Lecture notes on quantum entanglement: From stabilizer states to stabilizer channels
Amir R. Arab
Lecture notes on quantum entanglement: From stabilizer states to stabilizer channels
We study mathematical, physical and computational aspects of the stabilizer formalism arising in quantum information and quantum computation. The measurement process of Pauli observables with its algorithm is given. It is shown that to detect genuine entanglement we need a full set of stabilizer generators and the stabilizer witness is coarser than the GHZ (Greenberger–Horne–Zeilinger) witness. We discuss stabilizer codes and construct a stabilizer code from a given linear code. We also discuss quantum error correction, error recovery criteria and syndrome extraction. The symplectic structure of the stabilizer formalism is established and it is shown that any stabilizer code is unitarily equivalent to a trivial code. The structure of graph codes as stabilizer codes is identified by obtaining the respective stabilizer generators. The distance of embeddable stabilizer codes in lattices is obtained. We discuss the Knill−Gottesman theorem, tableau representation and frame representation. The runtime of simulating stabilizer gates is obtained by applying stabilizer matrices. Furthermore, an algorithm for updating global phases is given. Resolution of quantum channels into stabilizer channels is shown. We discuss capacity achieving codes to obtain the capacity of the quantum erasure channel. Finally, we discuss the shadow tomography problem and an algorithm for constructing classical shadow is given.
Pauli product / stabilizer state / measurement process / entanglement detection / stabilizer code / stabilizer circuit / quantum channel / tomography
[1] |
D.Gottesman, Stabilizer codes and quantum error correction, arXiv: quant-ph/9705052, Caltech Ph.D thesis, 1997
|
[2] |
K.Fujii, Stabilizer formalism and its applications, in: Quantum Computation with Topological Codes, Springer Briefs in Mathematical Physics, Vol. 8, Singapore: Springer, 2015
|
[3] |
D.Gottesman, The Heisenberg representation of quantum computers, arXiv: quant-ph/9807006 (1998)
|
[4] |
F. R. F. Pereira , S. Mancini , G. G. La Guardia . Stabilizer codes for open quantum systems. Sci. Rep., 2023, 13(1): 10540
CrossRef
ADS
Google scholar
|
[5] |
A. Dymarsky , A. Shapere . Quantum stabilizer codes, lattices, and CFTs. J. High Energy Phys., 2021, 2021(3): 160
CrossRef
ADS
Google scholar
|
[6] |
D. Schlingemann , R. F. Werner . Quantum error-correcting codes associated with graphs. Phys. Rev. A, 2001, 65(1): 012308
CrossRef
ADS
Google scholar
|
[7] |
A. Dahlberg , S. Wehner . Transforming graph states using single-qubit operations. Philos. Trans. Royal Soc. A, 2018, 376(2123): 20170325
CrossRef
ADS
Google scholar
|
[8] |
D. Markham , B. C. Sanders . Graph states for quantum secret sharing. Phys. Rev. A, 2008, 78(4): 042309
CrossRef
ADS
Google scholar
|
[9] |
J. Ribeiro , G. Murta , S. Wehner . Fully device-independent conference key agreement. Phys. Rev. A, 2018, 97(2): 022307
CrossRef
ADS
Google scholar
|
[10] |
M.ChristandlS.Wehner, Quantum anonymous transmissions, in: Advances in Cryptology – ASIACRYPT (Ed. R. Bimal), pp 217–235, Berlin: Springer, 2005
|
[11] |
R. Jozsa , D. S. Abrams , J. P. Dowling , C. P. Williams . Quantum clock synchronization based on shared prior entanglement. Phys. Rev. Lett., 2000, 85(9): 2010
CrossRef
ADS
Google scholar
|
[12] |
V. Veitch , S. A. Hamed Mousavian , D. Gottesman , J. Emerson . The resource theory of stabilizer quantum computation. New J. Phys., 2014, 16(1): 013009
CrossRef
ADS
Google scholar
|
[13] |
C. H. Bennett , S. J. Wiesner . Communication via one- and two-particle operators on Einstein‒Podolsky‒Rosen states. Phys. Rev. Lett., 1992, 69(20): 2881
CrossRef
ADS
Google scholar
|
[14] |
D.M. GreenbergerM.A. HorneA.Zeilinger, Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, Kluwer, 1989
|
[15] |
C. H. Bennett , G. Brassard , C. Crepeau , R. Jozsa , A. Peres , W. Wootters . Teleporting an unknown quantum state via dual classical and Einstein‒Podolsky‒Rosen channels. Phys. Rev. Lett., 1993, 70(13): 1895
CrossRef
ADS
Google scholar
|
[16] |
S. Aaronson , D. Gottesman . Improved simulation of stabilizer circuits. Phys. Rev. A, 2004, 70(5): 052328
CrossRef
ADS
Google scholar
|
[17] |
P. Selinger . Generators and relations for n-qubit Clifford operators. Log. Methods Comput. Sci., 2015, 11(2): 1
CrossRef
ADS
Google scholar
|
[18] |
M. Horodecki , P. Horodecki , R. Horodecki . Asymptotic manipulations of entanglement can exhibit genuine irreversibility. Phys. Rev. Lett., 2001, 86(25): 5844
CrossRef
ADS
Google scholar
|
[19] |
C. A. Sackett , D. Kielpinski , B. E. King , C. Langer , V. Meyer , C. J. Myatt , M. Rowe , Q. A. Turchette , W. M. Itano , D. J. Wineland , C. Monroe . Experimental entanglement of four particles. Nature, 2000, 404(6775): 256
CrossRef
ADS
Google scholar
|
[20] |
G. Tóth , O. Gühne . Entanglement detection in the stabilizer formalism. Phys. Rev. A, 2005, 72(2): 022340
CrossRef
ADS
Google scholar
|
[21] |
D. Dieks . Communication by EPR devices. Phys. Lett. A, 1982, 92(6): 271
CrossRef
ADS
Google scholar
|
[22] |
E.KnillR.LaflammeL.Viola, A theory of quantum error correcting codes, Phys. Rev. Lett. 84(11), 2525 (2000)
|
[23] |
J.Preskill, Lecture Notes for Physics 229: Quantum Information and Computation, Create Space Independent Publishing Platform, 2015
|
[24] |
M.HeinW.DürJ.EisertR.RaussendorfM.Van den NestH.J. Briegel, Entanglement in graph states and its applications, arXiv: quant-ph/0602096 (2006)
|
[25] |
D. Schlingemann . Stabilizer codes can be realized as graph codes. Quantum Inf. Comput., 2002, 2(4): 307
CrossRef
ADS
Google scholar
|
[26] |
T. J. Bell , L. A. Pettersson , S. Paesani . Optimizing graph codes for measurement-based loss tolerance. PRX Quantum, 2023, 4(2): 020328
CrossRef
ADS
Google scholar
|
[27] |
J. Haah , J. Preskill . Logical operator tradeoff for local quantum codes. Phys. Rev. A, 2012, 86(3): 032308
CrossRef
ADS
Google scholar
|
[28] |
S.BravyiB.Terhal, A no‒go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes, New J. Phys. 11(4), 043029 (2009)
|
[29] |
A. R. Arab . On states of quantum theory. Int. J. Geom. Methods Mod. Phys., 2022, 19(14): 2250221
CrossRef
ADS
Google scholar
|
[30] |
M.A. NielsenI.L. Chuang, Quantum Computation and Quantum Information, 10th Anniversary Edition, Cambridge University Press, 2010
|
[31] |
|
[32] |
H. J. García , I. L. Markov . Simulation of quantum circuits via stabilizer frames. IEEE Trans. Comput., 2015, 64(8): 2323
CrossRef
ADS
Google scholar
|
[33] |
A. R. Arab . On diagonal quantum channels. Rep. Math. Phys., 2021, 88(1): 59
CrossRef
ADS
Google scholar
|
[34] |
R. S. Bennink , E. M. Ferragut , T. S. Humble , J. A. Laska , J. J. Nutaro , M. G. Pleszkoch , R. C. Pooser . Unbiased simulation of near-Clifford quantum circuits. Phys. Rev. A, 2017, 95(6): 062337
CrossRef
ADS
Google scholar
|
[35] |
E. Wigner . On the quantum correction for thermodynamic equilibrium. Phys. Rev., 1932, 40(5): 749
CrossRef
ADS
Google scholar
|
[36] |
N.DelfosseG.Zémor, Upper bounds on the rate of low density stabilizer codes for the quantum erasure channel, Quantum Inf. Comput. 13(9‒10), 793 (2013)
|
[37] |
C. H. Bennett , D. P. DiVincenzo , J. A. Smolin . Capacities of quantum erasure channels. Phys. Rev. Lett., 1997, 78: 3217
CrossRef
ADS
Google scholar
|
[38] |
M. Kang , W. C. Campbell , K. R. Brown . Quantum error correction with metastable states of trapped ions using erasure conversion. PRX Quantum, 2023, 4(2): 020358
CrossRef
ADS
Google scholar
|
[39] |
S.Aaronson, Shadow tomography of quantum states, arXiv: 1711.01053 (2017)
|
[40] |
H. Y. Huang , R. Kueng , J. Preskill . Predicting many properties of a quantum system from very few measurements. Nat. Phys., 2020, 16(10): 1050
CrossRef
ADS
Google scholar
|
[41] |
R. Koenig , J. A. Smolin . How to efficiently select an arbitrary Clifford group element. J. Math. Phys., 2014, 55(12): 122202
CrossRef
ADS
Google scholar
|
[42] |
A.M. Steane, A Tutorial on Quantum Error Correction, Quantum Computers, Algorithms and Chaos, pp 1–32, Amsterdam: IOS Press, 2006
|
[43] |
R. G. Gallager . Low-density parity-check codes. IRE Trans. Inf. Theory, 1962, 8(1): 21
CrossRef
ADS
Google scholar
|
[44] |
L. Eldar , M. Ozols , K. Thompson . The need for structure in quantum LDPC codes. IEEE Trans. Inf. Theory, 2020, 66(3): 1460
CrossRef
ADS
Google scholar
|
[45] |
N. P. Breuckmann , J. N. Eberhardt . Quantum low-density parity-check codes. PRX Quantum, 2021, 2(4): 040101
CrossRef
ADS
Google scholar
|
[46] |
M. A. Webster , B. J. Brown , S. D. Bartlett . The XP stabiliser formalism: A generalisation of the Pauli stabiliser formalism with arbitrary phases. Quantum, 2022, 6: 815
CrossRef
ADS
Google scholar
|
[47] |
A. L. Grimsmo , S. Puri . Quantum error correction with the Gottesman‒Kitaev‒Preskill code. PRX Quantum, 2021, 2(2): 020101
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |