Quantum secure direct communication with hybrid entanglement

Peng Zhao, Wei Zhong, Ming-Ming Du, Xi-Yun Li, Lan Zhou, Yu-Bo Sheng

PDF(5408 KB)
PDF(5408 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (5) : 51201. DOI: 10.1007/s11467-024-1396-5
RESEARCH ARTICLE

Quantum secure direct communication with hybrid entanglement

Author information +
History +

Abstract

Quantum secure direct communication (QSDC) can transmit secret messages without keys, making it an important branch of quantum communication. We present a hybrid entanglement-based quantum secure direct communication (HE-QSDC) protocol with simple linear optical elements, combining the benefits of both continuous variables (CV) and discrete variables (DV) encoding. We analyze the security and find that the QSDC protocol has a positive security capacity when the bit error rate is less than 0.073. Compared with previous DV QSDC protocols, our protocol has higher communication efficiency due to performing nearly deterministic Bell-state measurement. On the other hand, compared with CV QSDC protocol, this protocol has higher fidelity with large α. Based on these advantages, our protocol may provide an alternative approach to realize secure communication.

Graphical abstract

Keywords

quantum secure direct communication / hybrid entanglement, Bell-state measurement

Cite this article

Download citation ▾
Peng Zhao, Wei Zhong, Ming-Ming Du, Xi-Yun Li, Lan Zhou, Yu-Bo Sheng. Quantum secure direct communication with hybrid entanglement. Front. Phys., 2024, 19(5): 51201 https://doi.org/10.1007/s11467-024-1396-5

References

[1]
V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, M. Peev. The security of practical quantum key distribution. Rev. Mod. Phys., 2009, 81(3): 1301
CrossRef ADS Google scholar
[2]
F. H. Xu, X. F. Ma, Q. Zhang, H. K. Lo, J. W. Pan. Secure quantum key distribution with realistic devices. Rev. Mod. Phys., 2020, 92(2): 025002
CrossRef ADS Google scholar
[3]
A. K. Ekert. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett., 1991, 67(6): 661
CrossRef ADS Google scholar
[4]
X. F. Ma, B. Qi, Y. Zhao, H. K. Lo. Practical decoy state for quantum key distribution. Phys. Rev. A, 2005, 72(1): 012326
CrossRef ADS Google scholar
[5]
X. Ma, C. H. F. Fung, H. K. Lo. Quantum key distribution with entangled photon sources. Phys. Rev. A, 2007, 76(1): 012307
CrossRef ADS Google scholar
[6]
X. L. Su. Applying Gaussian quantum discord to quantum key distribution. Chin. Sci. Bull., 2014, 59(11): 1083
CrossRef ADS Google scholar
[7]
M. Hillery, V. Bužek, A. Berthiaume. Quantum secret sharing. Phys. Rev. A, 1999, 59(3): 1829
CrossRef ADS Google scholar
[8]
A. Shen, X. Y. Cao, Y. Wang, Y. Fu, J. Gu, W. B. Liu, C. X. Weng, H. L. Yin, Z. B. Chen. Experimental quantum secret sharing based on phase encoding of coherent states. Sci. China Phys. Mech. Astron., 2023, 66(6): 260311
CrossRef ADS Google scholar
[9]
G. L. Long, X. S. Liu. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A, 2002, 65(3): 032302
CrossRef ADS Google scholar
[10]
F. G. Deng, G. L. Long, X. S. Liu. Two-step quantum direct communication protocol using the Einstein‒Podolsky‒Rosen pair block. Phys. Rev. A, 2003, 68(4): 042317
CrossRef ADS Google scholar
[11]
F. G. Deng, G. L. Long. Secure direct communication with a quantum one-time pad. Phys. Rev. A, 2004, 69(5): 052319
CrossRef ADS Google scholar
[12]
P. H. Niu, Z. R. Zhou, Z. S. Lin, Y. B. Sheng, L. G. Yin, G. L. Long. Measurement-device-independent quantum communication without encryption. Sci. Bull. (Beijing), 2018, 63(20): 1345
CrossRef ADS Google scholar
[13]
Z. R. Zhou, Y. B. Sheng, P. H. Niu, L. G. Yin, G. L. Long, L. Hanzo. Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron., 2020, 63(3): 230362
CrossRef ADS Google scholar
[14]
L. Zhou, Y. B. Sheng, G. L. Long. Device-independent quantum secure direct communication against collective attacks. Sci. Bull. (Beijing), 2020, 65(1): 12
CrossRef ADS Google scholar
[15]
L. Zhou, B. W. Xu, W. Zhong, Y. B. Sheng. Device-independent quantum secure direct communication with single-photon sources. Phys. Rev. Appl., 2023, 19(1): 014036
CrossRef ADS Google scholar
[16]
H.ZengM. M. DuW.ZhongL.ZhouY.B. Sheng, High-capacity device-independent quantum secure direct communication based on hyper-encoding, Fundament. Res., doi: 10.1016/j.fmre.2023.11.006 (2023)
[17]
Y. B. Sheng, L. Zhou, G. L. Long. One-step quantum secure direct communication. Sci. Bull. (Beijing), 2022, 67(4): 367
CrossRef ADS Google scholar
[18]
L. Zhou, Y. B. Sheng. One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron., 2022, 65(5): 250311
CrossRef ADS Google scholar
[19]
J. W. Ying, L. Zhou, W. Zhong, Y. B. Sheng. Measurement-device-independent one-step quantum secure direct communication. Chin. Phys. B, 2022, 31(12): 120303
CrossRef ADS Google scholar
[20]
X. R. Jin, X. Ji, Y. Q. Zhang, S. Zhang, S. K. Hong, K. H. Yeon, C. I. Um. Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A, 2006, 354(1−2): 67
CrossRef ADS Google scholar
[21]
Q.ZhangM. M. DuW.ZhongY.B. ShengL.Zhou, Single-photon based three-party quantum secure direct communication with identity authentication, Ann. Phys. (Berlin), doi: 10.1002/andp.202300407 (2023)
[22]
Y. P. Hong, L. Zhou, W. Zhong, Y. B. Sheng. Measurement-device-independent three-party quantum secure direct communication. Quantum Inform. Process., 2023, 22(2): 111
CrossRef ADS Google scholar
[23]
Y. X. Xiao, L. Zhou, W. Zhong, M. M. Du, Y. B. Sheng. The hyperentanglement-based quantum secure direct communication protocol with single-photon measurement. Quantum Inform. Process., 2023, 22(9): 339
CrossRef ADS Google scholar
[24]
A. D. Zhu, Y. Xia, Q. B. Fan, S. Zhang. Secure direct communication based on secret transmitting order of particles. Phys. Rev. A, 2006, 73(2): 022338
CrossRef ADS Google scholar
[25]
Z. W. Cao, L. Wang, K. X. Liang, G. Chai, J. Y. Peng. Continuous-variable quantum secure direct communication based on Gaussian mapping. Phys. Rev. Appl., 2021, 16(2): 024012
CrossRef ADS Google scholar
[26]
Z. W. Cao, Y. Lu, G. Chai, H. Yu, K. X. Liang, L. Wang. Realization of quantum secure direct communication with continuous variable. Research, 2023, 6: 0193
CrossRef ADS Google scholar
[27]
S. Srikara, K. Thapliyal, A. Pathak. Continuous variable direct secure quantum communication using Gaussian states. Quantum Inform. Process., 2020, 19(4): 132
CrossRef ADS Google scholar
[28]
K. X. Liang, Z. W. Cao, X. L. Chen, L. Wang, G. Chai, J. Y. Peng. A quantum secure direct communication scheme based on intermediate-basis. Front. Phys., 2023, 18(5): 51301
CrossRef ADS Google scholar
[29]
T. Li, G. L. Long. Quantum secure direct communication based on single-photon Bell-state measurement. New J. Phys., 2020, 22(6): 063017
CrossRef ADS Google scholar
[30]
Z. D. Ye, D. Pan, Z. Sun, C. G. Du, L. G. Yin, G. L. Long. Generic security analysis framework for quantum secure direct communication. Front. Phys., 2021, 16(2): 21503
CrossRef ADS Google scholar
[31]
J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, G. L. Long. Experimental quantum secure direct communication with single photons. Light Sci. Appl., 2016, 5(9): e16144
CrossRef ADS Google scholar
[32]
W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, G. C. Guo. Quantum secure direct communication with quantum memory. Phys. Rev. Lett., 2017, 118(22): 220501
CrossRef ADS Google scholar
[33]
F. Zhu, W. Zhang, Y. B. Sheng, Y. D. Huang. Experimental long-distance quantum secure direct communication. Sci. Bull. (Beijing), 2017, 62(22): 1519
CrossRef ADS Google scholar
[34]
D. Pan, Z. S. Lin, J. W. Wu, H. R. Zhang, Z. Sun, D. Ruan, L. G. Yin, G. L. Long. Experimental free-space quantum secure direct communication and its security analysis. Photon. Res., 2020, 8(9): 1522
CrossRef ADS Google scholar
[35]
Z. Qi, Y. Li, Y. W. Huang, J. Feng, Y. L. Zheng, X. F. Chen. A 15-user quantum secure direct communication network. Light Sci. Appl., 2021, 10(1): 183
CrossRef ADS Google scholar
[36]
X. Liu, D. Luo, G. L. Lin, Z. H. Chen, C. F. Huang, S. Z. Li, C. X. Zhang, Z. R. Zhang, K. J. Wei. Fiber-based quantum secure direct communication without active polarization compensation. Sci. China Phys. Mech. Astron., 2022, 65(12): 120311
CrossRef ADS Google scholar
[37]
H. Zhang, Z. Sun, R. Qi, L. Yin, G. L. Long, J. Lu. Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light Sci. Appl., 2022, 11(1): 83
CrossRef ADS Google scholar
[38]
I.PaparelleF. MousaviF.ScazzaA.BassiM.Paris A.Zavatta, Practical quantum secure direct communication with squeezed states, arXiv: 2306.14322 (2023)
[39]
Y. Fu, H. L. Yin, T. Y. Chen, Z. B. Chen. Long-distance measurement-device-independent multi-party quantum communication. Phys. Rev. Lett., 2015, 114(9): 090501
CrossRef ADS Google scholar
[40]
T. Pramanik, D. H. Lee, Y. W. Cho, H. Lim, S. Han, H. Jung, S. Moon, K. J. Lee, Y. Kim. Equitable multiparty quantum communication without a trusted third party. Phys. Rev. Appl., 2020, 14(6): 064074
CrossRef ADS Google scholar
[41]
S. M. Lee, S. W. Lee, H. Jeong, H. S. Park. Quantum teleportation of shared quantum secret. Phys. Rev. Lett., 2020, 124(6): 060501
CrossRef ADS Google scholar
[42]
A. Muller, J. Breguet, N. Gisin. Experimental demonstration of quantum cryptography using polarized photons in optical fiber over more than 1 km. Europhys. Lett., 1993, 23(6): 383
CrossRef ADS Google scholar
[43]
P. D. Townsend, I. A. Thompson. A quantum key distribution channel based on optical fibre. J. Mod. Opt., 1994, 41(12): 2425
CrossRef ADS Google scholar
[44]
H. K. Lo, M. Curty, B. Qi. Measurement-device-independent quantum key distribution. Phys. Rev. Lett., 2012, 108(13): 130503
CrossRef ADS Google scholar
[45]
F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, P. Grangier. Quantum key distribution using Gaussian-modulated coherent states. Nature, 2003, 421(6920): 238
CrossRef ADS Google scholar
[46]
J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, P. Grangier. Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A, 2007, 76(4): 042305
CrossRef ADS Google scholar
[47]
C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, G. Zeng. 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel. Sci. Rep., 2015, 5(1): 14607
CrossRef ADS Google scholar
[48]
Y. Zhang, Z. Chen, S. Pirandola, X. Wang, C. Zhou, B. Chu, Y. Zhao, B. Xu, S. Yu, H. Guo. Long-distance continuous-variable quantum key distribution over 202.81 km of fiber. Phys. Rev. Lett., 2020, 125(1): 010502
CrossRef ADS Google scholar
[49]
J. B. Brask, I. Rigas, E. S. Polzik, U. L. Andersen, A. S. Sørensen. Hybrid long-distance entanglement distribution protocol. Phys. Rev. Lett., 2010, 105(16): 160501
CrossRef ADS Google scholar
[50]
P. van Loock. Optical hybrid approaches to quantum information. Laser Photonics Rev., 2011, 5(2): 167
CrossRef ADS Google scholar
[51]
S. W. Lee, H. Jeong. Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A, 2013, 87(2): 022326
CrossRef ADS Google scholar
[52]
S. Bose, H. Jeong. Quantum teleportation of hybrid qubits and single-photon qubits using Gaussian resources. Phys. Rev. A, 2022, 105(3): 032434
CrossRef ADS Google scholar
[53]
J. W. Pan, M. Daniell, S. Gasparoni, G. Weihs, A. Zeilinger. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett., 2001, 86(20): 4435
CrossRef ADS Google scholar
[54]
J. Calsamiglia, N. Lütkenhaus. Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B, 2001, 72(1): 67
CrossRef ADS Google scholar
[55]
F. Grosshans, P. Grangier. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett., 2002, 88(5): 057902
CrossRef ADS Google scholar
[56]
A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, P. Grangier. Generation of optical “Schrödinger cats” from photon number states. Nature, 2007, 448(7155): 784
CrossRef ADS Google scholar
[57]
B. H. Li, Y. M. Xie, Z. Li, C. X. Weng, C. L. Li, H. L. Yin, Z. B. Chen. Long-distance twin-field quantum key distribution with entangled sources. Opt. Lett., 2021, 46(22): 5529
CrossRef ADS Google scholar
[58]
Y. M. Xie, B. H. Li, Y. S. Lu, X. Y. Cao, W. B. Liu, H. L. Yin, Z. B. Chen. Overcoming the rate-distance limit of device-independent quantum key distribution. Opt. Lett., 2021, 46(7): 1632
CrossRef ADS Google scholar
[59]
S. L. Braunstein, P. van Loock. Quantum information with continuous variables. Rev. Mod. Phys., 2005, 77(2): 513
CrossRef ADS Google scholar
[60]
H. Jeong, A. Zavatta, M. Kang, S. W. Lee, L. S. Costanzo, S. Grandi, T. C. Ralph, M. Bellini. Generation of hybrid entanglement of light. Nat. Photonics, 2014, 8(7): 564
CrossRef ADS Google scholar
[61]
O. Morin, K. Huang, J. Liu, H. Le Jeannic, C. Fabre, J. Laurat. Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nat. Photonics, 2014, 8(7): 570
CrossRef ADS Google scholar
[62]
H. Kwon, H. Jeong. Generation of hybrid entanglement between a single-photon polarization qubit and a coherent state. Phys. Rev. A, 2015, 91(1): 012340
CrossRef ADS Google scholar
[63]
J. H. Shapiro. Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A, 2006, 73(6): 062305
CrossRef ADS Google scholar
[64]
J. H. Shapiro, M. Razavi. Continuous-time cross-phase modulation and quantum computation. New J. Phys., 2007, 9(1): 16
CrossRef ADS Google scholar
[65]
C. C. Luo, L. Zhou, W. Zhong, Y. B. Sheng. Purification for hybrid logical qubit entanglement. Quantum Inform. Process., 2022, 21(8): 300
CrossRef ADS Google scholar
[66]
P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, Y. Yamamoto. Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett., 2006, 96(24): 240501
CrossRef ADS Google scholar
[67]
M. Bergmann, P. van Loock. Hybrid quantum repeater for qudits. Phys. Rev. A, 2019, 99(3): 032349
CrossRef ADS Google scholar
[68]
M. Fujiwara, M. Toyoshima, M. Sasaki, K. Yoshino, Y. Nambu, A. Tomita. Performance of hybrid entanglement photon pair source for quantum key distribution. Appl. Phys. Lett., 2009, 95(26): 261103
CrossRef ADS Google scholar
[69]
M. Fujiwara, K. Yoshino, Y. Nambu, T. Yamashita, S. Miki, H. Terai, Z. Wang, M. Toyoshima, A. Tomita, M. Sasaki. Modified E91 protocol demonstration with hybrid entanglement photon source. Opt. Express, 2014, 22(11): 13616
CrossRef ADS Google scholar
[70]
C. X. Zhang, B. H. Guo, G. M. Cheng, J. J. Guo, R. H. Fan. Spin‒orbit hybrid entanglement quantum key distribution scheme. Sci. China Phys. Mech. Astron., 2014, 57(11): 2043
CrossRef ADS Google scholar
[71]
S. L. Zhang. Improving long-distance distribution of en- tangled coherent state with the method of twin-field quantum key distribution. Opt. Express, 2019, 27(25): 37087
CrossRef ADS Google scholar
[72]
S.BoseJ. SinghA.CabelloH.Jeong, Long distance measurement-device-independent quantum key distribution using entangled states between continuous and discrete variables, arXiv: 2305.18906 (2023)
[73]
Y. B. Sheng, L. Zhou, G. L. Long. Hybrid entanglement purification for quantum repeaters. Phys. Rev. A, 2013, 88(2): 022302
CrossRef ADS Google scholar
[74]
H. Jeong, M. S. Kim. Efficient quantum computation using coherent states. Phys. Rev. A, 2002, 65(4): 042305
CrossRef ADS Google scholar
[75]
D. V. Sychev, A. E. Ulanov, E. S. Tiunov, A. A. Pushkina, A. Kuzhamuratov, V. Novikov, A. I. Lvovsky. Entanglement and teleportation between polarization and wave-like encodings of an optical qubit. Nat. Commun., 2018, 9(1): 3672
CrossRef ADS Google scholar
[76]
H. Jeong, M. S. Kim, J. Lee. Quantum-information processing for a coherent superposition state via a mixedentangled coherent channel. Phys. Rev. A, 2001, 64(5): 052308
CrossRef ADS Google scholar
[77]
J. W. Wu, Z. S. Lin, L. G. Yin, G. L. Long. Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quantum Eng., 2019, 1(4): e26
CrossRef ADS Google scholar
[78]
R. Y. Qi, Z. Sun, Z. S. Lin, P. H. Niu, W. T. Hao, L. Y. Song, Q. Huang, J. C. Gao, L. G. Yin, G. L. Long. Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl., 2019, 8(1): 22
CrossRef ADS Google scholar
[79]
A. S. Holevo. Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Peredachi Inf., 1973, 9(3): 177
[80]
R. Jozsa, J. Schlienz. Distinguishability of states and von Neumann entropy. Phys. Rev. A, 2000, 62(1): 012301
CrossRef ADS Google scholar
[81]
A. D. Wyner. The wire-tap channel. Bell Syst. Tech. J., 1975, 54(8): 1355
CrossRef ADS Google scholar
[82]
D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, A. Sanpera. Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett., 1996, 77(13): 2818
CrossRef ADS Google scholar
[83]
H. K. Lo, H. F. Chau. Unconditional security of quantum key distribution over arbitrarily long distances. Science, 1999, 283(5410): 2050
CrossRef ADS Google scholar
[84]
P. W. Shor, J. Preskill. Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett., 2000, 85(2): 441
CrossRef ADS Google scholar
[85]
W.H. Louisell, Quantum Statistical Properties of Radiation, New York: Wiley, 1973
[86]
H. Kim, J. Park, H. Jeong. Transfer of different types of optical qubits over a lossy environment. Phys. Rev. A, 2014, 89(4): 042303
CrossRef ADS Google scholar
[87]
H. Kim, S. W. Lee, H. Jeong. Two different types of optical hybrid qubits for teleportation in a lossy environment. Quantum Inform. Process., 2016, 15(11): 4729
CrossRef ADS Google scholar
[88]
S. J. D. Phoenix. Wave-packet evolution in the damped oscillator. Phys. Rev. A, 1990, 41(9): 5132
CrossRef ADS Google scholar
[89]
S. J. van Enk, O. Hirota. Entangled coherent states: Teleportation and decoherence. Phys. Rev. A, 2001, 64(2): 022313
CrossRef ADS Google scholar
[90]
T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, S. Glancy. Quantum computation with optical coherent states. Phys. Rev. A, 2003, 68(4): 042319
CrossRef ADS Google scholar
[91]
P. van Loock, N. Lütkenhaus, W. J. Munro, K. Nemoto. Quantum repeaters using coherent-state communication. Phys. Rev. A, 2008, 78(6): 062319
CrossRef ADS Google scholar
[92]
C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, W. K. Wootters. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett., 1996, 76(5): 722
CrossRef ADS Google scholar
[93]
P. S. Yan, L. Zhou, W. Zhong, Y. B. Sheng. Advances in quantum entanglement purification. Sci. China Phys. Mech. Astron., 2023, 66(5): 250301
CrossRef ADS Google scholar
[94]
Z. Q. Zhou, C. Liu, C. F. Li, G. C. Guo, D. Oblak, M. Lei, A. Faraon, M. Mazzera, H. de Riedmatten. Photonic integrated quantum memory in rare-earth doped solids. Laser Photonics Rev., 2023, 17(10): 2300257
CrossRef ADS Google scholar
[95]
Y. F. Wang, J. F. Li, S. C. Zhang, K. Y. Su, Y. R. Zhou, K. Y. Liao, S. W. Du, H. Yan, S. L. Zhu. Efficient quantum memory for single-photon polarization qubits. Nat. Photonics, 2019, 13(5): 346
CrossRef ADS Google scholar
[96]
T. X. Zhu, C. Liu, M. Jin, M. X. Su, Y. P. Liu, W. J. Li, Y. Ye, Z. Q. Zhou, C. F. Li, G. C. Guo. On-demand integrated quantum memory for polarization qubits. Phys. Rev. Lett., 2022, 128(18): 180501
CrossRef ADS Google scholar
[97]
Y. Ma, Y. Z. Ma, Z. Q. Zhou, C. F. Li, G. C. Guo. One-hour coherent optical storage in an atomic frequency comb memory. Nat. Commun., 2021, 12(1): 2381
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11974189, 12175106 and 92365110), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX23-1027), and the Key R&D Program of Guangdong Province (Grant No. 2018B030325002).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5408 KB)

Accesses

Citations

Detail

Sections
Recommended

/