach, arXiv: 2210.04056 [gr-qc] (2022)
[309]
R. Chatterjee, S. Gangopadhyay, A. S. Majumdar. Violation of equivalence in an accelerating atom-mirror system in the generalized uncertainty principle framework. Phys. Rev. D, 2021, 104(12): 124001
CrossRef ADS Google scholar
[310]
S. Sen, R. Mandal, S. Gangopadhyay. Equivalence principle and HBAR entropy of an atom falling into a quantum corrected black hole. Phys. Rev. D, 2022, 105(8): 085007
CrossRef ADS Google scholar
[311]
K. Chakraborty, B. R. Majhi. Detector response along null geodesics in black hole spacetimes and in a Friedmann‒Lemaitre‒Robertson‒Walker universe. Phys. Rev. D, 2019, 100(4): 045004
CrossRef ADS Google scholar
[312]
S.M. A. S. BukhariL.G. Wang, Seeing dark matter via acceleration radiation, arXiv: 2309.11958 [gr-qc] (2023)
[313]
M. K. Parikh, F. Wilczek. Hawking radiation as tunneling. Phys. Rev. Lett., 2000, 85(24): 5042
CrossRef ADS Google scholar
[314]
M.Visser, Thermality of the Hawking flux, J. High Energy Phys. 07, 009 (2015), arXiv: 1409.7754 [gr-qc]
[315]
Y. H. Ma, Q. Y. Cai, H. Dong, C. P. Sun. Non-thermal radiation of black holes off canonical typicality. EPL, 2018, 122(3): 30001
CrossRef ADS Google scholar
[316]
D.KastorJ. H. Traschen, Particle production and positive energy theorems for charged black holes in de Sitter, Class. Quant. Grav. 13, 2753 (1996), arXiv: gr-qc/9311025
[317]
S. Bhattacharya. Particle creation by de Sitter black holes revisited. Phys. Rev. D, 2018, 98(12): 125013
CrossRef ADS Google scholar
[318]
Y.QiuJ. Traschen, Black hole and cosmological particle production in Schwarzschild de Sitter, Class. Quant. Grav. 37, 135012 (2020), arXiv: 1908.02737 [hep-th]
[319]
S. M. A. S. Bukhari, I. A. Bhat, C. Xu, L. G. Wang. Nonthermal acceleration radiation of atoms near a black hole in presence of dark energy. Phys. Rev. D, 2023, 107(10): 105017
CrossRef ADS Google scholar
[320]
S. D. Bartlett, T. Rudolph, R. W. Spekkens. Reference frames, superselection rules, and quantum information. Rev. Mod. Phys., 2007, 79(2): 555
CrossRef ADS Google scholar
[321]
T. C. Ralph, T. G. Downes. Relativistic quantum information and time machines. Contemp. Phys., 2012, 53(1): 1
CrossRef ADS Google scholar
[322]
S. J. Summers, R. Werner. Maximal violation of Bell’s inequalities is generic in quantum field theory. Commun. Math. Phys., 1987, 110(2): 247
CrossRef ADS Google scholar
[323]
B. Reznik, A. Retzker, J. Silman. Violating Bell’s inequalities in vacuum. Phys. Rev. A, 2005, 71(4): 042104
CrossRef ADS Google scholar
[324]
G. Salton, R. B. Mann, N. C. Menicucci. Acceleration-assisted entanglement harvesting and rangefinding. New J. Phys., 2015, 17(3): 035001
CrossRef ADS Google scholar
[325]
A. Pozas-Kerstjens, E. Martin-Martinez. Harvesting correlations from the quantum vacuum. Phys. Rev. D, 2015, 92(6): 064042
CrossRef ADS Google scholar
[326]
Y. Zhou, J. Hu, H. Yu. Steady-state entanglement for rotating Unruh‒DeWitt detectors. Phys. Rev. D, 2022, 106(10): 105028
CrossRef ADS Google scholar
[327]
Z. Liu, J. Zhang, H. Yu. Entanglement harvesting of accelerated detectors versus static ones in a thermal bath. Phys. Rev. D, 2023, 107(4): 045010
CrossRef ADS Google scholar
[328]
L. Bozanic, M. Naeem, K. Gallock-Yoshimura, R. B. Mann. Correlation harvesting between particle detectors in uniform motion. Phys. Rev. D, 2023, 108(10): 105017
CrossRef ADS Google scholar
[329]
J. Zhang, H. Yu. Entanglement harvesting for Unruh‒DeWitt detectors in circular motion. Phys. Rev. D, 2020, 102(6): 065013
CrossRef ADS Google scholar
[330]
Z.LiuJ. ZhangH.Yu, Entanglement harvesting in the presence of a reflecting boundary, J. High Energy Phys. 08, 020 (2021), arXiv: 2101.00114 [quant-ph]
[331]
Y. Ye, H. Yu, J. Hu. Entanglement generation and protection for two atoms in the presence of two parallel mirrors. Commum. Theor. Phys., 2021, 73(6): 065104
CrossRef ADS Google scholar
[332]
Z.LiuJ. ZhangH.Yu, Harvesting correlations from vacuum quantum fields in the presence of a reflecting boundary, J. High Energy Phys. 11, 184 (2023), arXiv: 2310.07164 [quant-ph]
[333]
R.LiZ.Zhao, Entanglement harvesting of circularly accelerated detectors with a reflecting boundary, arXiv: 2401.16018 [quant-ph] (2024)
[334]
D. Barman, B. R. Majhi. Are multiple reflecting boundaries capable of enhancing entanglement harvesting. Phys. Rev. D, 2023, 108(8): 085007
CrossRef ADS Google scholar
[335]
Y.JiJ.Zhang H.Yu, Entanglement harvesting in cosmic string spacetime, arXiv: 2401.13406 [quant-ph] (2024)
[336]
E. Martin-Martinez, A. R. H. Smith, D. R. Terno. Spacetime structure and vacuum entanglement. Phys. Rev. D, 2016, 93(4): 044001
CrossRef ADS Google scholar
[337]
H.HuJ.Zhang H.Yu, Harvesting entanglement by non-identical detectors with different energy gaps, J. High Energy Phys. 05, 112 (2022), arXiv: 2204.01219 [quant-ph]
[338]
W.CongC. QianM.R. R. GoodR.B. Mann, Effects of horizons on entanglement harvesting, J. High Energy Phys. 10, 067 (2020), arXiv: 2006.01720 [gr-qc]
[339]
L.J. HendersonR.A. HennigarR.B. Mann A.R. H. SmithJ.Zhang, Harvesting entanglement from the black hole vacuum, Class. Quant. Grav. 35, 21LT02 (2018), arXiv: 1712.10018 [quant-ph]
[340]
J. A. G. A. Caribé, R. H. Jonsson, M. Casals, A. Kempf, E. Martín-Martínez. Lensing of vacuum entanglement near Schwarzschild black holes. Phys. Rev. D, 2023, 108(2): 025016
CrossRef ADS Google scholar
[341]
J. Hu, H. Yu. Quantum entanglement generation in de Sitter spacetime. Phys. Rev. D, 2013, 88(10): 104003
CrossRef ADS Google scholar
[342]
K. Bueley, L. Huang, K. Gallock-Yoshimura, R. B. Mann. Harvesting mutual information from BTZ black hole spacetime. Phys. Rev. D, 2022, 106(2): 025010
CrossRef ADS Google scholar
[343]
K. Gallock-Yoshimura, E. Tjoa, R. B. Mann. Harvesting entanglement with detectors freely falling into a black hole. Phys. Rev. D, 2021, 104(2): 025001
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 11974309). SMASB acknowledges financial support from China Scholarship Council at Zhejiang University.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(4652 KB)

Accesses

Citations

Detail

Sections
Recommended

/