Quantum secure direct communication with hybrid entanglement
Peng Zhao, Wei Zhong, Ming-Ming Du, Xi-Yun Li, Lan Zhou, Yu-Bo Sheng
Quantum secure direct communication with hybrid entanglement
Quantum secure direct communication (QSDC) can transmit secret messages without keys, making it an important branch of quantum communication. We present a hybrid entanglement-based quantum secure direct communication (HE-QSDC) protocol with simple linear optical elements, combining the benefits of both continuous variables (CV) and discrete variables (DV) encoding. We analyze the security and find that the QSDC protocol has a positive security capacity when the bit error rate is less than 0.073. Compared with previous DV QSDC protocols, our protocol has higher communication efficiency due to performing nearly deterministic Bell-state measurement. On the other hand, compared with CV QSDC protocol, this protocol has higher fidelity with large . Based on these advantages, our protocol may provide an alternative approach to realize secure communication.
quantum secure direct communication / hybrid entanglement, Bell-state measurement
[1] |
V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, M. Peev. The security of practical quantum key distribution. Rev. Mod. Phys., 2009, 81(3): 1301
CrossRef
ADS
Google scholar
|
[2] |
F. H. Xu, X. F. Ma, Q. Zhang, H. K. Lo, J. W. Pan. Secure quantum key distribution with realistic devices. Rev. Mod. Phys., 2020, 92(2): 025002
CrossRef
ADS
Google scholar
|
[3] |
A. K. Ekert. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett., 1991, 67(6): 661
CrossRef
ADS
Google scholar
|
[4] |
X. F. Ma, B. Qi, Y. Zhao, H. K. Lo. Practical decoy state for quantum key distribution. Phys. Rev. A, 2005, 72(1): 012326
CrossRef
ADS
Google scholar
|
[5] |
X. Ma, C. H. F. Fung, H. K. Lo. Quantum key distribution with entangled photon sources. Phys. Rev. A, 2007, 76(1): 012307
CrossRef
ADS
Google scholar
|
[6] |
X. L. Su. Applying Gaussian quantum discord to quantum key distribution. Chin. Sci. Bull., 2014, 59(11): 1083
CrossRef
ADS
Google scholar
|
[7] |
M. Hillery, V. Bužek, A. Berthiaume. Quantum secret sharing. Phys. Rev. A, 1999, 59(3): 1829
CrossRef
ADS
Google scholar
|
[8] |
A. Shen, X. Y. Cao, Y. Wang, Y. Fu, J. Gu, W. B. Liu, C. X. Weng, H. L. Yin, Z. B. Chen. Experimental quantum secret sharing based on phase encoding of coherent states. Sci. China Phys. Mech. Astron., 2023, 66(6): 260311
CrossRef
ADS
Google scholar
|
[9] |
G. L. Long, X. S. Liu. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A, 2002, 65(3): 032302
CrossRef
ADS
Google scholar
|
[10] |
F. G. Deng, G. L. Long, X. S. Liu. Two-step quantum direct communication protocol using the Einstein‒Podolsky‒Rosen pair block. Phys. Rev. A, 2003, 68(4): 042317
CrossRef
ADS
Google scholar
|
[11] |
F. G. Deng, G. L. Long. Secure direct communication with a quantum one-time pad. Phys. Rev. A, 2004, 69(5): 052319
CrossRef
ADS
Google scholar
|
[12] |
P. H. Niu, Z. R. Zhou, Z. S. Lin, Y. B. Sheng, L. G. Yin, G. L. Long. Measurement-device-independent quantum communication without encryption. Sci. Bull. (Beijing), 2018, 63(20): 1345
CrossRef
ADS
Google scholar
|
[13] |
Z. R. Zhou, Y. B. Sheng, P. H. Niu, L. G. Yin, G. L. Long, L. Hanzo. Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron., 2020, 63(3): 230362
CrossRef
ADS
Google scholar
|
[14] |
L. Zhou, Y. B. Sheng, G. L. Long. Device-independent quantum secure direct communication against collective attacks. Sci. Bull. (Beijing), 2020, 65(1): 12
CrossRef
ADS
Google scholar
|
[15] |
L. Zhou, B. W. Xu, W. Zhong, Y. B. Sheng. Device-independent quantum secure direct communication with single-photon sources. Phys. Rev. Appl., 2023, 19(1): 014036
CrossRef
ADS
Google scholar
|
[16] |
H.ZengM. M. DuW.ZhongL.ZhouY.B. Sheng, High-capacity device-independent quantum secure direct communication based on hyper-encoding, Fundament. Res., doi: 10.1016/j.fmre.2023.11.006 (2023)
|
[17] |
Y. B. Sheng, L. Zhou, G. L. Long. One-step quantum secure direct communication. Sci. Bull. (Beijing), 2022, 67(4): 367
CrossRef
ADS
Google scholar
|
[18] |
L. Zhou, Y. B. Sheng. One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron., 2022, 65(5): 250311
CrossRef
ADS
Google scholar
|
[19] |
J. W. Ying, L. Zhou, W. Zhong, Y. B. Sheng. Measurement-device-independent one-step quantum secure direct communication. Chin. Phys. B, 2022, 31(12): 120303
CrossRef
ADS
Google scholar
|
[20] |
X. R. Jin, X. Ji, Y. Q. Zhang, S. Zhang, S. K. Hong, K. H. Yeon, C. I. Um. Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A, 2006, 354(1−2): 67
CrossRef
ADS
Google scholar
|
[21] |
Q.ZhangM. M. DuW.ZhongY.B. ShengL.Zhou, Single-photon based three-party quantum secure direct communication with identity authentication, Ann. Phys. (Berlin), doi: 10.1002/andp.202300407 (2023)
|
[22] |
Y. P. Hong, L. Zhou, W. Zhong, Y. B. Sheng. Measurement-device-independent three-party quantum secure direct communication. Quantum Inform. Process., 2023, 22(2): 111
CrossRef
ADS
Google scholar
|
[23] |
Y. X. Xiao, L. Zhou, W. Zhong, M. M. Du, Y. B. Sheng. The hyperentanglement-based quantum secure direct communication protocol with single-photon measurement. Quantum Inform. Process., 2023, 22(9): 339
CrossRef
ADS
Google scholar
|
[24] |
A. D. Zhu, Y. Xia, Q. B. Fan, S. Zhang. Secure direct communication based on secret transmitting order of particles. Phys. Rev. A, 2006, 73(2): 022338
CrossRef
ADS
Google scholar
|
[25] |
Z. W. Cao, L. Wang, K. X. Liang, G. Chai, J. Y. Peng. Continuous-variable quantum secure direct communication based on Gaussian mapping. Phys. Rev. Appl., 2021, 16(2): 024012
CrossRef
ADS
Google scholar
|
[26] |
Z. W. Cao, Y. Lu, G. Chai, H. Yu, K. X. Liang, L. Wang. Realization of quantum secure direct communication with continuous variable. Research, 2023, 6: 0193
CrossRef
ADS
Google scholar
|
[27] |
S. Srikara, K. Thapliyal, A. Pathak. Continuous variable direct secure quantum communication using Gaussian states. Quantum Inform. Process., 2020, 19(4): 132
CrossRef
ADS
Google scholar
|
[28] |
K. X. Liang, Z. W. Cao, X. L. Chen, L. Wang, G. Chai, J. Y. Peng. A quantum secure direct communication scheme based on intermediate-basis. Front. Phys., 2023, 18(5): 51301
CrossRef
ADS
Google scholar
|
[29] |
T. Li, G. L. Long. Quantum secure direct communication based on single-photon Bell-state measurement. New J. Phys., 2020, 22(6): 063017
CrossRef
ADS
Google scholar
|
[30] |
Z. D. Ye, D. Pan, Z. Sun, C. G. Du, L. G. Yin, G. L. Long. Generic security analysis framework for quantum secure direct communication. Front. Phys., 2021, 16(2): 21503
CrossRef
ADS
Google scholar
|
[31] |
J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, G. L. Long. Experimental quantum secure direct communication with single photons. Light Sci. Appl., 2016, 5(9): e16144
CrossRef
ADS
Google scholar
|
[32] |
W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, G. C. Guo. Quantum secure direct communication with quantum memory. Phys. Rev. Lett., 2017, 118(22): 220501
CrossRef
ADS
Google scholar
|
[33] |
F. Zhu, W. Zhang, Y. B. Sheng, Y. D. Huang. Experimental long-distance quantum secure direct communication. Sci. Bull. (Beijing), 2017, 62(22): 1519
CrossRef
ADS
Google scholar
|
[34] |
D. Pan, Z. S. Lin, J. W. Wu, H. R. Zhang, Z. Sun, D. Ruan, L. G. Yin, G. L. Long. Experimental free-space quantum secure direct communication and its security analysis. Photon. Res., 2020, 8(9): 1522
CrossRef
ADS
Google scholar
|
[35] |
Z. Qi, Y. Li, Y. W. Huang, J. Feng, Y. L. Zheng, X. F. Chen. A 15-user quantum secure direct communication network. Light Sci. Appl., 2021, 10(1): 183
CrossRef
ADS
Google scholar
|
[36] |
X. Liu, D. Luo, G. L. Lin, Z. H. Chen, C. F. Huang, S. Z. Li, C. X. Zhang, Z. R. Zhang, K. J. Wei. Fiber-based quantum secure direct communication without active polarization compensation. Sci. China Phys. Mech. Astron., 2022, 65(12): 120311
CrossRef
ADS
Google scholar
|
[37] |
H. Zhang, Z. Sun, R. Qi, L. Yin, G. L. Long, J. Lu. Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light Sci. Appl., 2022, 11(1): 83
CrossRef
ADS
Google scholar
|
[38] |
I.PaparelleF. MousaviF.ScazzaA.BassiM.Paris A.Zavatta, Practical quantum secure direct communication with squeezed states, arXiv: 2306.14322 (2023)
|
[39] |
Y. Fu, H. L. Yin, T. Y. Chen, Z. B. Chen. Long-distance measurement-device-independent multi-party quantum communication. Phys. Rev. Lett., 2015, 114(9): 090501
CrossRef
ADS
Google scholar
|
[40] |
T. Pramanik, D. H. Lee, Y. W. Cho, H. Lim, S. Han, H. Jung, S. Moon, K. J. Lee, Y. Kim. Equitable multiparty quantum communication without a trusted third party. Phys. Rev. Appl., 2020, 14(6): 064074
CrossRef
ADS
Google scholar
|
[41] |
S. M. Lee, S. W. Lee, H. Jeong, H. S. Park. Quantum teleportation of shared quantum secret. Phys. Rev. Lett., 2020, 124(6): 060501
CrossRef
ADS
Google scholar
|
[42] |
A. Muller, J. Breguet, N. Gisin. Experimental demonstration of quantum cryptography using polarized photons in optical fiber over more than 1 km. Europhys. Lett., 1993, 23(6): 383
CrossRef
ADS
Google scholar
|
[43] |
P. D. Townsend, I. A. Thompson. A quantum key distribution channel based on optical fibre. J. Mod. Opt., 1994, 41(12): 2425
CrossRef
ADS
Google scholar
|
[44] |
H. K. Lo, M. Curty, B. Qi. Measurement-device-independent quantum key distribution. Phys. Rev. Lett., 2012, 108(13): 130503
CrossRef
ADS
Google scholar
|
[45] |
F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, P. Grangier. Quantum key distribution using Gaussian-modulated coherent states. Nature, 2003, 421(6920): 238
CrossRef
ADS
Google scholar
|
[46] |
J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, P. Grangier. Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A, 2007, 76(4): 042305
CrossRef
ADS
Google scholar
|
[47] |
C. Wang, D. Huang, P. Huang, D. Lin, J. Peng, G. Zeng. 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel. Sci. Rep., 2015, 5(1): 14607
CrossRef
ADS
Google scholar
|
[48] |
Y. Zhang, Z. Chen, S. Pirandola, X. Wang, C. Zhou, B. Chu, Y. Zhao, B. Xu, S. Yu, H. Guo. Long-distance continuous-variable quantum key distribution over 202.81 km of fiber. Phys. Rev. Lett., 2020, 125(1): 010502
CrossRef
ADS
Google scholar
|
[49] |
J. B. Brask, I. Rigas, E. S. Polzik, U. L. Andersen, A. S. Sørensen. Hybrid long-distance entanglement distribution protocol. Phys. Rev. Lett., 2010, 105(16): 160501
CrossRef
ADS
Google scholar
|
[50] |
P. van Loock. Optical hybrid approaches to quantum information. Laser Photonics Rev., 2011, 5(2): 167
CrossRef
ADS
Google scholar
|
[51] |
S. W. Lee, H. Jeong. Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A, 2013, 87(2): 022326
CrossRef
ADS
Google scholar
|
[52] |
S. Bose, H. Jeong. Quantum teleportation of hybrid qubits and single-photon qubits using Gaussian resources. Phys. Rev. A, 2022, 105(3): 032434
CrossRef
ADS
Google scholar
|
[53] |
J. W. Pan, M. Daniell, S. Gasparoni, G. Weihs, A. Zeilinger. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett., 2001, 86(20): 4435
CrossRef
ADS
Google scholar
|
[54] |
J. Calsamiglia, N. Lütkenhaus. Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B, 2001, 72(1): 67
CrossRef
ADS
Google scholar
|
[55] |
F. Grosshans, P. Grangier. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett., 2002, 88(5): 057902
CrossRef
ADS
Google scholar
|
[56] |
A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, P. Grangier. Generation of optical “Schrödinger cats” from photon number states. Nature, 2007, 448(7155): 784
CrossRef
ADS
Google scholar
|
[57] |
B. H. Li, Y. M. Xie, Z. Li, C. X. Weng, C. L. Li, H. L. Yin, Z. B. Chen. Long-distance twin-field quantum key distribution with entangled sources. Opt. Lett., 2021, 46(22): 5529
CrossRef
ADS
Google scholar
|
[58] |
Y. M. Xie, B. H. Li, Y. S. Lu, X. Y. Cao, W. B. Liu, H. L. Yin, Z. B. Chen. Overcoming the rate-distance limit of device-independent quantum key distribution. Opt. Lett., 2021, 46(7): 1632
CrossRef
ADS
Google scholar
|
[59] |
S. L. Braunstein, P. van Loock. Quantum information with continuous variables. Rev. Mod. Phys., 2005, 77(2): 513
CrossRef
ADS
Google scholar
|
[60] |
H. Jeong, A. Zavatta, M. Kang, S. W. Lee, L. S. Costanzo, S. Grandi, T. C. Ralph, M. Bellini. Generation of hybrid entanglement of light. Nat. Photonics, 2014, 8(7): 564
CrossRef
ADS
Google scholar
|
[61] |
O. Morin, K. Huang, J. Liu, H. Le Jeannic, C. Fabre, J. Laurat. Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nat. Photonics, 2014, 8(7): 570
CrossRef
ADS
Google scholar
|
[62] |
H. Kwon, H. Jeong. Generation of hybrid entanglement between a single-photon polarization qubit and a coherent state. Phys. Rev. A, 2015, 91(1): 012340
CrossRef
ADS
Google scholar
|
[63] |
J. H. Shapiro. Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A, 2006, 73(6): 062305
CrossRef
ADS
Google scholar
|
[64] |
J. H. Shapiro, M. Razavi. Continuous-time cross-phase modulation and quantum computation. New J. Phys., 2007, 9(1): 16
CrossRef
ADS
Google scholar
|
[65] |
C. C. Luo, L. Zhou, W. Zhong, Y. B. Sheng. Purification for hybrid logical qubit entanglement. Quantum Inform. Process., 2022, 21(8): 300
CrossRef
ADS
Google scholar
|
[66] |
P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, Y. Yamamoto. Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett., 2006, 96(24): 240501
CrossRef
ADS
Google scholar
|
[67] |
M. Bergmann, P. van Loock. Hybrid quantum repeater for qudits. Phys. Rev. A, 2019, 99(3): 032349
CrossRef
ADS
Google scholar
|
[68] |
M. Fujiwara, M. Toyoshima, M. Sasaki, K. Yoshino, Y. Nambu, A. Tomita. Performance of hybrid entanglement photon pair source for quantum key distribution. Appl. Phys. Lett., 2009, 95(26): 261103
CrossRef
ADS
Google scholar
|
[69] |
M. Fujiwara, K. Yoshino, Y. Nambu, T. Yamashita, S. Miki, H. Terai, Z. Wang, M. Toyoshima, A. Tomita, M. Sasaki. Modified E91 protocol demonstration with hybrid entanglement photon source. Opt. Express, 2014, 22(11): 13616
CrossRef
ADS
Google scholar
|
[70] |
C. X. Zhang, B. H. Guo, G. M. Cheng, J. J. Guo, R. H. Fan. Spin‒orbit hybrid entanglement quantum key distribution scheme. Sci. China Phys. Mech. Astron., 2014, 57(11): 2043
CrossRef
ADS
Google scholar
|
[71] |
S. L. Zhang. Improving long-distance distribution of en- tangled coherent state with the method of twin-field quantum key distribution. Opt. Express, 2019, 27(25): 37087
CrossRef
ADS
Google scholar
|
[72] |
S.BoseJ. SinghA.CabelloH.Jeong, Long distance measurement-device-independent quantum key distribution using entangled states between continuous and discrete variables, arXiv: 2305.18906 (2023)
|
[73] |
Y. B. Sheng, L. Zhou, G. L. Long. Hybrid entanglement purification for quantum repeaters. Phys. Rev. A, 2013, 88(2): 022302
CrossRef
ADS
Google scholar
|
[74] |
H. Jeong, M. S. Kim. Efficient quantum computation using coherent states. Phys. Rev. A, 2002, 65(4): 042305
CrossRef
ADS
Google scholar
|
[75] |
D. V. Sychev, A. E. Ulanov, E. S. Tiunov, A. A. Pushkina, A. Kuzhamuratov, V. Novikov, A. I. Lvovsky. Entanglement and teleportation between polarization and wave-like encodings of an optical qubit. Nat. Commun., 2018, 9(1): 3672
CrossRef
ADS
Google scholar
|
[76] |
H. Jeong, M. S. Kim, J. Lee. Quantum-information processing for a coherent superposition state via a mixedentangled coherent channel. Phys. Rev. A, 2001, 64(5): 052308
CrossRef
ADS
Google scholar
|
[77] |
J. W. Wu, Z. S. Lin, L. G. Yin, G. L. Long. Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quantum Eng., 2019, 1(4): e26
CrossRef
ADS
Google scholar
|
[78] |
R. Y. Qi, Z. Sun, Z. S. Lin, P. H. Niu, W. T. Hao, L. Y. Song, Q. Huang, J. C. Gao, L. G. Yin, G. L. Long. Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl., 2019, 8(1): 22
CrossRef
ADS
Google scholar
|
[79] |
A. S. Holevo. Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Peredachi Inf., 1973, 9(3): 177
|
[80] |
R. Jozsa, J. Schlienz. Distinguishability of states and von Neumann entropy. Phys. Rev. A, 2000, 62(1): 012301
CrossRef
ADS
Google scholar
|
[81] |
A. D. Wyner. The wire-tap channel. Bell Syst. Tech. J., 1975, 54(8): 1355
CrossRef
ADS
Google scholar
|
[82] |
D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, A. Sanpera. Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett., 1996, 77(13): 2818
CrossRef
ADS
Google scholar
|
[83] |
H. K. Lo, H. F. Chau. Unconditional security of quantum key distribution over arbitrarily long distances. Science, 1999, 283(5410): 2050
CrossRef
ADS
Google scholar
|
[84] |
P. W. Shor, J. Preskill. Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett., 2000, 85(2): 441
CrossRef
ADS
Google scholar
|
[85] |
W.H. Louisell, Quantum Statistical Properties of Radiation, New York: Wiley, 1973
|
[86] |
H. Kim, J. Park, H. Jeong. Transfer of different types of optical qubits over a lossy environment. Phys. Rev. A, 2014, 89(4): 042303
CrossRef
ADS
Google scholar
|
[87] |
H. Kim, S. W. Lee, H. Jeong. Two different types of optical hybrid qubits for teleportation in a lossy environment. Quantum Inform. Process., 2016, 15(11): 4729
CrossRef
ADS
Google scholar
|
[88] |
S. J. D. Phoenix. Wave-packet evolution in the damped oscillator. Phys. Rev. A, 1990, 41(9): 5132
CrossRef
ADS
Google scholar
|
[89] |
S. J. van Enk, O. Hirota. Entangled coherent states: Teleportation and decoherence. Phys. Rev. A, 2001, 64(2): 022313
CrossRef
ADS
Google scholar
|
[90] |
T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, S. Glancy. Quantum computation with optical coherent states. Phys. Rev. A, 2003, 68(4): 042319
CrossRef
ADS
Google scholar
|
[91] |
P. van Loock, N. Lütkenhaus, W. J. Munro, K. Nemoto. Quantum repeaters using coherent-state communication. Phys. Rev. A, 2008, 78(6): 062319
CrossRef
ADS
Google scholar
|
[92] |
C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, W. K. Wootters. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett., 1996, 76(5): 722
CrossRef
ADS
Google scholar
|
[93] |
P. S. Yan, L. Zhou, W. Zhong, Y. B. Sheng. Advances in quantum entanglement purification. Sci. China Phys. Mech. Astron., 2023, 66(5): 250301
CrossRef
ADS
Google scholar
|
[94] |
Z. Q. Zhou, C. Liu, C. F. Li, G. C. Guo, D. Oblak, M. Lei, A. Faraon, M. Mazzera, H. de Riedmatten. Photonic integrated quantum memory in rare-earth doped solids. Laser Photonics Rev., 2023, 17(10): 2300257
CrossRef
ADS
Google scholar
|
[95] |
Y. F. Wang, J. F. Li, S. C. Zhang, K. Y. Su, Y. R. Zhou, K. Y. Liao, S. W. Du, H. Yan, S. L. Zhu. Efficient quantum memory for single-photon polarization qubits. Nat. Photonics, 2019, 13(5): 346
CrossRef
ADS
Google scholar
|
[96] |
T. X. Zhu, C. Liu, M. Jin, M. X. Su, Y. P. Liu, W. J. Li, Y. Ye, Z. Q. Zhou, C. F. Li, G. C. Guo. On-demand integrated quantum memory for polarization qubits. Phys. Rev. Lett., 2022, 128(18): 180501
CrossRef
ADS
Google scholar
|
[97] |
Y. Ma, Y. Z. Ma, Z. Q. Zhou, C. F. Li, G. C. Guo. One-hour coherent optical storage in an atomic frequency comb memory. Nat. Commun., 2021, 12(1): 2381
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |