Genuine tripartite entanglement and geometric quantum discord in entangled three-body Unruh−DeWitt detector system

Tingting Fan, Cuihong Wen, Jiliang Jing, Jieci Wang

PDF(4331 KB)
PDF(4331 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (5) : 54201. DOI: 10.1007/s11467-024-1398-3
RESEARCH ARTICLE

Genuine tripartite entanglement and geometric quantum discord in entangled three-body Unruh−DeWitt detector system

Author information +
History +

Abstract

We studied the quantum correlations of a three-body Unruh−DeWitt detector system using genuine tripartite entanglement (GTE) and geometric quantum discord (GQD). We considered two representative three-body initial entangled states, namely the GHZ state and the W state. We demonstrated that the quantum correlations of the tripartite system are completely destroyed at the limit of infinite acceleration. In particular, it is found that the GQD of the two initial states exhibits “sudden change” behavior with increasing acceleration. It is shown that the quantum correlations of the W state are more sensitive than those of the GHZ state under the effect of Unruh thermal noise. The GQD is a more robust quantum resource than the GTE, and we can achieve robustness in discord-type quantum correlations by selecting the smaller energy gap in the detector. These findings provide guidance for selecting appropriate quantum states and resources for quantum information processing tasks in a relativistic setting.

Graphical abstract

Keywords

Unruh−DeWitt detector / Unruh effect / relativistic quantum information / geometric quantum discord

Cite this article

Download citation ▾
Tingting Fan, Cuihong Wen, Jiliang Jing, Jieci Wang. Genuine tripartite entanglement and geometric quantum discord in entangled three-body Unruh−DeWitt detector system. Front. Phys., 2024, 19(5): 54201 https://doi.org/10.1007/s11467-024-1398-3

References

[1]
W. G. Unruh. Notes on black-hole evaporation. Phys. Rev. D, 1976, 14(4): 870
CrossRef ADS Google scholar
[2]
B.S. DeWitt, Quantum Gravity: The New Synthesis, Cambridge University Press, 1979
[3]
N.BirrellP. Davies, Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 1984
[4]
B.S. DeWitt, in General Relativity: An Einstein Centenary Survey, edited by S. W. Hawking and W. Israel, Cambridge University Press, Cambridge, England, 1980
[5]
B. Reznik, A. Retzker, J. Silman. Violating Bell’s inequalities in vacuum. Phys. Rev. A, 2005, 71(4): 042104
CrossRef ADS Google scholar
[6]
L. C. Céleri, A. G. S. Landulfo, R. M. Serra, G. E. A. Matsas. Sudden change in quantum and classical correlations and the Unruh effect. Phys. Rev. A, 2010, 81(6): 062130
CrossRef ADS Google scholar
[7]
J. Wang, Z. Tian, J. Jing, H. Fan. Irreversible degradation of quantum coherence under relativistic motion. Phys. Rev. A, 2016, 93(6): 062105
CrossRef ADS Google scholar
[8]
Z. Liu, J. Zhang, R. B. Mann, H. Yu. Does acceleration assist entanglement harvesting?. Phys. Rev. D, 2022, 105(8): 085012
CrossRef ADS Google scholar
[9]
J. Wang, L. Zhang, S. Chen, J. Jing. Estimating the Unruh effect via entangled many-body probes. Phys. Lett. B, 2020, 802: 135239
CrossRef ADS Google scholar
[10]
J. Wang, Z. Tian, J. Jing, H. Fan. Quantum metrology and estimation of Unruh effect. Sci. Rep., 2014, 4(1): 7195
CrossRef ADS Google scholar
[11]
A. G. S. Landulfo, G. E. A. Matsas. Sudden death of entanglement and teleportation fidelity loss via the Unruh effect. Phys. Rev. A, 2009, 80(3): 032315
CrossRef ADS Google scholar
[12]
I. Fuentes-Schuller, R. B. Mann. Alice falls into a black hole: Entanglement in noninertial frames. Phys. Rev. Lett., 2005, 95(12): 120404
CrossRef ADS Google scholar
[13]
P. M. Alsing, G. J. Milburn. Teleportation with a uniformly accelerated partner. Phys. Rev. Lett., 2003, 91(18): 180404
CrossRef ADS Google scholar
[14]
M. Aspachs, G. Adesso, I. Fuentes. Optimal quantum estimation of the Unruh−Hawking effect. Phys. Rev. Lett., 2010, 105(15): 151301
CrossRef ADS Google scholar
[15]
E. Martín-Martínez, D. Aasen, A. Kempf. Processing quantum information with relativistic motion of atoms. Phys. Rev. Lett., 2013, 110(16): 160501
CrossRef ADS Google scholar
[16]
N. Friis, A. R. Lee, K. Truong, C. Sabín, E. Solano, G. Johansson, I. Fuentes. Relativistic quantum teleportation with superconducting circuits. Phys. Rev. Lett., 2013, 110(11): 113602
CrossRef ADS Google scholar
[17]
J. Wang, J. Jing. Quantum decoherence in noninertial frames. Phys. Rev. A, 2010, 82(3): 032324
CrossRef ADS Google scholar
[18]
Q. Liu, S. M. Wu, C. Wen, J. Wang. Quantum properties of fermionic fields in multi-event horizon space-time. Sci. China Phys. Mech. Astron., 2023, 66(12): 120413
CrossRef ADS Google scholar
[19]
D. C. M. Ostapchuk, S. Y. Lin, R. B. Mann, B. L. Hu. Entanglement dynamics between inertial and non-uniformly accelerated detectors. J. High Energy Phys., 2012, 2012: 72
CrossRef ADS Google scholar
[20]
J. Doukas, S. Y. Lin, B. L. Hu, R. B. Mann. Unruh effect under non-equilibrium conditions: Oscillatory motion of an Unruh−DeWitt detector. J. High Energy Phys., 2013, 2013(11): 119
CrossRef ADS Google scholar
[21]
B. Šoda, V. Sudhir, A. Kempf. Acceleration-induced effects in stimulated light−matter interactions. Phys. Rev. Lett., 2022, 128(16): 163603
CrossRef ADS Google scholar
[22]
J. Q. Quach, T. C. Ralph, W. J. Munro. Berry phase from the entanglement of future and past light cones: Detecting the time-like Unruh effect. Phys. Rev. Lett., 2022, 129(16): 160401
CrossRef ADS Google scholar
[23]
K. Lorek, D. Pecak, E. G. Brown, A. Dragan. Extraction of genuine tripartite entanglement from the vacuum. Phys. Rev. A, 2014, 90(3): 032316
CrossRef ADS Google scholar
[24]
D. Mendez-Avalos, L. J. Henderson, K. Gallock-Yoshimura, R. B. Mann. Entanglement harvesting of three Unruh−DeWitt detectors. Gen. Relativ. Gravit., 2022, 54(8): 87
CrossRef ADS Google scholar
[25]
D.M. AvalosK. Gallock-YoshimuraL.J. HendersonR.B. Mann, Instant extraction of non-perturbative tripartite entanglement, arXiv: 2204.02983 (2022)
[26]
I. J. Membrere, K. Gallock-Yoshimura, L. J. Henderson, R. B. Mann. Tripartite entanglement extraction from the black hole vacuum. Adv. Quantum Technol., 2023, 6(9): 2300125
CrossRef ADS Google scholar
[27]
R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki. Quantum entanglement. Rev. Mod. Phys., 2009, 81(2): 865
CrossRef ADS Google scholar
[28]
C. H. Bennett, S. Popescu, D. Rohrlich, J. A. Smolin, A. V. Thapliyal. Exact and asymptotic measures of multipartite pure-state entanglement. Phys. Rev. A, 2000, 63(1): 012307
CrossRef ADS Google scholar
[29]
V. Coffman, J. Kundu, W. K. Wootters. Distributed entanglement. Phys. Rev. A, 2000, 61(5): 052306
CrossRef ADS Google scholar
[30]
Y. C. Ou, H. Fan. Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A, 2007, 75(6): 062308
CrossRef ADS Google scholar
[31]
R. Laflamme, C. Miquel, J. P. Paz, W. H. Zurek. Perfect quantum error correcting code. Phys. Rev. Lett., 1996, 77(1): 198
CrossRef ADS Google scholar
[32]
A. W. Chin, S. F. Huelga, M. B. Plenio. Quantum metrology in non-Markovian environments. Phys. Rev. Lett., 2012, 109(23): 233601
CrossRef ADS Google scholar
[33]
A. Karlsson, M. Bourennane. Quantum teleportation using three-particle entanglement. Phys. Rev. A, 1998, 58(6): 4394
CrossRef ADS Google scholar
[34]
L. Bombelli, R. K. Koul, J. Lee, R. D. Sorkin. Quantum source of entropy for black holes. Phys. Rev. D, 1986, 34(2): 373
CrossRef ADS Google scholar
[35]
S. W. Hawking. Breakdown of predictability in gravitational collapse. Phys. Rev. D, 1976, 14(10): 2460
CrossRef ADS Google scholar
[36]
H. Terashima. Entanglement entropy of the black hole horizon. Phys. Rev. D, 2000, 61(10): 104016
CrossRef ADS Google scholar
[37]
M. Headrick, V. E. Hubeny, A. Lawrence, M. Rangamani. Causality & holographic entanglement entropy. J. High Energy Phys., 2014, 2014(12): 162
CrossRef ADS Google scholar
[38]
M. R. Hwang, D. Park, E. Jung. Tripartite entanglement in a noninertial frame. Phys. Rev. A, 2011, 83: 012111
CrossRef ADS Google scholar
[39]
Z. Tian, J. Wang, J. Jing, A. Dragan. Entanglement enhanced thermometry in the detection of the Unruh effect. Ann. Phys., 2017, 377: 1
CrossRef ADS Google scholar
[40]
Y. Dai, Z. Shen, Y. Shi. Quantum entanglement in three accelerating qubits coupled to scalar fields. Phys. Rev. D, 2016, 94(2): 025012
CrossRef ADS Google scholar
[41]
S. M. Wu, H. S. Zeng, T. H. Liu. Genuine multipartite entanglement subject to the Unruh and anti-Unruh effects. New J. Phys., 2022, 24(7): 073004
CrossRef ADS Google scholar
[42]
B. P. Lanyon, M. Barbieri, M. P. Almeida, A. G. White. Experimental quantum computing without entanglement. Phys. Rev. Lett., 2008, 101(20): 200501
CrossRef ADS Google scholar
[43]
A. Datta, A. Shaji, C. M. Caves. Quantum discord and the power of one qubit. Phys. Rev. Lett., 2008, 100(5): 050502
CrossRef ADS Google scholar
[44]
J. Niset, N. J. Cerf. Multipartite nonlocality without entanglement in many dimensions. Phys. Rev. A, 2006, 74(5): 052103
CrossRef ADS Google scholar
[45]
H. Ollivier, W. H. Zurek. Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett., 2001, 88(1): 017901
CrossRef ADS Google scholar
[46]
L. Henderson, V. Vedral. Classical, quantum and total correlations. J. Phys. Math. Gen., 2001, 34(35): 6899
CrossRef ADS Google scholar
[47]
M. Ali, A. R. P. Rau, G. Alber. Quantum discord for two-qubit X states. Phys. Rev. A, 2010, 81(4): 042105
CrossRef ADS Google scholar
[48]
Y. H. Huang. Quantum discord for two-qubit X states: Analytical formula with very small worst-case error. Phys. Rev. A, 2013, 88(1): 014302
CrossRef ADS Google scholar
[49]
Y. H. Huang. Computing quantum discord is NP-complete. New J. Phys., 2014, 16(3): 033027
CrossRef ADS Google scholar
[50]
B. Dakić, V. Vedral, C. Brukner. Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett., 2010, 105(19): 190502
CrossRef ADS Google scholar
[51]
K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson. Unified view of quantum and classical correlations. Phys. Rev. Lett., 2010, 104(8): 080501
CrossRef ADS Google scholar
[52]
J. Zhou, H. Guo. Dynamics of tripartite geometric quantifiers of correlations in a quantum spin system. Phys. Rev. A, 2013, 87(6): 062315
CrossRef ADS Google scholar
[53]
Č. Brukner, M. Żukowski, J. W. Pan, A. Zeilinger. Bell’s inequalities and quantum communication complexity. Phys. Rev. Lett., 2004, 92(12): 127901
CrossRef ADS Google scholar
[54]
R.A. HornC. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985
[55]
C. C. Rulli, M. S. Sarandy. Global quantum discord in multipartite systems. Phys. Rev. A, 2011, 84(4): 042109
CrossRef ADS Google scholar
[56]
C. Radhakrishnan, M. Laurière, T. Byrnes. Multipartite generalization of quantum discord. Phys. Rev. Lett., 2020, 124(11): 110401
CrossRef ADS Google scholar
[57]
S. L. Luo, S. S. Fu. Geometric measure of quantum discord. Phys. Rev. A, 2010, 82(3): 034302
CrossRef ADS Google scholar
[58]
W. Dür, G. Vidal, J. I. Cirac. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A, 2000, 62(6): 062314
CrossRef ADS Google scholar
[59]
J. He, Z. Y. Ding, J. D. Shi, T. Wu. Multipartite quantum coherence and distribution under the Unruh effect. Ann. Phys., 2018, 530(9): 1800167
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12122504 and 12374408) and the Natural Science Foundation of Hunan Province (Grant No. 2023JJ30384).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(4331 KB)

Accesses

Citations

Detail

Sections
Recommended

/