High-mobility spin-polarized two-dimensional electron gas at the interface of LaTiO3/SrTiO3 (110) heterostructures

Zhao-Cai Wang, Zheng-Nan Li, Shuang-Shuang Li, Weiyao Zhao, Ren-Kui Zheng

PDF(10875 KB)
PDF(10875 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (5) : 53203. DOI: 10.1007/s11467-024-1395-6
RESEARCH ARTICLE

High-mobility spin-polarized two-dimensional electron gas at the interface of LaTiO3/SrTiO3 (110) heterostructures

Author information +
History +

Abstract

High-quality antiferromagnetic Mott insulator thin films of LaTiO3 (LTO) were epitaxially grown onto SrTiO3 (STO) (110) substrates using the pulsed laser deposition. The LTO/STO heterostructures are not only highly conducting and ferromagnetic, but also show Kondo effect, Shubnikov‒de Haas (SdH) oscillations with a nonzero Berry phase of π, and low-field hysteretic negative magnetoresistance (MR). Angle-dependent SdH oscillations and a calculation of the thickness of the interfacial conducting layer indicate the formation of a 4-nm high mobility two-dimensional electron gas (2DEG) layer at the interface. Moreover, an amazingly large low-field negative MR of ∼61.8% is observed at 1.8 K and 200 Oe, which is approximately one to two orders of magnitude larger than those observed in other spin-polarized 2DEG oxide systems. All these results demonstrate that the 2DEG is spin-polarized and the 4-nm interfacial layer is ferromagnetic, which are attributed to the presence of magnetic Ti3+ ions due to interfacial oxygen vacancies and the diffusion of La3+ ions into the STO substrate. The localized Ti3+ magnetic moments couple to high mobility itinerant electrons under magnetic fields, giving rise to the observed low-field MR. Our work demonstrates the great potential of antiferromagnetic titanate oxide interface for designing spin-polarized 2DEG and spintronic devices.

Graphical abstract

Keywords

two-dimensional electron gas / heterostructure / spin polarization / electronic transport / interface

Cite this article

Download citation ▾
Zhao-Cai Wang, Zheng-Nan Li, Shuang-Shuang Li, Weiyao Zhao, Ren-Kui Zheng. High-mobility spin-polarized two-dimensional electron gas at the interface of LaTiO3/SrTiO3 (110) heterostructures. Front. Phys., 2024, 19(5): 53203 https://doi.org/10.1007/s11467-024-1395-6

References

[1]
A.OhtomoH. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature 427(6973), 423 (2004)
[2]
N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A. S. Ruetschi, D. Jaccard, M. Gabay, D. A. Muller, J. M. Triscone, J. Mannhart. Superconducting interfaces between insulating oxides. Science, 2007, 317(5842): 1196
CrossRef ADS Google scholar
[3]
J. A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H. Y. Hwang, K. A. Moler. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nat. Phys., 2011, 7(10): 767
CrossRef ADS Google scholar
[4]
C. Cao, S. G Chen, J. Deng, G. Li, Q. H Zhang, L. Gu, T. P. Ying, E. J. Guo, J. G. Guo, X. L. Chen. Two-dimensional electron gas with high mobility forming at BaO/SrTiO3 interface. Chin. Phys. Lett., 2022, 39(4): 047301
CrossRef ADS Google scholar
[5]
W. M. Jiang, Q Zhao, J. Z. Ling, T. N. Shao, Z. T. Zhang, M. R. Liu, C. L. Yao, Y. J. Qiao, M. H. Chen, X. Y. Chen, R. F. Dou, C. M. Xiong, J. C. Nie. Gate tunable Rashba spin‒orbit coupling at CaZrO3/SrTiO3 heterointerface. Chin. Phys. B, 2022, 31(6): 066801
CrossRef ADS Google scholar
[6]
A. Brinkman, M. Huijben, M. Van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. Van der Wiel, G. Rijnders, D. H. A. Blank, H. Hilgenkamp. Magnetic effects at the interface between non-magnetic oxides. Nat. Mater., 2007, 6(7): 493
CrossRef ADS Google scholar
[7]
H. R. Zhang, Y. Yun, X. J. Zhang, H. Zhang, Y. Ma, X. Yan, F. Wang, G. Li, R. Li, T. Khan, Y. S. Chen, W. Liu, F. X. Hu, B. G. Liu, B. G. Shen, W. Han, J. R. Sun. High-mobility spin-polarized two-dimensional electron gases at EuO/KTaO3 interfaces. Phys. Rev. Lett., 2018, 121(11): 116803
CrossRef ADS Google scholar
[8]
D. Stornaiuolo, C. Cantoni, G. M. De Luca, R. Di Capua, E. Di. Gennaro, G. Ghiringhelli, B. Jouault, D. Marrè, D. Massarotti, F. Miletto Granozio, I. Pallecchi, C. Piamonteze, S. Rusponi, F. Tafuri, M. Salluzzo. Tunable spin polarization and superconductivity in engineered oxide interfaces. Nat. Mater., 2016, 15(3): 278
CrossRef ADS Google scholar
[9]
D. Stornaiuolo, B. Jouault, E. Di Gennaro, A. Sambri, M. D’Antuono, D. Massarotti, F. M. Granozio, R. Di Capua, G. M. De Luca, G. P. Pepe, F. Tafuri, M. Salluzzo. Interplay between spin‒orbit coupling and ferromagnetism in magnetotransport properties of a spin-polarized oxide two-dimensional electron system. Phys. Rev. B, 2018, 98(7): 075409
CrossRef ADS Google scholar
[10]
T. Arima, Y. Tokura, J. B. Torrance. Variation of optical gaps in perovskite-type 3d transition-metal oxides. Phys. Rev. B, 1993, 48(23): 17006
CrossRef ADS Google scholar
[11]
C. Eylem, Y. C. Hung, H. L. Ju, J. Y. Kim, D. C. Green, T. Vogt, J. A. Hriljac, B. W. Eichhorn, R. L. Greene, L. Salamanca-Riba. Unusual metal‒insulator transitions in the LaTi1−xVxO3 perovskite phases. Chem. Mater., 1996, 8(2): 418
CrossRef ADS Google scholar
[12]
Y. Okada, T. Arima, Y. Tokura, C. Murayama, N. Môri. Doping- and pressure-induced change of electrical and magnetic properties in the Mott‒Hubbard insulator LaTiO3. Phys. Rev. B, 1993, 48(13): 9677
CrossRef ADS Google scholar
[13]
C. C. Hays, J. S. Zhou, J. T. Markert, J. B. Goodenough. Electronic transition in La1−xSrxTiO3. Phys. Rev. B, 1999, 60(14): 10367
CrossRef ADS Google scholar
[14]
T. Katsufuji, Y. Taguchi, Y. Tokura. Transport and magnetic properties of a Mott‒Hubbard system whose bandwidth and band filling are both controllable: R1−xCaxTiO3+y/2. Phys. Rev. B, 1997, 56(16): 10145
CrossRef ADS Google scholar
[15]
F. J. Wong, S. H. Baek, R. V. Chopdekar, V. V. Mehta, H. W. Jang, C. B. Eom, Y. Suzuki. Metallicity in LaTiO3 thin films induced by lattice deformation. Phys. Rev. B, 2010, 81(16): 161101(R)
CrossRef ADS Google scholar
[16]
C. He, T. D. Sanders, M. T. Gray, F. J. Wong, V. V. Mehta, Y. Suzuki. Metal‒insulator transitions in epitaxial LaVO3 and LaTiO3 films. Phys. Rev. B, 2012, 86(8): 081401(R)
CrossRef ADS Google scholar
[17]
J. Biscaras, N. Bergeal, A. Kushwaha, T. Wolf, A. Rastogi, R. C. Budhani, J. Lesueur. Two-dimensional superconductivity at a Mott insulator/band insulator interface LaTiO3/SrTiO3. Nat. Commun., 2010, 1(1): 89
CrossRef ADS Google scholar
[18]
T. T. Zhang, C. Y. Gu, Z. W. Mao, X. F. Chen, Z. B. Gu, P. Wang, Y. F. Nie, X. Q. Pan. Mott insulator to metal transition driven by oxygen incorporation in epitaxial LaTiO3 films. Appl. Phys. Lett., 2019, 115(26): 261604
CrossRef ADS Google scholar
[19]
M. J. Veit, M. K. Chan, B. J. Ramshaw, R. Arras, R. Pentcheva, Y. Suzuki. Three-dimensional character of the Fermi surface in ultrathin LaTiO3/SrTiO3 heterostructures. Phys. Rev. B, 2019, 99(11): 115126
CrossRef ADS Google scholar
[20]
J. Biscaras, N. Bergeal, S. Hurand, C. Grossetete, A. Rastogi, R. C. Budhani, D. LeBoeuf, C. Proust, J. Lesueur. Two-dimensional superconducting phase in LaTiO3/SrTiO3 heterostructures induced by high-mobility carrier doping. Phys. Rev. Lett., 2012, 108(24): 247004
CrossRef ADS Google scholar
[21]
F. D. Wen, Y. W. Cao, X. R. Liu, B. Pal, S. Middey, M. Kareev, J. Chakhalian. Evolution of ferromagnetism in two-dimensional electron gas of LaTiO3/SrTiO3. Appl. Phys. Lett., 2018, 112(12): 122405
CrossRef ADS Google scholar
[22]
A. Ohtomo, D. A. Muller, J. L. Grazul, H. Y. Hwang. Artificial charge-modulationin atomic-scale perovskite titanate superlattices. Nature, 2002, 419(6905): 378
CrossRef ADS Google scholar
[23]
S. Okamoto, A. J. Millis. Electronic reconstruction at an interface between a Mott insulator and a band insulator. Nature, 2004, 428(6983): 630
CrossRef ADS Google scholar
[24]
S. Okamoto, A. J. Millis, N. A. Spaldin. Lattice relaxation in oxide heterostructures: LaTiO3/SrTiO3 superlattices. Phys. Rev. Lett., 2006, 97(5): 056802
CrossRef ADS Google scholar
[25]
F. Yang, Z. Z. Wang, Y. H. Liu, S. Yang, Z. Yu, Q. C. An, Z. Q. Ding, F. Q. Meng, Y. W. Cao, Q. H. Zhang, L. Gu, M. Liu, Y. Q. Li, J. D. Guo, X. R. Liu. Engineered Kondo screening and nonzero Berry phase in SrTiO3/LaTiO3/SrTiO3 heterostructures. Phys. Rev. B, 2022, 106(16): 165421
CrossRef ADS Google scholar
[26]
Y. W. Cao, Z. Z. Yang, M. Kareev, X. R. Liu, D. Meyers, S. Middey, D. Choudhury, P. Shafer, J. D. Guo, J. W. Freeland, E. Arenholz, L. Gu, J. Chakhalian. Magnetic interactions at the nanoscale in trilayer titanates. Phys. Rev. Lett., 2016, 116(7): 076802
CrossRef ADS Google scholar
[27]
H. Y. Hwang. Atomic control of the electronic structure at complex oxide heterointerfaces. MRS Bull., 2006, 31(1): 28
CrossRef ADS Google scholar
[28]
Y. Mukunoki, N. Nakagawa, T. Susaki, H. Y. Hwang. Atomically flat (110) SrTiO3 and heteroepitaxy. Appl. Phys. Lett., 2005, 86(17): 171908
CrossRef ADS Google scholar
[29]
A. Annadi, Q. Zhang, X. Renshaw Wang, N. Tuzla, K. Gopinadhan, W. M. Lü, A. Roy Barman, Z. Q. Liu, A. Srivastava, S. Saha, Y. L. Zhao, S. W. Zeng, S. Dhar, E. Olsson, B. Gu, S. Yunoki, S. Maekawa, H. Hilgenkamp, T. Venkatesan. Anisotropic two-dimensional electron gas at the LaAlO3/SrTiO3 (110) interface. Nat. Commun., 2013, 4(1): 1838
CrossRef ADS Google scholar
[30]
Y. L. Han, Y. W. Fang, Z. Z. Yang, C. J. Li, L. He, S. C. Shen, Z. Z. Luo, G. L. Qu, C. M. Xiong, R. F. Dou, X. Wei, L. Gu, C. G. Duan, J. C. Nie. Reconstruction of electrostatic field at the interface leads to formation of two-dimensional electron gas at multivalent (110) LaAlO3/SrTiO3 interfaces. Phys. Rev. B, 2015, 92(11): 115304
CrossRef ADS Google scholar
[31]
Y.Z. ChenN. BovetF.TrierD.V. ChristensenF. M. QuN.H. AndersenT.KasamaW.Zhang R.GiraudJ. DufouleurT.S. JespersenJ.R. SunA.Smith J.NygardL. LuB.BuchnerB.G. ShenS.LinderothN.Pryds, A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al2O3/SrTiO3, Nat. Commun. 4(1), 1371 (2013)
[32]
V.F. Gantmakher, Electrons and Disorder in Solids, New York: Oxford University Press, 2005
[33]
B.L. AltshulerA.G. Aronov, Modern Problems in Condensed Matter Sciences, New York: Elsevier, 1985, Vol. 10, Ch. 1, pp 1–153
[34]
S. Das, A. Rastogi, L. J. Wu, J. C. Zheng, Z. Hossain, Y. M. Zhu, R. C. Budhani. Kondo scattering in δ-doped LaTiO3/SrTiO3 interfaces: Renormalization by spin‒orbit interactions. Phys. Rev. B, 2014, 90(8): 081107(R)
CrossRef ADS Google scholar
[35]
S. Das, Z. Hossain, R. C. Budhani. Signature of enhanced spin‒orbit interaction in the magnetoresistance of LaTiO3/SrTiO3 interfaces on δ doping. Phys. Rev. B, 2016, 94(11): 115165
CrossRef ADS Google scholar
[36]
T. A. Costi, A. C. Hewson, V. Zlatic. Transport coefficients of the Anderson model via the numerical renormalization group. J. Phys.: Condens. Matter, 1994, 6(13): 2519
CrossRef ADS Google scholar
[37]
D. Goldhaber-Gordon, J. Gores, M. A. Kastner, H. Shtrikman, D. Mahalu, U. Meirav. From the Kondo regime to the mixed-valence regime in a single-electron transistor. Phys. Rev. Lett., 1998, 81(23): 5225
CrossRef ADS Google scholar
[38]
M. Lee, J. R. Williams, S. Zhang, C. D. Frisbie, D. Goldhaber-Gordon. Electrolyte gate-controlled Kondo effect in SrTiO3. Phys. Rev. Lett., 2011, 107(25): 256601
CrossRef ADS Google scholar
[39]
S. Mozaffari, S. Guchhait, J. T. Markert. Spin‒orbit interaction and Kondo scattering at the PrAlO3/SrTiO3 interface: Effects of oxygen content. J. Phys.: Condens. Matter, 2017, 29(39): 395002
CrossRef ADS Google scholar
[40]
D.Shoenberg, Magnetic Oscillations in Metals, Cambridge: Cambridge University Press, 2009
[41]
A. D. Caviglia, S. Gariglio, C. Cancellieri, B. Sacépé, A. Fête, N. Reyren, M. Gabay, A. F. Morpurgo, J. M. Triscone. Two-dimensional quantum oscillations of the conductance at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett., 2010, 105(23): 236802
CrossRef ADS Google scholar
[42]
H. Murakawa, M. S. Bahramy, M. Tokunaga, Y. Kohama, C. Bell, Y. Kaneko, N. Nagaosa, H. Y. Hwang, Y. Tokura. Detection of Berry’s phase in a bulk Rashba semiconductor. Science, 2013, 342(6165): 1490
CrossRef ADS Google scholar
[43]
M. J. Veit, R. Arras, B. J. Ramshaw, R. Pentcheva, Y. Suzuki. Nonzero Berry phase in quantum oscillations from giant Rashba-type spin splitting in LaTiO3/SrTiO3 heterostructures. Nat. Commun., 2018, 9(1): 1458
CrossRef ADS Google scholar
[44]
M. Ben Shalom, C. W. Tai, Y. Lereah, M. Sachs, E. Levy, D. Rakhmilevitch, A. Palevski, Y. Dagan. Anisotropic magnetotransport at the SrTiO3/LaAlO3 interface. Phys. Rev. B, 2009, 80(14): 140403(R)
CrossRef ADS Google scholar
[45]
M. Basletic, J. L. Maurice, C. Carrétéro, G. Herranz, O. Copie, M. Bibes, E. Jacquet, K. Bouzehouane, S. Fusil, A. Barthélémy. Mapping the spatial distribution of charge carriers in LaAlO3/SrTiO3 heterostructures. Nat. Mater., 2008, 7(8): 621
CrossRef ADS Google scholar
[46]
O. Copie, V. Garcia, C. Bödefeld, C. Carrétéro, M. Bibes, G. Herranz, E. Jacquet, J. L. Maurice, B. Vinter, S. Fusil, K. Bouzehouane, H. Jaffrés, A. Barthélémy. Towards two-dimensional metallic behavior at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett., 2009, 102(21): 216804
CrossRef ADS Google scholar
[47]
J. Q. Xiao, J. S. Jiang, C. L. Chien. Giant magnetoresistance in nonmultilayer magnetic systems. Phys. Rev. Lett., 1992, 68(25): 3749
CrossRef ADS Google scholar
[48]
H. Shin, C. Liu, S. Godin, F. Li, R. Sutarto, B. A. Davidson, K. Zou. Highly tunable ferromagnetic 2D electron gases at oxide interfaces. Adv. Mater. Interfaces, 2022, 9(32): 2201475
CrossRef ADS Google scholar
[49]
Y. Ayino, P. Xu, J. Tigre-Lazo, J. Yue, B. Jalan, V. S. Pribiag. Ferromagnetism and spin-dependent transport at a complex oxide interface. Phys. Rev. Mater., 2018, 2(3): 231401(R)
CrossRef ADS Google scholar
[50]
A. Schmehl, F. Lichtenberg, H. Bielefeldt, J. Mannhart, D. G. Schlom. Transport properties of LaTiO3+x films and heterostructures. Appl. Phys. Lett., 2003, 82(18): 3077
CrossRef ADS Google scholar
[51]
Z. S. Popovic, S. Satpathy. Wedge-shaped potential and airy-function electron localization in oxide superlattices. Phys. Rev. Lett., 2005, 94(17): 176805
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11974155), the Natural Science Foundation of Guangdong Province (Grant No. 2022A1515010583), and Bureau of Education of Guangzhou Municipality (Grant No. 202255464).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(10875 KB)

Accesses

Citations

Detail

Sections
Recommended

/