Deep learning in two-dimensional materials: Characterization, prediction, and design

Xinqin Meng, Chengbing Qin, Xilong Liang, Guofeng Zhang, Ruiyun Chen, Jianyong Hu, Zhichun Yang, Jianzhong Huo, Liantuan Xiao, Suotang Jia

PDF(18419 KB)
PDF(18419 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (5) : 53601. DOI: 10.1007/s11467-024-1394-7
REVIEW ARTICLE

Deep learning in two-dimensional materials: Characterization, prediction, and design

Author information +
History +

Abstract

Since the isolation of graphene, two-dimensional (2D) materials have attracted increasing interest because of their excellent chemical and physical properties, as well as promising applications. Nonetheless, particular challenges persist in their further development, particularly in the effective identification of diverse 2D materials, the domains of large-scale and high-precision characterization, also intelligent function prediction and design. These issues are mainly solved by computational techniques, such as density function theory and molecular dynamic simulation, which require powerful computational resources and high time consumption. The booming deep learning methods in recent years offer innovative insights and tools to address these challenges. This review comprehensively outlines the current progress of deep learning within the realm of 2D materials. Firstly, we will briefly introduce the basic concepts of deep learning and commonly used architectures, including convolutional neural and generative adversarial networks, as well as U-net models. Then, the characterization of 2D materials by deep learning methods will be discussed, including defects and materials identification, as well as automatic thickness characterization. Thirdly, the research progress for predicting the unique properties of 2D materials, involving electronic, mechanical, and thermodynamic features, will be evaluated succinctly. Lately, the current works on the inverse design of functional 2D materials will be presented. At last, we will look forward to the application prospects and opportunities of deep learning in other aspects of 2D materials. This review may offer some guidance to boost the understanding and employing novel 2D materials.

Graphical abstract

Keywords

deep learning / two-dimensional materials / materials identification / thickness characterization / prediction / inverse design / convolutional neural networks / generative adversarial networks

Cite this article

Download citation ▾
Xinqin Meng, Chengbing Qin, Xilong Liang, Guofeng Zhang, Ruiyun Chen, Jianyong Hu, Zhichun Yang, Jianzhong Huo, Liantuan Xiao, Suotang Jia. Deep learning in two-dimensional materials: Characterization, prediction, and design. Front. Phys., 2024, 19(5): 53601 https://doi.org/10.1007/s11467-024-1394-7

References

[1]
K. S. Novoselov , A. K. Geim , S. V. Morozov , D. Jiang , Y. Zhang , S. V. Dubonos , I. V. Grigorieva , A. A. Firsov . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
CrossRef ADS Google scholar
[2]
Q. Ma , G. Ren , K. Xu , J. Z. Ou . Tunable optical properties of 2D materials and their applications. Adv. Opt. Mater., 2021, 9(2): 2001313
CrossRef ADS Google scholar
[3]
X. L. Li , W. P. Han , J. B. Wu , X. F. Qiao , J. Zhang , P. H. Tan . Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv. Funct. Mater., 2017, 27(19): 1604468
CrossRef ADS Google scholar
[4]
T. Low , A. Chaves , J. D. Caldwell , A. Kumar , N. X. Fang , P. Avouris , T. F. Heinz , F. Guinea , L. Martin-Moreno , F. Koppens . Polaritons in layered two-dimensional materials. Nat. Mater., 2017, 16(2): 182
CrossRef ADS Google scholar
[5]
Y. Qin , M. Sayyad , A. R. P. Montblanch , M. S. G. Feuer , D. Dey , M. Blei , R. Sailus , D. M. Kara , Y. Shen , S. Yang , A. S. Botana , M. Atature , S. Tongay . Reaching the excitonic limit in 2D Janus monolayers by in situ deterministic growth. Adv. Mater., 2022, 34(6): 2106222
CrossRef ADS Google scholar
[6]
T. LaMountain , E. J. Lenferink , Y. J. Chen , T. K. Stanev , N. P. Stern . Environmental engineering of transition metal dichalcogenide optoelectronics. Front. Phys., 2018, 13(4): 138114
CrossRef ADS Google scholar
[7]
Y. Liu , C. Xiao , Z. Li , Y. Xie . Vacancy engineering for tuning electron and phonon structures of two-dimensional materials. Adv. Energy Mater., 2016, 6(23): 1600436
CrossRef ADS Google scholar
[8]
A. Kuc , T. Heine , A. Kis . Electronic properties of transition-metal dichalcogenides. MRS Bull., 2015, 40(7): 577
CrossRef ADS Google scholar
[9]
Q. H. Wang , K. Kalantar-Zadeh , A. Kis , J. N. Coleman , M. S. Strano . Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11): 699
CrossRef ADS Google scholar
[10]
Y.Q. FangF.K. WangR.Q. WangT.ZhaiF.Huang, 2D NbOI2: A chiral semiconductor with highly in-plane anisotropic electrical and optical properties, Adv. Mater. 33(29), 2101505 (2021)
[11]
R. Yang , J. Fan , M. Sun . Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties. Front. Phys., 2022, 17(4): 43202
CrossRef ADS Google scholar
[12]
H. Song , J. Liu , B. Liu , J. Wu , H. M. Cheng , F. Kang . Two-dimensional materials for thermal management applications. Joule, 2018, 2(3): 442
CrossRef ADS Google scholar
[13]
Y. Wang , N. Xu , D. Li , J. Zhu . Thermal properties of two dimensional layered materials. Adv. Funct. Mater., 2017, 27(19): 1604134
CrossRef ADS Google scholar
[14]
L. Thiel , Z. Wang , M. A. Tschudin , D. Rohner , I. Gutiérrez-Lezama , N. Ubrig , M. Gibertini , E. Giannini , A. F. Morpurgo , P. Maletinsky . Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science, 2019, 364(6444): 973
CrossRef ADS Google scholar
[15]
Y. Li , B. Yang , S. Xu , B. Huang , W. Duan . Emergent phenomena in magnetic two-dimensional materials and van der Waals heterostructures. ACS Appl. Electron. Mater., 2022, 4(7): 3278
CrossRef ADS Google scholar
[16]
M. Gibertini , M. Koperski , A. F. Morpurgo , K. S. Novoselov . Magnetic 2D materials and heterostructures. Nat. Nanotechnol., 2019, 14(5): 408
CrossRef ADS Google scholar
[17]
X. Li , M. Sun , C. Shan , Q. Chen , X. Wei . Mechanical properties of 2D materials studied by in situ microscopy techniques. Adv. Mater. Interfaces, 2018, 5(5): 1701246
CrossRef ADS Google scholar
[18]
H. Jiang , L. Zheng , Z. Liu , X. Wang . Two-dimensional materials: From mechanical properties to flexible mechanical sensors. InfoMat, 2020, 2(6): 1077
CrossRef ADS Google scholar
[19]
C. Fang , H. Wang , Z. Shen , H. Shen , S. Wang , J. Ma , J. Wang , H. Luo , D. Li . High-performance photodetectors based on lead-free 2D Ruddlesden–Popper perovskite/MoS2 heterostructures. ACS Appl. Mater. Interfaces, 2019, 11(8): 8419
CrossRef ADS Google scholar
[20]
H. Liu , X. Zhu , X. Sun , C. Zhu , W. Huang , X. Zhang , B. Zheng , Z. Zou , Z. Luo , X. Wang , D. Li , A. Pan . Self-powered broad-band photodetectors based on vertically stacked WSe2/Bi2Te3 p–n heterojunctions. ACS Nano, 2019, 13(11): 13573
CrossRef ADS Google scholar
[21]
M. Long , A. Gao , P. Wang , H. Xia , C. Ott , C. Pan , Y. Fu , E. Liu , X. Chen , W. Lu , T. Nilges , J. Xu , X. Wang , W. Hu , F. Miao . Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv., 2017, 3(6): e1700589
CrossRef ADS Google scholar
[22]
S. Das , D. Pandey , J. Thomas , T. Roy . The role of graphene and other 2D materials in solar photovoltaics. Adv. Mater., 2019, 31(1): 1802722
CrossRef ADS Google scholar
[23]
A. Abnavi , R. Ahmadi , H. Ghanbari , M. Fawzy , A. Hasani , T. De Silva , A. M. Askar , M. R. Mohammadzadeh , F. Kabir , M. Whitwick , M. Beaudoin , S. K. O’Leary , M. M. Adachi . Flexible high-performance photovoltaic devices based on 2D MoS2 diodes with geometrically asymmetric contact areas. Adv. Funct. Mater., 2023, 33(7): 2210619
CrossRef ADS Google scholar
[24]
J. Sung , D. Shin , H. Cho , S. W. Lee , S. Park , Y. D. Kim , J. S. Moon , J. H. Kim , S. H. Gong . Room-temperature continuous-wave indirect-bandgap transition lasing in an ultra-thin WS2 disk. Nat. Photonics, 2022, 16(11): 792
CrossRef ADS Google scholar
[25]
C. Li , L. Zhao , Q. Shang , R. Wang , P. Bai , J. Zhang , Y. Gao , Q. Cao , Z. Wei , Q. Zhang . Room-temperature near-infrared excitonic lasing from mechanically exfoliated InSe microflake. ACS Nano, 2022, 16(1): 1477
CrossRef ADS Google scholar
[26]
J.GuB.ChakrabortyM.KhatoniarV.M. Menon, A room-temperature polariton light-emitting diode based on monolayer WS2, Nat. Nanotechnol. 14(11), 1024 (2019)
[27]
L. Zhao , Y. Jiang , C. Li , Y. Liang , Z. Wei , X. Wei , Q. Zhang . Probing anisotropic deformation and near-infrared emission tuning in thin-layered InSe crystal under high pressure. Nano Lett., 2023, 23(8): 3493
CrossRef ADS Google scholar
[28]
J. Wang , Y. J. Zhou , D. Xiang , S. J. Ng , K. Watanabe , T. Taniguchi , G. Eda . Polarized light-emitting diodes based on anisotropic excitons in few-layer ReS2. Adv. Mater., 2020, 32(32): 2001890
CrossRef ADS Google scholar
[29]
D. Jariwala , V. K. Sangwan , L. J. Lauhon , T. J. Marks , M. C. Hersam . Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano, 2014, 8(2): 1102
CrossRef ADS Google scholar
[30]
G. Fiori , F. Bonaccorso , G. Iannaccone , T. Palacios , D. Neumaier , A. Seabaugh , S. K. Banerjee , L. Colombo . Electronics based on two-dimensional materials. Nat. Nanotechnol., 2014, 9(10): 768
CrossRef ADS Google scholar
[31]
P. Kaushal , G. Khanna . The role of two-dimensional materials for electronic devices. Mater. Sci. Semicond. Process., 2022, 143: 106546
CrossRef ADS Google scholar
[32]
R. Cheng , S. Jiang , Y. Chen , Y. Liu , N. Weiss , H. C. Cheng , H. Wu , Y. Huang , X. Duan . Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun., 2014, 5(1): 5143
CrossRef ADS Google scholar
[33]
M. Choi , S. R. Bae , L. Hu , A. T. Hoang , S. Y. Kim , J. H. Ahn . Full-color active-matrix organic light-emitting diode display on human skin based on a large-area MoS2 backplane. Sci. Adv., 2020, 6(28): eabb5898
CrossRef ADS Google scholar
[34]
B. Mukherjee , R. Hayakawa , K. Watanabe , T. Taniguchi , S. Nakaharai , Y. Wakayama . ReS2/h-BN/graphene heterostructure based multifunctional devices:Tunneling diodes, FETs, logic gates, and memory. Adv. Electron. Mater., 2021, 7(1): 2000925
CrossRef ADS Google scholar
[35]
M. Cheng , J. B. Yang , X. H. Li , H. Li , R. F. Du , J. P. Shi , J. He . Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Front. Phys., 2022, 17(6): 63601
CrossRef ADS Google scholar
[36]
X. Hu , G. Wang , J. Li , J. Huang , Y. Liu , G. Zhong , J. Yuan , H. Zhan , Z. Wen . Significant contribution of single atomic Mn implanted in carbon nanosheets to high-performance sodium–ion hybrid capacitors. Energy Environ. Sci., 2021, 14(8): 4564
CrossRef ADS Google scholar
[37]
Z. Huang , H. Hou , Y. Zhang , C. Wang , X. Qiu , X. Ji . Layer-tunable phosphorene modulated by the cation insertion rate as a sodium-storage anode. Adv. Mater., 2017, 29(34): 1702372
CrossRef ADS Google scholar
[38]
X. Lu , Y. Shi , D. Tang , X. Lu , Z. Wang , N. Sakai , Y. Ebina , T. Taniguchi , R. Ma , T. Sasaki , C. Yan . Accelerated ionic and charge transfer through atomic interfacial electric fields for superior sodium storage. ACS Nano, 2022, 16(3): 4775
CrossRef ADS Google scholar
[39]
X. Li , M. Li , Z. Huang , G. Liang , Z. Chen , Q. Yang , Q. Huang , C. Zhi . Activating the I0/I+ redox couple in an aqueous I2–Zn battery to achieve a high voltage plateau. Energy Environ. Sci., 2021, 14(1): 407
CrossRef ADS Google scholar
[40]
Y. Zhang , J. Cao , Z. Yuan , L. Zhao , L. Wang , W. Han . Assembling Co3O4 nanoparticles into MXene with enhanced electrochemical performance for advanced asymmetric supercapacitors. J. Colloid Interface Sci., 2021, 599: 109
CrossRef ADS Google scholar
[41]
Y. K. Kim , K. Y. Shin . Functionalized phosphorene/polypyrrole hybrid nanomaterial by covalent bonding and its supercapacitor application. J. Ind. Eng. Chem., 2021, 94: 122
CrossRef ADS Google scholar
[42]
Q. Fu , Y. Meng , Z. Fang , Q. Hu , L. Xu , W. Gao , X. Huang , Q. Xue , Y. P. Sun , F. Lu . Boron nitride nanosheet-anchored Pd–Fe core–shell nanoparticles as highly efficient catalysts for suzuki–miyaura coupling reactions. ACS Appl. Mater. Interfaces, 2017, 9(3): 2469
CrossRef ADS Google scholar
[43]
H. H. Shin , E. Kang , H. Park , T. Han , C. H. Lee , D. K. Lim . Pd-nanodot decorated MoS2 nanosheets as a highly efficient photocatalyst for the visible-light-induced Suzuki–Miyaura coupling reaction. J. Mater. Chem. A, 2017, 5(47): 24965
CrossRef ADS Google scholar
[44]
C. Yao , N. Guo , S. Xi , C. Q. Xu , W. Liu , X. Zhao , J. Li , H. Fang , J. Su , Z. Chen , H. Yan , Z. Qiu , P. Lyu , C. Chen , H. Xu , X. Peng , X. Li , B. Liu , C. Su , S. J. Pennycook , C. J. Sun , J. Li , C. Zhang , Y. Du , J. Lu . Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nat. Commun., 2020, 11(1): 4389
CrossRef ADS Google scholar
[45]
Z. Luo , H. Zhang , Y. Yang , X. Wang , Y. Li , Z. Jin , Z. Jiang , C. Liu , W. Xing , J. Ge . Reactant friendly hydrogen evolution interface based on di-anionic MoS2 surface. Nat. Commun., 2020, 11(1): 1116
CrossRef ADS Google scholar
[46]
H. J. Li , K. Xi , W. Wang , S. Liu , G. R. Li , X. P. Gao . Quantitatively regulating defects of 2D tungsten selenide to enhance catalytic ability for polysulfide conversion in a lithium sulfur battery. Energy Storage Mater., 2022, 45: 1229
CrossRef ADS Google scholar
[47]
G.ZhangG.LiJ.WangH.TongJ.WangY.DuS.SunF.Dang, 2D SnSe cathode catalyst featuring an efficient facet-dependent selective Li2O2 growth/decomposition for Li-oxygen batteries, Adv. Energy Mater. 12(21), 2103910 (2022)
[48]
J. Hou , H. Wang , Z. Ge , T. Zuo , Q. Chen , X. Liu , S. Mou , C. Fan , Y. Xie , L. Wang . Treating acute kidney injury with antioxidative black phosphorus nanosheets. Nano Lett., 2020, 20(2): 1447
CrossRef ADS Google scholar
[49]
W. Chen , J. Ouyang , X. Yi , Y. Xu , C. Niu , W. Zhang , L. Wang , J. Sheng , L. Deng , Y. N. Liu , S. Guo . Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv. Mater., 2018, 30(3): 1703458
CrossRef ADS Google scholar
[50]
D. Yim , D. E. Lee , Y. So , C. Choi , W. Son , K. Jang , C. S. Yang , J. H. Kim . Sustainable nanosheet antioxidants for sepsis therapy via scavenging intracellular reactive oxygen and nitrogen species. ACS Nano, 2020, 14(8): 10324
CrossRef ADS Google scholar
[51]
W.FengX.HanH.HuM.ChangL.DingH.XiangY.ChenY.Li, 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases, Nat. Commun. 12(1), 2203 (2021)
[52]
M. Li , X. Peng , Y. Han , L. Fan , Z. Liu , Y. Guo . Ti3C2 MXenes with intrinsic peroxidase-like activity for label-free and colorimetric sensing of proteins. Microchem. J., 2021, 166: 106238
CrossRef ADS Google scholar
[53]
K. Rasool , M. Helal , A. Ali , C. E. Ren , Y. Gogotsi , K. A. Mahmoud . Antibacterial activity of Ti3C2Tx MXene. ACS Nano, 2016, 10(3): 3674
CrossRef ADS Google scholar
[54]
A. Arabi Shamsabadi , M. Sharifian Gh , B. Anasori , M. Soroush . Antimicrobial mode-of-action of colloidal Ti3C2Tx MXene nanosheets. ACS Sustain. Chem. & Eng., 2018, 6(12): 16586
CrossRef ADS Google scholar
[55]
R. Sha , T. K. Bhattacharyya . MoS2-based nanosensors in biomedical and environmental monitoring applications. Electrochim. Acta, 2020, 349: 136370
CrossRef ADS Google scholar
[56]
H. K. Choi , J. Park , O. H. Gwon , J. Y. Kim , S. J. Kang , H. R. Byun , B. K. Shin , S. G. Jang , H. S. Kim , Y. J. Yu . Gate-tuned gas molecule sensitivity of a two-dimensional semiconductor. ACS Appl. Mater. Interfaces, 2022, 14(20): 23617
CrossRef ADS Google scholar
[57]
S. P. Figerez , K. K. Tadi , K. R. Sahoo , R. Sharma , R. K. Biroju , A. Gigi , K. A. Anand , G. Kalita , T. N. Narayanan . Molybdenum disulfide–graphene van der Waals heterostructures as stable and sensitive electrochemical sensing platforms. Tungsten, 2020, 2(4): 411
CrossRef ADS Google scholar
[58]
R. Madhuvilakku , S. Alagar , R. Mariappan , S. Piraman . Glassy carbon electrodes modified with reduced graphene oxide-MoS2-poly (3, 4-ethylene dioxythiophene) nanocomposites for the non-enzymatic detection of nitrite in water and milk. Anal. Chim. Acta, 2020, 1093: 93
CrossRef ADS Google scholar
[59]
L. Wu , Q. Wang , B. Ruan , J. Zhu , Q. You , X. Dai , Y. Xiang . High-performance lossy-mode resonance sensor based on few-layer black phosphorus. J. Phys. Chem. C, 2018, 122(13): 7368
CrossRef ADS Google scholar
[60]
C.H. HuangT.T. HuangC.H. ChiangW.T. HuangY.T. Lin, A chemiresistive biosensor based on a layered graphene oxide/graphene composite for the sensitive and selective detection of circulating miRNA-21, Biosens. Bioelectron. 164, 112320 (2020)
[61]
S. Cui , H. Pu , S. A. Wells , Z. Wen , S. Mao , J. Chang , M. C. Hersam , J. Chen . Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat. Commun., 2015, 6(1): 8632
CrossRef ADS Google scholar
[62]
Q. Liang , Q. Wang , Q. Zhang , J. Wei , S. X. Lim , R. Zhu , J. Hu , W. Wei , C. Lee , C. H. Sow , W. Zhang , A. T. S. Wee . High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater., 2019, 31(24): 1807609
CrossRef ADS Google scholar
[63]
Y. Wang , L. Li , W. Yao , S. Song , J. T. Sun , J. Pan , X. Ren , C. Li , E. Okunishi , Y. Q. Wang , E. Wang , Y. Shao , Y. Y. Zhang , H. Yang , E. F. Schwier , H. Iwasawa , K. Shimada , M. Taniguchi , Z. Cheng , S. Zhou , S. Du , S. J. Pennycook , S. T. Pantelides , H. J. Gao . Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett., 2015, 15(6): 4013
CrossRef ADS Google scholar
[64]
X. Yu , P. Yu , D. Wu , B. Singh , Q. Zeng , H. Lin , W. Zhou , J. Lin , K. Suenaga , Z. Liu , Q. J. Wang . Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun., 2018, 9(1): 1545
CrossRef ADS Google scholar
[65]
A. D. Oyedele , S. Yang , L. Liang , A. A. Puretzky , K. Wang , J. Zhang , P. Yu , P. R. Pudasaini , A. W. Ghosh , Z. Liu , C. M. Rouleau , B. G. Sumpter , M. F. Chisholm , W. Zhou , P. D. Rack , D. B. Geohegan , K. Xiao . PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc., 2017, 139(40): 14090
CrossRef ADS Google scholar
[66]
Y. Gong , Z. Lin , Y. X. Chen , Q. Khan , C. Wang , B. Zhang , G. Nie , N. Xie , D. Li . Two-dimensional platinum diselenide: Synthesis, emerging applications, and future challenges. Nano-Micro Lett., 2020, 12(1): 174
CrossRef ADS Google scholar
[67]
Y. Wang , Y. Li , Z. Chen . Not your familiar two dimensional transition metal disulfide: structural and electronic properties of the PdS2 monolayer. J. Mater. Chem. C, 2015, 3(37): 9603
CrossRef ADS Google scholar
[68]
M.Ghorbani-AslA.KucP.MiroT.Heine, A single-material logical junction based on 2D crystal PdS2, Adv. Mater. 28(5), 853 (2016)
[69]
Y. Zhao , J. Qiao , P. Yu , Z. Hu , Z. Lin , S. P. Lau , Z. Liu , W. Ji , Y. Chai . Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater., 2016, 28(12): 2399
CrossRef ADS Google scholar
[70]
X. Chia , A. Adriano , P. Lazar , Z. Sofer , J. Luxa , M. Pumera . Layered platinum dichalcogenides (PtS2, PtSe2, and PtTe2) electrocatalysis: Monotonic dependence on the chalcogen size. Adv. Funct. Mater., 2016, 26(24): 4306
CrossRef ADS Google scholar
[71]
Y. Wang , L. Zhou , M. Zhong , Y. Liu , S. Xiao , J. He . Two-dimensional noble transition-metal dichalcogenides for nanophotonics and optoelectronics: Status and prospects. Nano Res., 2022, 15(4): 3675
CrossRef ADS Google scholar
[72]
L. Pi , L. Li , K. Liu , Q. Zhang , H. Li , T. Zhai . Recent progress on 2D noble-transition-metal dichalcogenides. Adv. Funct. Mater., 2019, 29(51): 1904932
CrossRef ADS Google scholar
[73]
H. Zeng , Y. Wen , L. Yin , R. Q. Cheng , H. Wang , C. S. Liu , J. He . Recent developments in CVD growth and applications of 2D transition metal dichalcogenides. Front. Phys., 2023, 18(5): 53603
CrossRef ADS Google scholar
[74]
W. Wu , G. Qiu , Y. Wang , R. Wang , P. Ye . Tellurene: Its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev., 2018, 47(19): 7203
CrossRef ADS Google scholar
[75]
Y. Wang , G. Qiu , R. Wang , S. Huang , Q. Wang , Y. Liu , Y. Du , W. A. III Goddard , M. J. Kim , X. Xu , P. D. Ye , W. Wu . Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron., 2018, 1(4): 228
CrossRef ADS Google scholar
[76]
Z. Xie , C. Xing , W. Huang , T. Fan , Z. Li , J. Zhao , Y. Xiang , Z. Guo , J. Li , Z. Yang , B. Dong , J. Qu , D. Fan , H. Zhang . Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater., 2018, 28(16): 1705833
CrossRef ADS Google scholar
[77]
W. Gao , Z. Zheng , P. Wen , N. Huo , J. Li . Novel two-dimensional monoelemental and ternary materials: Growth, physics and application. Nanophotonics, 2020, 9(8): 2147
CrossRef ADS Google scholar
[78]
L. Xian , A. Pérez Paz , E. Bianco , P. M. Ajayan , A. Rubio . Square selenene and tellurene: Novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater., 2017, 4(4): 041003
CrossRef ADS Google scholar
[79]
D. Ji , S. Cai , T. R. Paudel , H. Sun , C. Zhang , L. Han , Y. Wei , Y. Zang , M. Gu , Y. Zhang , W. Gao , H. Huyan , W. Guo , D. Wu , Z. Gu , E. Y. Tsymbal , P. Wang , Y. Nie , X. Pan . Freestanding crystalline oxide perovskites down to the monolayer limit. Nature, 2019, 570(7759): 87
CrossRef ADS Google scholar
[80]
Y. Zhang , H. H. Ma , X. Gan , Y. Hui , Y. Zhang , J. Su , M. Yang , Z. Hu , J. Xiao , X. Lu , J. Zhang , Y. Hao . Emergent midgap excitons in large-size freestanding 2D strongly correlated perovskite oxide films. Adv. Opt. Mater., 2021, 9(10): 2100025
CrossRef ADS Google scholar
[81]
Y. Lu , H. Zhang , Y. Wang , X. Zhu , W. Xiao , H. Xu , G. Li , Y. Li , D. Fan , H. Zeng , Z. Chen , X. Yang . Solar-driven interfacial evaporation accelerated electrocatalytic water splitting on 2D perovskite oxide/MXene heterostructure. Adv. Funct. Mater., 2023, 33(21): 2215061
CrossRef ADS Google scholar
[82]
K. Burke . Perspective on density functional theory. J. Chem. Phys., 2012, 136(15): 150901
CrossRef ADS Google scholar
[83]
N. Mounet , M. Gibertini , P. Schwaller , D. Campi , A. Merkys , A. Marrazzo , T. Sohier , I. E. Castelli , A. Cepellotti , G. Pizzi , N. Marzari . Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol., 2018, 13(3): 246
CrossRef ADS Google scholar
[84]
A. K. Geim , I. V. Grigorieva . Van der Waals heterostructures. Nature, 2013, 499(7459): 419
CrossRef ADS Google scholar
[85]
Y. Liu , N. O. Weiss , X. Duan , H. C. Cheng , Y. Huang , X. Duan . Van der Waals heterostructures and devices. Nat. Rev. Mater., 2016, 1(9): 16042
CrossRef ADS Google scholar
[86]
K.NovoselovA.MishchenkoA.CarvalhoA.H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
[87]
A. Castellanos-Gomez , X. Duan , Z. Fei , H. R. Gutierrez , Y. Huang , X. Huang , J. Quereda , Q. Qian , E. Sutter , P. Sutter . Van der Waals heterostructures. Nat. Rev. Methods Primers, 2022, 2(1): 58
CrossRef ADS Google scholar
[88]
X. L. Fan , R. F. Xin , L. Li , B. Zhang , C. Li , X. L. Zhou , H. Z. Chen , H. Y. Zhang , F. P. Ouyang , Y. Zhou . Progress in the preparation and physical properties of two-dimensional Cr-based chalcogenide materials and heterojunctions. Front. Phys., 2023, 19(2): 23401
CrossRef ADS Google scholar
[89]
L. Deng , D. Yu . Deep learning: Methods and applications. Foundations and Trends in Signal Processing, 2014, 7(3-4): 197
CrossRef ADS Google scholar
[90]
E. Moen , D. Bannon , T. Kudo , W. Graf , M. Covert , D. Van Valen . Deep learning for cellular image analysis. Nat. Methods, 2019, 16(12): 1233
CrossRef ADS Google scholar
[91]
Y. LeCun , Y. Bengio , G. Hinton . Deep learning. Nature, 2015, 521(7553): 436
CrossRef ADS Google scholar
[92]
L.DengG.HintonB.Kingsbury, New types of deep neural network learning for speech recognition and related applications: An overview, in: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, May 26‒31, 2013, 2013
[93]
D.W. OtterJ.R. MedinaJ.K. Kalita, A survey of the usages of deep learning for natural language processing, IEEE Trans. Neural Netw. Learn. Syst. 32(2), 604 (2021)
[94]
M.Z. AlomT.M. TahaC.YakopcicS.WestbergP.SidikeM.S. NasrinM.HasanB.C. Van EssenA.A. S. AwwalV.K. Asari, A state-of-the-art survey on deep learning theory and architectures, Electronics (Basel) 8(3), 292 (2019)
[95]
G. E. Hinton , R. R. Salakhutdinov . Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504
CrossRef ADS Google scholar
[96]
M. I. Jordan , T. M. Mitchell . Machine learning: Trends, perspectives, and prospects. Science, 2015, 349(6245): 255
CrossRef ADS Google scholar
[97]
W.S. McCullochW.Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys. 5(4), 115 (1943)
[98]
F. Rosenblatt . The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev., 1958, 65(6): 386
CrossRef ADS Google scholar
[99]
D. E. Rumelhart , G. E. Hinton , R. J. Williams . Learning representations by back-propagating errors. Nature, 1986, 323(6088): 533
CrossRef ADS Google scholar
[100]
K. Fukushima . Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural Netw., 1988, 1(2): 119
CrossRef ADS Google scholar
[101]
Y. Lecun , L. Bottou , Y. Bengio , P. Haffner . Gradient-based learning applied to document recognition. Proc. IEEE, 1998, 86(11): 2278
CrossRef ADS Google scholar
[102]
I. Goodfellow , J. Pouget-Abadie , M. Mirza , B. Xu , D. Warde-Farley , S. Ozair , A. Courville , Y. Bengio . Generative adversarial networks. Commun. ACM, 2020, 63(11): 139
CrossRef ADS Google scholar
[103]
J.ChengY.YangX.Tang, ., Generative Adversarial Networks: A Literature Review, Trans. Internet Inf. Syst. (Seoul) 14(12) (2020)
[104]
O.RonnebergerP.FischerT.Brox, U-net: Convolutional networks for biomedical image segmentation, in: Proceedings of the Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5‒9, 2015, Proceedings, Part III 18, Springer, 2015
[105]
H. Li , J. Wu , X. Huang , G. Lu , J. Yang , X. Lu , Q. Xiong , H. Zhang . Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano, 2013, 7(11): 10344
CrossRef ADS Google scholar
[106]
H. C. Wang , S. W. Huang , J. M. Yang , G. H. Wu , Y. P. Hsieh , S. W. Feng , M. K. Lee , C. T. Kuo . Large-area few-layered graphene film determination by multispectral imaging microscopy. Nanoscale, 2015, 7(19): 9033
CrossRef ADS Google scholar
[107]
Y. Li , N. Dong , S. Zhang , K. Wang , L. Zhang , J. Wang . Optical identification of layered MoS2 via the characteristic matrix method. Nanoscale, 2016, 8(2): 1210
CrossRef ADS Google scholar
[108]
J. Zhang , Y. Yu , P. Wang , C. Luo , X. Wu , Z. Sun , J. Wang , W. D. Hu , G. Shen . Characterization of atomic defects on the photoluminescence in two-dimensional materials using transmission electron microscope. InfoMat, 2019, 1(1): 85
CrossRef ADS Google scholar
[109]
W. Zhao , B. Xia , L. Lin , X. Xiao , P. Liu , X. Lin , H. Peng , Y. Zhu , R. Yu , P. Lei , J. Wang , L. Zhang , Y. Xu , M. Zhao , L. Peng , Q. Li , W. Duan , Z. Liu , S. Fan , K. Jiang . Low-energy transmission electron diffraction and imaging of large-area graphene. Sci. Adv., 2017, 3(9): e1603231
CrossRef ADS Google scholar
[110]
S. Yang . Scanning transmission electron microscopy (STEM) study on novel two-dimensional materials. Microsc. Microanal., 2020, 26(S2): 2372
CrossRef ADS Google scholar
[111]
S. de Graaf , B. J. Kooi . Radiation damage and defect dynamics in 2D WS2: A low-voltage scanning transmission electron microscopy study. 2D Mater., 2021, 9(1): 015009
CrossRef ADS Google scholar
[112]
S. Kim , D. Moon , B. R. Jeon , J. Yeon , X. Li , S. Kim . Accurate atomic-scale imaging of two-dimensional lattices using atomic force microscopy in ambient conditions. Nanomaterials (Basel), 2022, 12(9): 1542
CrossRef ADS Google scholar
[113]
D. S. Wastl , A. J. Weymouth , F. J. Giessibl . Atomically resolved graphitic surfaces in air by atomic force microscopy. ACS Nano, 2014, 8(5): 5233
CrossRef ADS Google scholar
[114]
Q. Tu , B. Lange , Z. Parlak , J. M. J. Lopes , V. Blum , S. Zauscher . Quantitative subsurface atomic structure fingerprint for 2D materials and heterostructures by first-principles-calibrated contact-resonance atomic force microscopy. ACS Nano, 2016, 10(7): 6491
CrossRef ADS Google scholar
[115]
C. Lee , H. Yan , L. E. Brus , T. F. Heinz , J. Hone , S. Ryu . Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano, 2010, 4(5): 2695
CrossRef ADS Google scholar
[116]
D. L. Silva , J. L. E. Campos , T. F. Fernandes , J. N. Rocha , L. R. P. Machado , E. M. Soares , D. R. Miquita , H. Miranda , C. Rabelo , O. P. Vilela Neto , A. Jorio , L. G. Cançado . Raman spectroscopy analysis of number of layers in mass-produced graphene flakes. Carbon, 2020, 161: 181
CrossRef ADS Google scholar
[117]
I. Stenger , L. Schué , M. Boukhicha , B. Berini , B. Plaçais , A. Loiseau , J. Barjon . Low frequency Raman spectroscopy of few-atomic-layer thick hBN crystals. 2D Mater., 2017, 4(3): 031003
CrossRef ADS Google scholar
[118]
Z. H. Ni , H. M. Wang , J. Kasim , H. M. Fan , T. Yu , Y. H. Wu , Y. P. Feng , Z. X. Shen . Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett., 2007, 7(9): 2758
CrossRef ADS Google scholar
[119]
R. Frisenda , Y. Niu , P. Gant , A. J. Molina-Mendoza , R. Schmidt , R. Bratschitsch , J. Liu , L. Fu , D. Dumcenco , A. Kis , D. P. De Lara , A. Castellanos-Gomez . Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials. J. Phys. D Appl. Phys., 2017, 50(7): 074002
CrossRef ADS Google scholar
[120]
S. Y. Zeng , F. Li , C. Tan , L. Yang , Z. G. Wang . Defect repairing in two-dimensional transition metal dichalcogenides. Front. Phys., 2023, 18(5): 53604
CrossRef ADS Google scholar
[121]
M. Ziatdinov , O. Dyck , A. Maksov , X. Li , X. Sang , K. Xiao , R. R. Unocic , R. Vasudevan , S. Jesse , S. V. Kalinin . Deep learning of atomically resolved scanning transmission electron microscopy images: Chemical identification and tracking local transformations. ACS Nano, 2017, 11(12): 12742
CrossRef ADS Google scholar
[122]
J.MadsenP.LiuJ.KlingJ.B. WagnerT.W. HansenO.WintherJ.Schiøtz, A deep learning approach to identify local structures in atomic-resolution transmission electron microscopy images, Adv. Theory Simul. 1(8), 1800037 (2018)
[123]
A. Maksov , O. Dyck , K. Wang , K. Xiao , D. B. Geohegan , B. G. Sumpter , R. K. Vasudevan , S. Jesse , S. V. Kalinin , M. Ziatdinov . Deep learning analysis of defect and phase evolution during electron beam-induced transformations in WS2. npj Comput. Mater., 2019, 5(1): 12
CrossRef ADS Google scholar
[124]
D. H. Yang , Y. S. Chu , O. F. N. Okello , S. Y. Seo , G. Moon , K. H. Kim , M. H. Jo , D. Shin , T. Mizoguchi , S. Yang , S. Y. Choi . Full automation of point defect detection in transition metal dichalcogenides through a dual mode deep learning algorithm. Mater. Horiz., 2024, 11(3): 747
CrossRef ADS Google scholar
[125]
S. H. Yang , W. Choi , B. W. Cho , F. O. T. Agyapong-Fordjour , S. Park , S. J. Yun , H. J. Kim , Y. K. Han , Y. H. Lee , K. K. Kim , Y. M. Kim . Deep learning-assisted quantification of atomic dopants and defects in 2D materials. Adv. Sci. (Weinh.), 2021, 8(16): 2101099
CrossRef ADS Google scholar
[126]
C. H. Lee , A. Khan , D. Luo , T. P. Santos , C. Shi , B. E. Janicek , S. Kang , W. Zhu , N. A. Sobh , A. Schleife , B. K. Clark , P. Y. Huang . Deep learning enabled strain mapping of single-atom defects in two-dimensional transition metal dichalcogenides with sub-picometer precision. Nano Lett., 2020, 20(5): 3369
CrossRef ADS Google scholar
[127]
T.ChuL.ZhouB.ZhangF.Z. Xuan, Accurate atomic scanning transmission electron microscopy analysis enabled by deep learning, Nano Res., doi: 10.1007/s12274-023-6104-1 (2023)
[128]
B.WuL.WangZ.Gao, A two-dimensional material recognition image algorithm based on deep learning, in: Proceedings of the 2019 International Conference on Information Technology and Computer Application (ITCA), IEEE, 2019
[129]
Y. Saito , K. Shin , K. Terayama , S. Desai , M. Onga , Y. Nakagawa , Y. M. Itahashi , Y. Iwasa , M. Yamada , K. Tsuda . Deep-learning-based quality filtering of mechanically exfoliated 2D crystals. npj Computat. Mater., 2019, 5(1): 124
CrossRef ADS Google scholar
[130]
B. Han , Y. Lin , Y. Yang , N. Mao , W. Li , H. Wang , K. Yasuda , X. Wang , V. Fatemi , L. Zhou , J. I. J. Wang , Q. Ma , Y. Cao , D. Rodan-Legrain , Y. Q. Bie , E. Navarro-Moratalla , D. Klein , D. MacNeill , S. Wu , H. Kitadai , X. Ling , P. Jarillo-Herrero , J. Kong , J. Yin , T. Palacios . Deep-learning-enabled fast optical identification and characterization of 2D materials. Adv. Mater., 2020, 32(29): 2000953
CrossRef ADS Google scholar
[131]
S. Masubuchi , E. Watanabe , Y. Seo , S. Okazaki , T. Sasagawa , K. Watanabe , T. Taniguchi , T. Machida . Deep-learning-based image segmentation integrated with optical microscopy for automatically searching for two-dimensional materials. npj 2D Mater. Appl., 2020, 4(1): 3
CrossRef ADS Google scholar
[132]
T.Y. LinM.MaireS.Belongie, ., Microsoft coco: Common objects in context, in: Proceedings of the Computer Vision-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6‒12, 2014, Proceedings, Part V 13, Springer, 2014
[133]
S. Mahjoubi , F. Ye , Y. Bao , W. Meng , X. Zhang . Identification and classification of exfoliated graphene flakes from microscopy images using a hierarchical deep convolutional neural network. Eng. Appl. Artif. Intell., 2023, 119: 105743
CrossRef ADS Google scholar
[134]
Y. Zhang , H. Zhang , S. Zhou , G. Liu , J. Zhu . Deep learning-based layer identification of 2D nanomaterials. Coatings, 2022, 12(10): 1551
CrossRef ADS Google scholar
[135]
H.ZhaoJ.ShiX.Qi, ., Pyramid scene parsing network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017
[136]
X.QinZ.ZhangC.HuangM.DehghanO.R. ZaianeM.Jagersand, U2-net: Going deeper with nested U-structure for salient object detection, Pattern Recognit. 106, 107404 (2020)
[137]
X. Dong , Y. Zhang , H. Li , Y. Yan , J. Li , J. Song , K. Wang , M. Jakobi , A. K. Yetisen , A. W. Koch . Microscopic image deblurring by a generative adversarial network for 2D nanomaterials: Implications for wafer-scale semiconductor characterization. ACS Appl. Nano Mater., 2022, 5(9): 12855
CrossRef ADS Google scholar
[138]
L. Zhu , J. Tang , B. Li , T. Hou , Y. Zhu , J. Zhou , Z. Wang , X. Zhu , Z. Yao , X. Cui , K. Watanabe , T. Taniguchi , Y. Li , Z. V. Han , W. Zhou , Y. Huang , Z. Liu , J. C. Hone , Y. Hao . Artificial neuron networks enabled identification and characterizations of 2D materials and van der Waals heterostructures. ACS Nano, 2022, 16(2): 2721
CrossRef ADS Google scholar
[139]
X. Dong , H. Li , K. Wang , B. Menze , M. Jakobi , A. K. Yetisen , A. W. Koch . Multispectral microscopic multiplexed (3M) imaging of atomically-thin crystals using deep learning. Adv. Opt. Mater., 2024, 12(2): 2300860
CrossRef ADS Google scholar
[140]
G. A. Nemnes , T. L. Mitran , A. Manolescu . Gap prediction in hybrid graphene-hexagonal boron nitride nanoflakes using artificial neural networks. J. Nanomater., 2019, 2019: 6960787
CrossRef ADS Google scholar
[141]
Y. Dong , C. Wu , C. Zhang , Y. Liu , J. Cheng , J. Lin . Bandgap prediction by deep learning in configurationally hybridized graphene and boron nitride. npj Comput. Mater., 2019, 5(1): 26
CrossRef ADS Google scholar
[142]
C. Cortes , V. Vapnik . Support-vector networks. Mach. Learn., 1995, 20(3): 273
CrossRef ADS Google scholar
[143]
Y. Ma , S. Lu , Y. Zhang , T. Zhang , Q. Zhou , J. Wang . Accurate energy prediction of large-scale defective two-dimensional materials via deep learning. Appl. Phys. Lett., 2022, 120(21): 213103
CrossRef ADS Google scholar
[144]
M. Dewapriya , R. Rajapakse , W. Dias . Characterizing fracture stress of defective graphene samples using shallow and deep artificial neural networks. Carbon, 2020, 163: 425
CrossRef ADS Google scholar
[145]
Y. C. Hsu , C. H. Yu , M. J. Buehler . Using deep learning to predict fracture patterns in crystalline solids. Matter, 2020, 3(1): 197
CrossRef ADS Google scholar
[146]
A. J Lew , C. H. Yu , Y. C. Hsu , M. J. Buehler . Deep learning model to predict fracture mechanisms of grapheme. npj 2D Mater. Appl., 2021, 5(1): 48
CrossRef ADS Google scholar
[147]
T. Zhang , X. Li , S. Kadkhodaei , H. Gao . Flaw insensitive fracture in nanocrystalline graphene. Nano Lett., 2012, 12(9): 4605
CrossRef ADS Google scholar
[148]
C. H. Yu , C. Y. Wu , M. J. Buehler . Deep learning based design of porous graphene for enhanced mechanical resilience. Comput. Mater. Sci., 2022, 206: 111270
CrossRef ADS Google scholar
[149]
M.S. ElapoluM.I. R. ShishirA.Tabarraei, A novel approach for studying crack propagation in polycrystalline graphene using machine learning algorithms, Comput. Mater. Sci. 201, 110878 (2022)
[150]
M. S. Elapolu , A. Tabarraei . Mechanical and fracture properties of polycrystalline graphene with hydrogenated grain boundaries. J. Phys. Chem. C, 2021, 125(20): 11147
CrossRef ADS Google scholar
[151]
A. Shekhawat , R. O. Ritchie . Toughness and strength of nanocrystalline graphene. Nat. Commun., 2016, 7(1): 10546
CrossRef ADS Google scholar
[152]
M. I. R. Shishir , A. Tabarraei . Traction–separation laws of graphene grain boundaries. Phys. Chem. Chem. Phys., 2021, 23(26): 14284
CrossRef ADS Google scholar
[153]
M.I. R. ShishirM.S. R. ElapoluA.Tabarraei, A deep learning model for predicting mechanical properties of polycrystalline graphene, Comput. Mater. Sci. 218, 111924 (2023)
[154]
Y. Shen , S. Zhu . Machine learning mechanical properties of defect-engineered hexagonal boron nitride. Comput. Mater. Sci., 2023, 220: 112030
CrossRef ADS Google scholar
[155]
H. Yang , Z. Zhang , J. Zhang , X. C. Zeng . Machine learning and artificial neural network prediction of interfacial thermal resistance between graphene and hexagonal boron nitride. Nanoscale, 2018, 10(40): 19092
CrossRef ADS Google scholar
[156]
J. Wan , J. W. Jiang , H. S. Park . Machine learning-based design of porous graphene with low thermal conductivity. Carbon, 2020, 157: 262
CrossRef ADS Google scholar
[157]
Q. Liu , Y. Gao , B. Xu . Transferable, deep-learning-driven fast prediction and design of thermal transport in mechanically stretched graphene flakes. ACS Nano, 2021, 15(10): 16597
CrossRef ADS Google scholar
[158]
X. Zhang , A. Chen , Z. Zhou . High-throughput computational screening of layered and two-dimensional materials. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2019, 9(1): e1385
CrossRef ADS Google scholar
[159]
V. Wang , G. Tang , Y. C. Liu , R. T. Wang , H. Mizuseki , Y. Kawazoe , J. Nara , W. T. Geng . High-throughput computational screening of two-dimensional semiconductors. J. Phys. Chem. Lett., 2022, 13(50): 11581
CrossRef ADS Google scholar
[160]
S. Sarikurt , T. Kocabaş , C. Sevik . High-throughput computational screening of 2D materials for thermoelectrics. J. Mater. Chem. A, 2020, 8(37): 19674
CrossRef ADS Google scholar
[161]
E. O. Pyzer-Knapp , C. Suh , R. Gómez-Bombarelli , J. Aguilera-Iparraguirre , A. Aspuru-Guzik . What is high-throughput virtual screening? A perspective from organic materials discovery. Annu. Rev. Mater. Res., 2015, 45(1): 195
CrossRef ADS Google scholar
[162]
X. Y. Ma , J. P. Lewis , Q. B. Yan , G. Su . Accelerated discovery of two-dimensional optoelectronic octahedral oxyhalides via high-throughput ab initio calculations and machine learning. J. Phys. Chem. Lett., 2019, 10(21): 6734
CrossRef ADS Google scholar
[163]
C. G. Van de Walle , J. Neugebauer . First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys., 2004, 95(8): 3851
CrossRef ADS Google scholar
[164]
B. K. Shoichet . Virtual screening of chemical libraries. Nature, 2004, 432(7019): 862
CrossRef ADS Google scholar
[165]
S. Ghosh , A. Nie , J. An , Z. Huang . Structure-based virtual screening of chemical libraries for drug discovery. Curr. Opin. Chem. Biol., 2006, 10(3): 194
CrossRef ADS Google scholar
[166]
M. Foscato , G. Occhipinti , V. Venkatraman , B. K. Alsberg , V. R. Jensen . Automated design of realistic organometallic molecules from fragments. J. Chem. Inf. Model., 2014, 54(3): 767
CrossRef ADS Google scholar
[167]
H. Mauser , M. Stahl . Chemical fragment spaces for de novo design. J. Chem. Inf. Model., 2007, 47(2): 318
CrossRef ADS Google scholar
[168]
G. R. Schleder , A. C. Padilha , C. M. Acosta , M. Costa , A. Fazzio . From DFT to machine learning: recent approaches to materials science – A review. J. Phys.: Mater., 2019, 2(3): 032001
CrossRef ADS Google scholar
[169]
Y. Dong , D. Li , C. Zhang , C. Wu , H. Wang , M. Xin , J. Cheng , J. Lin . Inverse design of two-dimensional graphene/h-BN hybrids by a regressional and conditional GAN. Carbon, 2020, 169: 9
CrossRef ADS Google scholar
[170]
V. Fung , J. Zhang , G. Hu , P. Ganesh , B. G. Sumpter . Inverse design of two-dimensional materials with invertible neural networks. npj Computat. Mater., 2021, 7(1): 200
CrossRef ADS Google scholar
[171]
S. Wu , Z. Wang , H. Zhang , J. Cai , J. Li . Deep learning accelerates the discovery of two-dimensional catalysts for hydrogen evolution reaction. Energy & Environm. Mater., 2023, 6(1): e12259
CrossRef ADS Google scholar
[172]
S. S. Chong , Y. S. Ng , H. Q. Wang , J. C. Zheng . Advances of machine learning in materials science: Ideas and techniques. Front. Phys., 2024, 19(1): 13501
CrossRef ADS Google scholar
[173]
B. Ryu , L. Wang , H. Pu , M. K. Y. Chan , J. Chen . Understanding, discovery, and synthesis of 2D materials enabled by machine learning. Chem. Soc. Rev., 2022, 51(6): 1899
CrossRef ADS Google scholar
[174]
H. Yin , Z. Sun , Z. Wang , D. Tang , C. H. Pang , X. Yu , A. S. Barnard , H. Zhao , Z. Yin . The data-intensive scientific revolution occurring where two-dimensional materials meet machine learning. Cell Rep. Phys. Sci., 2021, 2(7): 100482
CrossRef ADS Google scholar
[175]
Z.SiD.ZhouJ.YangX.Lin, 2D material property characterizations by machine-learning-assisted microscopies, Appl. Phys. A 129(4), 248 (2023)

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

The authors gratefully acknowledge support from the National Key Research and Development Program of China (Grant No. 2022YFA1404201), the National Natural Science Foundation of China (Nos. U22A2091, 62222509, 62127817, 62075120, 62075122, 62205187, 62105193, and 6191101445), Shanxi Province Science and Technology Innovation Talent Team (No. 202204051001014), the Science and Technology Cooperation Project of Shanxi Province (No. 202104041101021), the Key Research and Development Project of Shanxi Province (No. 202102030201007), and 111 Projects (Grant No. D18001).

RIGHTS & PERMISSIONS

2024 The Authors
AI Summary AI Mindmap
PDF(18419 KB)

Accesses

Citations

Detail

Sections
Recommended

/