
High-mobility spin-polarized two-dimensional electron gas at the interface of LaTiO3/SrTiO3 (110) heterostructures
Zhao-Cai Wang, Zheng-Nan Li, Shuang-Shuang Li, Weiyao Zhao, Ren-Kui Zheng
Front. Phys. ›› 2024, Vol. 19 ›› Issue (5) : 53203.
High-mobility spin-polarized two-dimensional electron gas at the interface of LaTiO3/SrTiO3 (110) heterostructures
High-quality antiferromagnetic Mott insulator thin films of LaTiO3 (LTO) were epitaxially grown onto SrTiO3 (STO) (110) substrates using the pulsed laser deposition. The LTO/STO heterostructures are not only highly conducting and ferromagnetic, but also show Kondo effect, Shubnikov‒de Haas (SdH) oscillations with a nonzero Berry phase of
two-dimensional electron gas / heterostructure / spin polarization / electronic transport / interface
Fig.1 (a) XRD |
Fig.2 (a) Temperature dependence of the sheet resistance of the LTO/STO (red curve) and LTO/LSAT (blue curve) heterostructures in zero magnetic field. Inset: Magnified view of the resistance upturn at low temperatures. (b) Areal carrier density ( |
Fig.3 (a) MR vs. B curves at fixed temperatures ranging from 1.8 to 20 K. (b) Oscillatory patterns obtained by subtracting a smoothed background. (c) The fast Fourier transform (FFT) spectra of the oscillatory patterns. (d) Temperature dependence of the normalized FFT amplitude at F = 40 T. (e) The Dingle plot of the |
Fig.4 (a) MR as a function of the magnetic field B for different θ angles at T = 1.8 K. Inset: schematic illustration of the direction of the magnetic field with respective to the normal of the film plane. (b) Second derivative of Rxx with respective to B (d2Rxx/dB2) plotted against 1/B. (c) d2Rxx/dB2 plotted against 1/(Bcosθ). |
Fig.5 (a) Out-of-plane MR of the LTO/STO heterostructure, as measured at different temperatures with the direction of the magnetic field perpendicular to the film plane. (b) In-plane MR of the LTO/STO heterostructure, as measured at different temperatures with the direction of the magnetic field parallel to the film plane and electric current. (c) MR vs. B curve at 1.8 K, with the direction of the magnetic field perpendicular to the film plane. (d) Out-of-plane and in-plane MR plotted against temperature for B = 0.05 T. |
Fig.7 (a) Temperature dependence of the zero-field-cooled (ZFC) and field-cooled (FC) magnetization for the LTO/STO heterostructure, as measured with a magnetic field of 100 Oe applied perpendicular and parallel to the film plane, respectively. (b) Out-of-plane and in-plane magnetization vs. magnetic field at 1.8 K for a 56-nm LTO/STO heterostructure. (c) XPS spectra around the binding energy of Ti 2p for the LTO film grown on STO (110). (d) Out-of-plane and in-plane magnetization vs. magnetic field at 1.8 K for a 56-nm LTO/LSAT heterostructure. (e) Schematically illustration of the origin of the interfacial ferromagnetism in the LTO/STO (110) heterostructure. |
[1] |
A.OhtomoH. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature 427(6973), 423 (2004)
|
[2] |
N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A. S. Ruetschi, D. Jaccard, M. Gabay, D. A. Muller, J. M. Triscone, J. Mannhart. Superconducting interfaces between insulating oxides. Science, 2007, 317(5842): 1196
CrossRef
ADS
Google scholar
|
[3] |
J. A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H. Y. Hwang, K. A. Moler. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nat. Phys., 2011, 7(10): 767
CrossRef
ADS
Google scholar
|
[4] |
C. Cao, S. G Chen, J. Deng, G. Li, Q. H Zhang, L. Gu, T. P. Ying, E. J. Guo, J. G. Guo, X. L. Chen. Two-dimensional electron gas with high mobility forming at BaO/SrTiO3 interface. Chin. Phys. Lett., 2022, 39(4): 047301
CrossRef
ADS
Google scholar
|
[5] |
W. M. Jiang, Q Zhao, J. Z. Ling, T. N. Shao, Z. T. Zhang, M. R. Liu, C. L. Yao, Y. J. Qiao, M. H. Chen, X. Y. Chen, R. F. Dou, C. M. Xiong, J. C. Nie. Gate tunable Rashba spin‒orbit coupling at CaZrO3/SrTiO3 heterointerface. Chin. Phys. B, 2022, 31(6): 066801
CrossRef
ADS
Google scholar
|
[6] |
A. Brinkman, M. Huijben, M. Van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. Van der Wiel, G. Rijnders, D. H. A. Blank, H. Hilgenkamp. Magnetic effects at the interface between non-magnetic oxides. Nat. Mater., 2007, 6(7): 493
CrossRef
ADS
Google scholar
|
[7] |
H. R. Zhang, Y. Yun, X. J. Zhang, H. Zhang, Y. Ma, X. Yan, F. Wang, G. Li, R. Li, T. Khan, Y. S. Chen, W. Liu, F. X. Hu, B. G. Liu, B. G. Shen, W. Han, J. R. Sun. High-mobility spin-polarized two-dimensional electron gases at EuO/KTaO3 interfaces. Phys. Rev. Lett., 2018, 121(11): 116803
CrossRef
ADS
Google scholar
|
[8] |
D. Stornaiuolo, C. Cantoni, G. M. De Luca, R. Di Capua, E. Di. Gennaro, G. Ghiringhelli, B. Jouault, D. Marrè, D. Massarotti, F. Miletto Granozio, I. Pallecchi, C. Piamonteze, S. Rusponi, F. Tafuri, M. Salluzzo. Tunable spin polarization and superconductivity in engineered oxide interfaces. Nat. Mater., 2016, 15(3): 278
CrossRef
ADS
Google scholar
|
[9] |
D. Stornaiuolo, B. Jouault, E. Di Gennaro, A. Sambri, M. D’Antuono, D. Massarotti, F. M. Granozio, R. Di Capua, G. M. De Luca, G. P. Pepe, F. Tafuri, M. Salluzzo. Interplay between spin‒orbit coupling and ferromagnetism in magnetotransport properties of a spin-polarized oxide two-dimensional electron system. Phys. Rev. B, 2018, 98(7): 075409
CrossRef
ADS
Google scholar
|
[10] |
T. Arima, Y. Tokura, J. B. Torrance. Variation of optical gaps in perovskite-type 3d transition-metal oxides. Phys. Rev. B, 1993, 48(23): 17006
CrossRef
ADS
Google scholar
|
[11] |
C. Eylem, Y. C. Hung, H. L. Ju, J. Y. Kim, D. C. Green, T. Vogt, J. A. Hriljac, B. W. Eichhorn, R. L. Greene, L. Salamanca-Riba. Unusual metal‒insulator transitions in the LaTi1−xVxO3 perovskite phases. Chem. Mater., 1996, 8(2): 418
CrossRef
ADS
Google scholar
|
[12] |
Y. Okada, T. Arima, Y. Tokura, C. Murayama, N. Môri. Doping- and pressure-induced change of electrical and magnetic properties in the Mott‒Hubbard insulator LaTiO3. Phys. Rev. B, 1993, 48(13): 9677
CrossRef
ADS
Google scholar
|
[13] |
C. C. Hays, J. S. Zhou, J. T. Markert, J. B. Goodenough. Electronic transition in La1−xSrxTiO3. Phys. Rev. B, 1999, 60(14): 10367
CrossRef
ADS
Google scholar
|
[14] |
T. Katsufuji, Y. Taguchi, Y. Tokura. Transport and magnetic properties of a Mott‒Hubbard system whose bandwidth and band filling are both controllable: R1−xCaxTiO3+y/2. Phys. Rev. B, 1997, 56(16): 10145
CrossRef
ADS
Google scholar
|
[15] |
F. J. Wong, S. H. Baek, R. V. Chopdekar, V. V. Mehta, H. W. Jang, C. B. Eom, Y. Suzuki. Metallicity in LaTiO3 thin films induced by lattice deformation. Phys. Rev. B, 2010, 81(16): 161101(R)
CrossRef
ADS
Google scholar
|
[16] |
C. He, T. D. Sanders, M. T. Gray, F. J. Wong, V. V. Mehta, Y. Suzuki. Metal‒insulator transitions in epitaxial LaVO3 and LaTiO3 films. Phys. Rev. B, 2012, 86(8): 081401(R)
CrossRef
ADS
Google scholar
|
[17] |
J. Biscaras, N. Bergeal, A. Kushwaha, T. Wolf, A. Rastogi, R. C. Budhani, J. Lesueur. Two-dimensional superconductivity at a Mott insulator/band insulator interface LaTiO3/SrTiO3. Nat. Commun., 2010, 1(1): 89
CrossRef
ADS
Google scholar
|
[18] |
T. T. Zhang, C. Y. Gu, Z. W. Mao, X. F. Chen, Z. B. Gu, P. Wang, Y. F. Nie, X. Q. Pan. Mott insulator to metal transition driven by oxygen incorporation in epitaxial LaTiO3 films. Appl. Phys. Lett., 2019, 115(26): 261604
CrossRef
ADS
Google scholar
|
[19] |
M. J. Veit, M. K. Chan, B. J. Ramshaw, R. Arras, R. Pentcheva, Y. Suzuki. Three-dimensional character of the Fermi surface in ultrathin LaTiO3/SrTiO3 heterostructures. Phys. Rev. B, 2019, 99(11): 115126
CrossRef
ADS
Google scholar
|
[20] |
J. Biscaras, N. Bergeal, S. Hurand, C. Grossetete, A. Rastogi, R. C. Budhani, D. LeBoeuf, C. Proust, J. Lesueur. Two-dimensional superconducting phase in LaTiO3/SrTiO3 heterostructures induced by high-mobility carrier doping. Phys. Rev. Lett., 2012, 108(24): 247004
CrossRef
ADS
Google scholar
|
[21] |
F. D. Wen, Y. W. Cao, X. R. Liu, B. Pal, S. Middey, M. Kareev, J. Chakhalian. Evolution of ferromagnetism in two-dimensional electron gas of LaTiO3/SrTiO3. Appl. Phys. Lett., 2018, 112(12): 122405
CrossRef
ADS
Google scholar
|
[22] |
A. Ohtomo, D. A. Muller, J. L. Grazul, H. Y. Hwang. Artificial charge-modulationin atomic-scale perovskite titanate superlattices. Nature, 2002, 419(6905): 378
CrossRef
ADS
Google scholar
|
[23] |
S. Okamoto, A. J. Millis. Electronic reconstruction at an interface between a Mott insulator and a band insulator. Nature, 2004, 428(6983): 630
CrossRef
ADS
Google scholar
|
[24] |
S. Okamoto, A. J. Millis, N. A. Spaldin. Lattice relaxation in oxide heterostructures: LaTiO3/SrTiO3 superlattices. Phys. Rev. Lett., 2006, 97(5): 056802
CrossRef
ADS
Google scholar
|
[25] |
F. Yang, Z. Z. Wang, Y. H. Liu, S. Yang, Z. Yu, Q. C. An, Z. Q. Ding, F. Q. Meng, Y. W. Cao, Q. H. Zhang, L. Gu, M. Liu, Y. Q. Li, J. D. Guo, X. R. Liu. Engineered Kondo screening and nonzero Berry phase in SrTiO3/LaTiO3/SrTiO3 heterostructures. Phys. Rev. B, 2022, 106(16): 165421
CrossRef
ADS
Google scholar
|
[26] |
Y. W. Cao, Z. Z. Yang, M. Kareev, X. R. Liu, D. Meyers, S. Middey, D. Choudhury, P. Shafer, J. D. Guo, J. W. Freeland, E. Arenholz, L. Gu, J. Chakhalian. Magnetic interactions at the nanoscale in trilayer titanates. Phys. Rev. Lett., 2016, 116(7): 076802
CrossRef
ADS
Google scholar
|
[27] |
H. Y. Hwang. Atomic control of the electronic structure at complex oxide heterointerfaces. MRS Bull., 2006, 31(1): 28
CrossRef
ADS
Google scholar
|
[28] |
Y. Mukunoki, N. Nakagawa, T. Susaki, H. Y. Hwang. Atomically flat (110) SrTiO3 and heteroepitaxy. Appl. Phys. Lett., 2005, 86(17): 171908
CrossRef
ADS
Google scholar
|
[29] |
A. Annadi, Q. Zhang, X. Renshaw Wang, N. Tuzla, K. Gopinadhan, W. M. Lü, A. Roy Barman, Z. Q. Liu, A. Srivastava, S. Saha, Y. L. Zhao, S. W. Zeng, S. Dhar, E. Olsson, B. Gu, S. Yunoki, S. Maekawa, H. Hilgenkamp, T. Venkatesan. Anisotropic two-dimensional electron gas at the LaAlO3/SrTiO3 (110) interface. Nat. Commun., 2013, 4(1): 1838
CrossRef
ADS
Google scholar
|
[30] |
Y. L. Han, Y. W. Fang, Z. Z. Yang, C. J. Li, L. He, S. C. Shen, Z. Z. Luo, G. L. Qu, C. M. Xiong, R. F. Dou, X. Wei, L. Gu, C. G. Duan, J. C. Nie. Reconstruction of electrostatic field at the interface leads to formation of two-dimensional electron gas at multivalent (110) LaAlO3/SrTiO3 interfaces. Phys. Rev. B, 2015, 92(11): 115304
CrossRef
ADS
Google scholar
|
[31] |
Y.Z. ChenN. BovetF.TrierD.V. ChristensenF. M. QuN.H. AndersenT.KasamaW.Zhang R.GiraudJ. DufouleurT.S. JespersenJ.R. SunA.Smith J.NygardL. LuB.BuchnerB.G. ShenS.LinderothN.Pryds, A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al2O3/SrTiO3, Nat. Commun. 4(1), 1371 (2013)
|
[32] |
V.F. Gantmakher, Electrons and Disorder in Solids, New York: Oxford University Press, 2005
|
[33] |
B.L. AltshulerA.G. Aronov, Modern Problems in Condensed Matter Sciences, New York: Elsevier, 1985, Vol. 10, Ch. 1, pp 1–153
|
[34] |
S. Das, A. Rastogi, L. J. Wu, J. C. Zheng, Z. Hossain, Y. M. Zhu, R. C. Budhani. Kondo scattering in δ-doped LaTiO3/SrTiO3 interfaces: Renormalization by spin‒orbit interactions. Phys. Rev. B, 2014, 90(8): 081107(R)
CrossRef
ADS
Google scholar
|
[35] |
S. Das, Z. Hossain, R. C. Budhani. Signature of enhanced spin‒orbit interaction in the magnetoresistance of LaTiO3/SrTiO3 interfaces on δ doping. Phys. Rev. B, 2016, 94(11): 115165
CrossRef
ADS
Google scholar
|
[36] |
T. A. Costi, A. C. Hewson, V. Zlatic. Transport coefficients of the Anderson model via the numerical renormalization group. J. Phys.: Condens. Matter, 1994, 6(13): 2519
CrossRef
ADS
Google scholar
|
[37] |
D. Goldhaber-Gordon, J. Gores, M. A. Kastner, H. Shtrikman, D. Mahalu, U. Meirav. From the Kondo regime to the mixed-valence regime in a single-electron transistor. Phys. Rev. Lett., 1998, 81(23): 5225
CrossRef
ADS
Google scholar
|
[38] |
M. Lee, J. R. Williams, S. Zhang, C. D. Frisbie, D. Goldhaber-Gordon. Electrolyte gate-controlled Kondo effect in SrTiO3. Phys. Rev. Lett., 2011, 107(25): 256601
CrossRef
ADS
Google scholar
|
[39] |
S. Mozaffari, S. Guchhait, J. T. Markert. Spin‒orbit interaction and Kondo scattering at the PrAlO3/SrTiO3 interface: Effects of oxygen content. J. Phys.: Condens. Matter, 2017, 29(39): 395002
CrossRef
ADS
Google scholar
|
[40] |
D.Shoenberg, Magnetic Oscillations in Metals, Cambridge: Cambridge University Press, 2009
|
[41] |
A. D. Caviglia, S. Gariglio, C. Cancellieri, B. Sacépé, A. Fête, N. Reyren, M. Gabay, A. F. Morpurgo, J. M. Triscone. Two-dimensional quantum oscillations of the conductance at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett., 2010, 105(23): 236802
CrossRef
ADS
Google scholar
|
[42] |
H. Murakawa, M. S. Bahramy, M. Tokunaga, Y. Kohama, C. Bell, Y. Kaneko, N. Nagaosa, H. Y. Hwang, Y. Tokura. Detection of Berry’s phase in a bulk Rashba semiconductor. Science, 2013, 342(6165): 1490
CrossRef
ADS
Google scholar
|
[43] |
M. J. Veit, R. Arras, B. J. Ramshaw, R. Pentcheva, Y. Suzuki. Nonzero Berry phase in quantum oscillations from giant Rashba-type spin splitting in LaTiO3/SrTiO3 heterostructures. Nat. Commun., 2018, 9(1): 1458
CrossRef
ADS
Google scholar
|
[44] |
M. Ben Shalom, C. W. Tai, Y. Lereah, M. Sachs, E. Levy, D. Rakhmilevitch, A. Palevski, Y. Dagan. Anisotropic magnetotransport at the SrTiO3/LaAlO3 interface. Phys. Rev. B, 2009, 80(14): 140403(R)
CrossRef
ADS
Google scholar
|
[45] |
M. Basletic, J. L. Maurice, C. Carrétéro, G. Herranz, O. Copie, M. Bibes, E. Jacquet, K. Bouzehouane, S. Fusil, A. Barthélémy. Mapping the spatial distribution of charge carriers in LaAlO3/SrTiO3 heterostructures. Nat. Mater., 2008, 7(8): 621
CrossRef
ADS
Google scholar
|
[46] |
O. Copie, V. Garcia, C. Bödefeld, C. Carrétéro, M. Bibes, G. Herranz, E. Jacquet, J. L. Maurice, B. Vinter, S. Fusil, K. Bouzehouane, H. Jaffrés, A. Barthélémy. Towards two-dimensional metallic behavior at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett., 2009, 102(21): 216804
CrossRef
ADS
Google scholar
|
[47] |
J. Q. Xiao, J. S. Jiang, C. L. Chien. Giant magnetoresistance in nonmultilayer magnetic systems. Phys. Rev. Lett., 1992, 68(25): 3749
CrossRef
ADS
Google scholar
|
[48] |
H. Shin, C. Liu, S. Godin, F. Li, R. Sutarto, B. A. Davidson, K. Zou. Highly tunable ferromagnetic 2D electron gases at oxide interfaces. Adv. Mater. Interfaces, 2022, 9(32): 2201475
CrossRef
ADS
Google scholar
|
[49] |
Y. Ayino, P. Xu, J. Tigre-Lazo, J. Yue, B. Jalan, V. S. Pribiag. Ferromagnetism and spin-dependent transport at a complex oxide interface. Phys. Rev. Mater., 2018, 2(3): 231401(R)
CrossRef
ADS
Google scholar
|
[50] |
A. Schmehl, F. Lichtenberg, H. Bielefeldt, J. Mannhart, D. G. Schlom. Transport properties of LaTiO3+x films and heterostructures. Appl. Phys. Lett., 2003, 82(18): 3077
CrossRef
ADS
Google scholar
|
[51] |
Z. S. Popovic, S. Satpathy. Wedge-shaped potential and airy-function electron localization in oxide superlattices. Phys. Rev. Lett., 2005, 94(17): 176805
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |