Holographic images of an AdS black hole within the framework of f( R) gravity theory

Guo-Ping Li, Ke-Jian He, Xin-Yun Hu, Qing-Quan Jiang

PDF(7036 KB)
PDF(7036 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (5) : 54202. DOI: 10.1007/s11467-024-1393-8
RESEARCH ARTICLE

Holographic images of an AdS black hole within the framework of f( R) gravity theory

Author information +
History +

Abstract

Based on the AdS/CFT correspondence, this study employs an oscillating Gaussian source to numerically study the holographic images of an AdS black hole under f(R) gravity using wave optics. Due to the diffraction of scalar wave, it turns out that one can clearly observed the interference patten of the absolute amplitude of response function on the AdS boundary. Furthermore, it is observed that its peak increases with the f(R) parameter α but decreases with the global monopole η, frequency ω, and horizon rh. More importantly, the results reveal that the holographic Einstein ring is a series of concentric striped patterns for an observer at the North Pole and that their center is analogous to a Poisson–Arago spot. This ring can evolve into a luminosity-deformed ring or two light spots when the observer is at a different position. According to geometrical optics, it is true that the size of the brightest holographic ring is approximately equal to that of the photon sphere, and the two light spots correspond to clockwise and anticlockwise light rays. In addition, holographic images for different values of black holes and optical system parameters were obtained, and different features emerged. Finally, we conclude that the holographic rings of the AdS black hole in modified gravities are more suitable and helpful for testing the existence of a gravity dual for a given material.

Graphical abstract

Keywords

AdS black hole / holographic images / AdS/CFT correspondence

Cite this article

Download citation ▾
Guo-Ping Li, Ke-Jian He, Xin-Yun Hu, Qing-Quan Jiang. Holographic images of an AdS black hole within the framework of f( R) gravity theory. Front. Phys., 2024, 19(5): 54202 https://doi.org/10.1007/s11467-024-1393-8

References

[1]
G.’t Hooft, Dimensional reduction in quantum gravity, arXiv: gr-qc/9310026 (1993)
[2]
L. Susskind. The world as a hologram. J. Math. Phys., 1995, 36(11): 6377
CrossRef ADS Google scholar
[3]
J. M. Maldacena. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys., 1998, 2(2): 231
CrossRef ADS Google scholar
[4]
E. Witten. Anti-de Sitter space and holography. Adv. Theor. Math. Phys., 1998, 2(2): 253
CrossRef ADS Google scholar
[5]
S.S. GubserI. R. KlebanovA.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428(1−2), 105 (1998)
[6]
J.ErlichE. KatzD.T. SonM.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95(26), 261602 (2005)
[7]
S. A. Hartnoll, C. P. Herzog, G. T. Horowitz. Building a holographic superconductor. Phys. Rev. Lett., 2008, 101(3): 031601
CrossRef ADS Google scholar
[8]
T.Damour, in: Proceedings of the Second Marcel Grossmann Meeting on General Relativity, edited by R. Ruffini, North Holland, Amsterdam, p. 587, 1982
[9]
G. Policastro, D. T. Son, A. O. Starinets. From AdS/CFT correspondence to hydrodynamics. J. High Energy Phys., 2002, 09: 043
[10]
S. Bhattacharyya, V. E. Hubeny, S. Minwalla, M. Rangamani. Nonlinear fluid dynamics from gravity. J. High Energy Phys., 2008, 02: 045
[11]
S. Kachru, X. Liu, M. Mulligan. Gravity duals of Lifshitz-like fixed points. Phys. Rev. D, 2008, 78(10): 106005
CrossRef ADS Google scholar
[12]
D. T. Son. Toward an AdS/cold atoms correspondence: A geometric realization of the Schrodinger symmetry. Phys. Rev. D, 2008, 78(4): 046003
CrossRef ADS Google scholar
[13]
K. Balasubramanian, J. McGreevy. Gravity duals for nonrelativistic conformal field theories. Phys. Rev. Lett., 2008, 101(6): 061601
CrossRef ADS Google scholar
[14]
C. Charmousis, B. Goutéraux, B. Soo Kim, E. Kiritsis, R. Meyer. Effective holographic theories for low-temperature condensed matter systems. J. High Energy Phys., 2010, 2010(11): 151
CrossRef ADS Google scholar
[15]
B. Gouteraux, E. Kiritsis. Generalized holographic quantum criticality at finite density. J. High Energy Phys., 2011, 1112: 036
CrossRef ADS Google scholar
[16]
S. Ryu, T. Takayanagi. Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. Phys. Rev. Lett., 2006, 96(18): 181602
CrossRef ADS Google scholar
[17]
S. Ryu, T. Takayanagi. Aspects of holographic entanglement entropy. J. High Energy Phys., 2006, 08: 045
CrossRef ADS Google scholar
[18]
E. Tonni. Holographic entanglement entropy: Near horizon geometry and disconnected regions. J. High Energy Phys., 2011, 05: 004
CrossRef ADS Google scholar
[19]
D. Stanford, L. Susskind. Complexity and shock wave geometries. Phys. Rev. D, 2014, 90(12): 126007
CrossRef ADS Google scholar
[20]
M.Li, A model of holographic dark energy, Phys. Lett. B 603(1−2), 1 (2004)
[21]
R.G. Cai, A dark energy model characterized by the age of the universe, Phys. Lett. B 657(4−5), 228 (2007)
[22]
C.GaoF. WuX.ChenY.G. Shen, A holographic dark energy model from Ricci scalar curvature, Phys. Rev. D 79(4), 043511 (2009)
[23]
A. Strominger. The dS/CFT correspondence. J. High Energy Phys., 2001, 10: 034
[24]
I. Bredberg, C. Keeler, V. Lysov, A. Strominger. Lectures on the Kerr/CFT correspondence. Nucl. Phys. B Proc. Suppl., 2011, 216(1): 194
CrossRef ADS Google scholar
[25]
Q. G. Huang, M. Li. The holographic dark energy in a non-flat universe. J. Cosmol. Astropart. Phys., 2004, 08: 013
[26]
X. Zhang, F. Q. Wu. Constraints on holographic dark energy from Type Ia supernova observations. Phys. Rev. D, 2005, 72(4): 043524
CrossRef ADS Google scholar
[27]
B. Wang, Y. Gong, E. Abdalla. Thermodynamics of an accelerated expanding universe. Phys. Rev. D, 2006, 74(8): 083520
CrossRef ADS Google scholar
[28]
J. Jing, S. Chen. Holographic superconductors in the Born‒Infeld electrodynamics. Phys. Lett. B, 2010, 686(1): 68
CrossRef ADS Google scholar
[29]
J. P. Wu, Y. Cao, X. M. Kuang, W. J. Li. The 3+1 holographic superconductor with Weyl corrections. Phys. Lett. B, 2011, 697(2): 153
CrossRef ADS Google scholar
[30]
Y. Ling, C. Niu, J. Wu, Z. Xian, H. B. Zhang. Metal−insulator transition by holographic charge density waves. Phys. Rev. Lett., 2014, 113(9): 091602
CrossRef ADS Google scholar
[31]
R. G. Cai, L. Li, L. F. Li, R. Q. Yang. Introduction to holographic superconductor models. Sci. China Phys. Mech. Astron., 2015, 58(6): 060401
CrossRef ADS Google scholar
[32]
X. X. Zeng, H. Zhang, L. F. Li. Phase transition of holographic entanglement entropy in massive gravity. Phys. Lett. B, 2016, 756: 170
CrossRef ADS Google scholar
[33]
Y. Kusuki, J. Kudler-Flam, S. Ryu. Derivation of holographic negativity in AdS3/CFT2. Phys. Rev. Lett., 2019, 123(13): 131603
CrossRef ADS Google scholar
[34]
C. Akers, N. Engelhardt, D. Harlow. Simple holographic models of black hole evaporation. J. High Energy Phys., 2020, 08: 032
CrossRef ADS Google scholar
[35]
A. Bhattacharya, A. Bhattacharyya, P. Nandy, A. K. Patra. Islands and complexity of eternal black hole and radiation subsystems for a doubly holographic model. J. High Energy Phys., 2021, 2021(5): 135
CrossRef ADS Google scholar
[36]
S. Nojiri, S. D. Odintsov, V. Faraoni. From nonextensive statistics and black hole entropy to the holographic dark universe. Phys. Rev. D, 2022, 105(4): 044042
CrossRef ADS Google scholar
[37]
P. Karndumri. Holographic RG flows and symplectic deformations of N=4 gauged supergravity. Phys. Rev. D, 2022, 105(8): 086009
CrossRef ADS Google scholar
[38]
Y. K. Yan, S. Lan, Y. Tian, P. Yang, S. Yao, H. Zhang. Holographic dissipation prefers the Landau over the Keldysh form. Phys. Rev. D, 2023, 107: L121901
CrossRef ADS Google scholar
[39]
S. Lan, X. Li, J. Mo, Y. Tian, Y. K. Yan, P. Yang, H. Zhang. Splitting of doubly quantized vortices in holographic superfluid of finite temperature. J. High Energy Phys., 2023, 2023(5): 223
CrossRef ADS Google scholar
[40]
S. Yao, Y. Tian, P. Yang, H. Zhang. Baby skyrmion in two-component holographic superfluids. J. High Energy Phys., 2023, 08: 055
CrossRef ADS Google scholar
[41]
B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese. . Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 2016, 116(6): 061102
CrossRef ADS Google scholar
[42]
K. Akiyama, A. Alberdi, W. Alef, K. Asada, R. Azulay, . [Event Horizon Telescope Collaboration]. . First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett., 2019, 875(1): L1
CrossRef ADS Google scholar
[43]
K. Akiyama, . [Event Horizon Telescope Collaboration]. . First sagittarius A* event horizon telescope results. I. The shadow of the supermassive black hole in the center of the Milky Way. Astrophys. J. Lett., 2022, 930(2): L12
CrossRef ADS Google scholar
[44]
S. W. Wei, P. Cheng, Y. Zhong, X. N. Zhou. Shadow of noncommutative geometry inspired black hole. J. Cosmol. Astropart. Phys., 2015, 08: 004
[45]
M. Guo, N. A. Obers, H. Yan. Observational signatures of near-extremal Kerr-like black holes in a modified gravity theory at the Event Horizon Telescope. Phys. Rev. D, 2018, 98(8): 084063
CrossRef ADS Google scholar
[46]
S. W. Wei, Y. C. Zou, Y. X. Liu, R. B. Mann. Curvature radius and Kerr black hole shadow. J. Cosmol. Astropart. Phys., 2019, 08: 030
CrossRef ADS Google scholar
[47]
H. M. Wang, Y. M. Xu, S. W. Wei. Shadows of Kerr-like black holes in a modified gravity theory. J. Cosmol. Astropart. Phys., 2019, 03: 046
CrossRef ADS Google scholar
[48]
M. Guo, P. C. Li. Innermost stable circular orbit and shadow of the 4D Einstein‒Gauss‒Bonnet black hole. Eur. Phys. J. C, 2020, 80(6): 588
CrossRef ADS Google scholar
[49]
F. Long, J. Wang, S. Chen, J. Jing. Shadow of a rotating squashed Kaluza‒Klein black hole. J. High Energy Phys., 2019, 2019(10): 269
CrossRef ADS Google scholar
[50]
Z.HuZ.Zhong P.C. LiM. GuoB.Chen, QED effect on a black hole shadow, Phys. Rev. D 103(4), 044057 (2021)
[51]
Y. Chen, P. Wang, H. Wu, H. Yang. Observational appearance of a freely-falling star in an asymmetric thin-shell wormhole. Eur. Phys. J. C, 2023, 83(5): 361
CrossRef ADS Google scholar
[52]
Y. Hou, Z. Zhang, H. Yan, M. Guo, B. Chen. Image of a Kerr‒Melvin black hole with a thin accretion disk. Phys. Rev. D, 2022, 106(6): 064058
CrossRef ADS Google scholar
[53]
Q. Gan, P. Wang, H. Wu, H. Yang. Photon spheres and spherical accretion image of a hairy black hole. Phys. Rev. D, 2021, 104(2): 024003
CrossRef ADS Google scholar
[54]
S. E. Gralla, D. E. Holz, R. M. Wald. Black hole shadows, photon rings, and lensing rings. Phys. Rev. D, 2019, 100(2): 024018
CrossRef ADS Google scholar
[55]
X. X. Zeng, H. Q. Zhang. Influence of quintessence dark energy on the shadow of black hole. Eur. Phys. J. C, 2020, 80(11): 1058
CrossRef ADS Google scholar
[56]
X. X. Zeng, H. Zhang, H. Q. Zhang. Shadows and photon spheres with spherical accretions in the four-dimensional Gauss‒Bonnet black hole. Eur. Phys. J. C, 2020, 80(9): 872
CrossRef ADS Google scholar
[57]
G. P. Li, K. J. He. Shadows and rings of the Kehagias‒Sfetsos black hole surrounded by thin disk accretion. J. Cosmol. Astropart. Phys., 2021, 06: 037
CrossRef ADS Google scholar
[58]
G. P. Li, K. J. He. Observational appearances of a f(R) global monopole black hole illuminated by various accretions. Eur. Phys. J. C, 2021, 81(11): 1018
CrossRef ADS Google scholar
[59]
K. J. He, S. C. Tan, G. P. Li. Influence of torsion charge on shadow and observation signature of black hole surrounded by various profiles of accretions. Eur. Phys. J. C, 2022, 82(1): 81
CrossRef ADS Google scholar
[60]
K. J. He, S. Guo, S. C. Tan, G. P. Li. Shadow images and observed luminosity of the Bardeen black hole surrounded by different accretions. Chin. Phys. C, 2021, 46: 085106
CrossRef ADS Google scholar
[61]
X. X. Zeng, K. J. He, G. P. Li. Effects of dark matter on shadows and rings of brane-world black holes illuminated by various accretions. Sci. China Phys. Mech. Astron., 2022, 65(9): 290411
CrossRef ADS Google scholar
[62]
J. Peng, M. Guo, X. H. Feng. Influence of quantum correction on the black hole shadows, photon rings and lensing rings. Chin. Phys. C, 2021, 45: 085103
CrossRef ADS Google scholar
[63]
X. X. Zeng, G. P. Li, K. J. He. The shadows and observational appearance of a noncommutative black hole surrounded by various profiles of accretions. Nucl. Phys. B, 2022, 974: 115639
CrossRef ADS Google scholar
[64]
H. M. Wang, Z. C. Lin, S. W. Wei. Optical appearance of Einstein‒Æther black hole surrounded by thin disk. Nucl. Phys. B, 2022, 985: 116026
CrossRef ADS Google scholar
[65]
A. Lapi, M. Negrello, J. González-Nuevo, Z. Y. Cai, G. De Zotti, L. Danese. Effective models for statistical studies of galaxy-scale gravitational lensing. Astrophys. J., 2012, 755(1): 46
CrossRef ADS Google scholar
[66]
D.J. LagattutaS.VegettiC.D. FassnachtM.W. AugerL.V. E. KoopmansJ. P. McKean, SHARP-I. A high-resolution multi-band view of the infra-red Einstein ring of JVAS B1938+666, Mon. Not. R. Astron. Soc. 424(4), 2800 (2012)
[67]
S. Sahu, M. Patil, D. Narasimha, P. S. Joshi. Can strong gravitational lensing distinguish naked singularities from black holes. Phys. Rev. D, 2012, 86(6): 063010
CrossRef ADS Google scholar
[68]
P. L. Kelly, S. A. Rodney, T. Treu, R. J. Foley, G. Brammer. . Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens. Science, 2015, 347(6226): 1123
CrossRef ADS Google scholar
[69]
A.GoobarR. AmanullahS.R. KulkarniP.E. NugentJ.Johansson, ., iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova, Science 356(6335), 291 (2017)
[70]
R. Li, C. S. Frenk, S. Cole, Q. Wang, L. Gao. Projection effects in the strong lensing study of subhaloes. Mon. Not. R. Astron. Soc., 2017, 468(2): 1426
CrossRef ADS Google scholar
[71]
R. B. Metcalf, M. Meneghetti, C. Avestruz, F. Bellagamba, C. R. Bom. . The strong gravitational lens finding challenge. Astron. Astrophys., 2019, 625: A119
CrossRef ADS Google scholar
[72]
F. Tamburini, B. Thidé, M. Della Valle. Measurement of the spin of the M87 black hole from its observed twisted light. Mon. Not. R. Astron. Soc., 2020, 492(1): L22
CrossRef ADS Google scholar
[73]
K. Hashimoto, S. Kinoshita, K. Murata. Einstein rings in holography. Phys. Rev. Lett., 2019, 123(3): 031602
CrossRef ADS Google scholar
[74]
K. Hashimoto, S. Kinoshita, K. Murata. Imaging black holes through the AdS/CFT correspondence. Phys. Rev. D, 2020, 101(6): 066018
CrossRef ADS Google scholar
[75]
Y. Kaku, K. Murata, J. Tsujimura. Observing black holes through superconductors. J. High Energy Phys., 2021, 2021(9): 138
CrossRef ADS Google scholar
[76]
Y. Liu, Q. Chen, X. X. Zeng, H. Zhang, W. Zhang. Holographic Einstein ring of a charged AdS black hole. J. High Energy Phys., 2022, 2022(10): 189
CrossRef ADS Google scholar
[77]
X. X. Zeng, K. J. He, J. Pu, G. P. Li, Q. Q. Jiang. Holographic Einstein rings of a Gauss‒Bonnet AdS black hole. Eur. Phys. J. C, 2023, 83(10): 897
CrossRef ADS Google scholar
[78]
X.X. ZengL. F. LiP.Xu, Holographic Einstein rings of a black hole with a global monopole, arXiv: 2307.01973 (2023)
[79]
X.Y. HuM. I. AslamR.SaleemX.X. Zeng, Holographic Einstein rings of an AdS black hole in massive gravity, J. Cosmol. Astropart. Phys. 11, 013 (2023), arXiv: 2308.05132v2
[80]
X.Y. HuX. X. ZengL.F. LiP.Xu, Holographic Einstein rings of non-commutative black holes, arXiv: 2309.07404 (2023)
[81]
X.X. ZengM. Israr AslamR.SaleemX.Y. Hu, Holographic Einstein rings of black holes in scalar-tensor-vector gravity, arXiv: 2311.04680 (2023)
[82]
C. M. Will. The confrontation between general relativity and experiment. Living Rev. Relativ., 2014, 17(1): 4
CrossRef ADS Google scholar
[83]
A. De Felice, S. Tsujikawa. Excluding static and spherically symmetric black holes in Einsteinian cubic gravity with unsuppressed higher-order curvature terms. Phys. Lett. B, 2023, 843: 138047
CrossRef ADS Google scholar
[84]
H. A. Buchdahl. Non-linear Lagrangians and cosmological theory. Mon. Not. R. Astron. Soc., 1970, 150(1): 1
CrossRef ADS Google scholar
[85]
S. Nojiri, S. D. Odintsov. Modified gravity with negative and positive powers of curvature: Unification of inflation and cosmic acceleration. Phys. Rev. D, 2003, 68(12): 123512
CrossRef ADS Google scholar
[86]
S. M. Carroll, V. Duvvuri, M. Trodden, M. S. Turner. Is cosmic speed-up due to new gravitational physics. Phys. Rev. D, 2004, 70(4): 043528
CrossRef ADS Google scholar
[87]
S.FayR. TavakolS.Tsujikawa, f(R) gravity theories in Palatini formalism: Cosmological dynamics and observational constraints? Phys. Rev. D 75(6), 063509 (2007)
[88]
T. R. P. Caramês, E. R. Bezerra De Mello, M. E. X. Guimarães. Gravitational field of a global monopole in a modified gravity. Int. J. Mod. Phys. Conf. Ser., 2011, 3: 446
CrossRef ADS Google scholar
[89]
J. Man, H. Cheng. Thermodynamic quantities of a black hole with an f(R) global monopole. Phys. Rev. D, 2013, 87(4): 044002
CrossRef ADS Google scholar
[90]
J. P. Morais Graça, I. P. Lobo, I. G. Salako. Cloud of strings in f(R) gravity. Chin. Phys. C, 2018, 42(6): 063105
CrossRef ADS Google scholar
[91]
J. R. Nascimento, G. J. Olmo, P. J. Porfirio, A. Yu. Petrov, A. R. Soares. Global monopole in palatini f(R) gravity. Phys. Rev. D, 2019, 99(6): 064053
CrossRef ADS Google scholar
[92]
J. Man, H. Cheng. Analytical discussion on strong gravitational lensing for a massive source with a f(R) global monopole. Phys. Rev. D, 2015, 92(2): 024004
CrossRef ADS Google scholar
[93]
F. B. Lustosa, M. E. X. Guimarães, C. N. Ferreira, J. L. Neto, J. A. Helayel-Neto. On the thermodynamical black hole stability in the space-time of a global monopole in f(R) gravity. J. High Energy Phys., 2019, 5: 587
[94]
I. S. Matos, M. O. Calvão, I. Waga. Gravitational wave propagation in f(R) models: New parametrizations and observational constraints. Phys. Rev. D, 2021, 103(10): 104059
CrossRef ADS Google scholar
[95]
T. Karakasis, E. Papantonopoulos, Z. Y. Tang, B. Wang. Black holes of (2+1)-dimensional f(R) gravity coupled to a scalar field. Phys. Rev. D, 2021, 103(6): 064063
CrossRef ADS Google scholar
[96]
S. Guo, Y. Han, G. P. Li. Joule‒Thomson expansion of a specific black hole in f(R) gravity coupled with Yang‒Mills field. Class. Quantum Gravity, 2020, 37(8): 085016
CrossRef ADS Google scholar
[97]
K. J. He, G. P. Li, X. Y. Hu. Violations of the weak cosmic censorship conjecture in the higher dimensional f(R) black holes with pressure. Eur. Phys. J. C, 2020, 80(3): 209
CrossRef ADS Google scholar
[98]
T.P. SotiriouV.Faraoni, f(R) theories of gravity, Rev. Mod. Phys. 82(1), 451 (2010)
[99]
A.De FeliceS. Tsujikawa, f(R) theories, Living Rev. Relativ. 13(1), 3 (2010)
[100]
T.R. P. CaramêsJ.C. FabrisE.R. Bezerra de MelloH.Belich, f(R) global monopole revisited, Eur. Phys. J. C 77(7), 496 (2017)
[101]
H. S. Vieira. On the Schwarzschild‒anti-de Sitter black hole with an f(R) global monopole. Eur. Phys. J. C, 2021, 81(12): 1143
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11903025), the Starting Fund of China West Normal University (Grant No. 18Q062), the Natural Science Foundation of Sichuan Province (Grant No. 2022NSFSC1833), the Sichuan Science and Technology Program (No. 2023ZYD0023), the Sichuan Youth Science and Technology Innovation Research Team (Grant No. 21CXTD0038), the Chongqing Science and Technology Bureau (Grant No. cstc2022ycjh-bgzxm0161), and the Basic Research Project of Science and Technology Committee of Chongqing (Grant No. CSTB2023NSCQ-MSX0324).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(7036 KB)

Accesses

Citations

Detail

Sections
Recommended

/