Optimizing hydrogen evolution reaction: Computational screening of single metal atom impurities in 2D MXene Nb4C3O2
Željko Šljivančanin
Optimizing hydrogen evolution reaction: Computational screening of single metal atom impurities in 2D MXene Nb4C3O2
MXenes, a novel class of 2D transition metal carbides and nitrides, have recently emerged as a promising candidate in the quest for efficient catalysts for the hydrogen evolution reaction. To enhance the performance of 2D MXenes with modest or poor catalytic efficiency, a particularly prosperous strategy involves doping with transition and noble metal atoms. Taking the Nb4C3O2 monolayer as a model, we explore substitutional metallic impurities, which serve as single-atom catalysts embedded within the Nb4C3O2 surface. Our findings demonstrate the ability to finely tune the atomic H binding energy within a 0.6 eV range, showing the potential for precise control in catalytic applications. Across different transition and noble metals, the single atoms integrated into Nb4C3O2 effectively adjust the free energy of H adsorption at nearby O atoms, achieving values comparable to or superior to Pt catalysts. A comprehensive examination of the electronic properties around the impurities reveals a correlation between changes in local reactivity and charge transfer to neighboring O atoms, where H atoms bind.
hydrogen evolution reaction / MXenes / DFT / single-atom catalysts
[1] |
Y. Zheng , Y. Jiao , M. Jaroniec , S. Z. Qiao . Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem. Int. Ed., 2015, 54(1): 52
CrossRef
ADS
Google scholar
|
[2] |
M. Luo , J. T. Yang , X. G. Li , M. Eguchi , Y. Yamauchi , Z. L. Wang . Insights into alloy/oxide or hydroxide interfaces in Ni–Mo-based electrocatalysts for hydrogen evolution under alkaline conditions. Chem. Sci. (Camb.), 2023, 14(13): 3400
CrossRef
ADS
Google scholar
|
[3] |
J. K. Nørskov , T. Bligaard , T. A. Logadottir , J. R. Kitchin , J. G. Chen , S. Pandelov , U. Stimming . Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc., 2005, 152(3): J23
CrossRef
ADS
Google scholar
|
[4] |
J. Greeley , T. F. Jaramillo , J. Bonde , I. B. Chorkendorff , J. K. Nørskov . Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater., 2006, 5(11): 909
CrossRef
ADS
Google scholar
|
[5] |
J. K. Nørskov , T. Bligaard , J. Rossmeisl , C. H. Christensen . Towards the computational design of solid catalysts. Nat. Chem., 2009, 1(1): 37
CrossRef
ADS
Google scholar
|
[6] |
J. Mahmood , F. Li , S. M. Jung , M. S. Okyay , I. Ahmad , S. J. Kim , N. Park , H. Y. Jeong , J. B. Baek . An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol., 2017, 12(5): 441
CrossRef
ADS
Google scholar
|
[7] |
Z. X. Zhu , Y. X. Lin , P. Fang , M. S. Wang , M. Z. Zhu , X. Y. Zhang , J. S. Liu , J. G. Hu , X. Y. Xu . Orderly nanodendritic nickel substitute for Raney nickel catalyst improving alkali water electrolyzer. Adv. Mater., 2024, 36(1): 2307035
CrossRef
ADS
Google scholar
|
[8] |
H. Y. Jin , C. X. Guo , X. Liu , J. L. Liu , A. Vasileff , Y. Jiao , Y. Zheng , S. Z. Qiao . Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev., 2018, 118(13): 6337
CrossRef
ADS
Google scholar
|
[9] |
M. Gong , W. Zhou , M. C. Tsai , J. G. Zhou , M. Y. Guan , M. C. Lin , B. Zhang , Y. F. Hu , D. Y. Wang , J. Yang , S. J. Pennycook , B. J. Hwang , H. J. Dai . Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun., 2014, 5(1): 4695
CrossRef
ADS
Google scholar
|
[10] |
L. Q. Wang , Y. X. Hao , L. M. Deng , F. Hu , S. Zhao , L. L. Li , S. J. Peng . Rapid complete reconfiguration induced actual active species for industrial hydrogen evolution reaction. Nat. Commun., 2022, 13(1): 5785
CrossRef
ADS
Google scholar
|
[11] |
P. Fang , M. Z. Zhu , J. Liu , Z. X. Zhu , J. G. Hu , X. Y. Xu . Making ternary-metal hydroxy-sulfide catalyst via cathodic reconstruction with ion regulation for industrial-level hydrogen generation. Adv. Energy Mater., 2023, 13(35): 2301222
CrossRef
ADS
Google scholar
|
[12] |
L. Bian , Z. Y. Zhang , H. Tian , N. N. Tian , Z. Ma , Z. L. Wang . Grain boundary-abundant copper nanoribbons on balanced gas‒liquid diffusion electrodes for efficient CO2 electroreduction to C2H4. Chin. J. Catal., 2023, 54: 199
CrossRef
ADS
Google scholar
|
[13] |
Z. Y. Zhang , H. Tian , L. Bian , S. Z. Liu , Y. Liu , Z. L. Wang . Cu‒Zn-based alloy/oxide interfaces for enhanced electroreduction of CO2 to C2+ products. J. Energy Chem., 2023, 83: 90
CrossRef
ADS
Google scholar
|
[14] |
Y. G. Li , H. L. Wang , L. M. Xie , Y. Y. Liang , G. S. Hong , H. J. Dai . MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc., 2011, 133(19): 7296
CrossRef
ADS
Google scholar
|
[15] |
M. A. Lukowski , A. S. Daniel , F. Meng , A. Forticaux , L. S. Li , S. Jin . Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc., 2013, 135(28): 10274
CrossRef
ADS
Google scholar
|
[16] |
B. Hinnemann , P. G. Moses , J. Bonde , K. P. Jørgensen , J. H. Nielsen , S. Horch , I. B. Chork-endorff , J. K. Nørskov . Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc., 2005, 127(15): 5308
CrossRef
ADS
Google scholar
|
[17] |
C. Tsai , F. Abild-Pedersen , J. K. Nørskov . Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett., 2014, 14(3): 1381
CrossRef
ADS
Google scholar
|
[18] |
J. Deng , H. Li , J. Xiao , Y. Tu , D. Deng , H. Yang , H. Tian , J. Li , P. Ren , X. Bao . Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci., 2015, 8(5): 1594
CrossRef
ADS
Google scholar
|
[19] |
V. Ramalingam , P. Varadhan , H. C. Fu , H. Kim , D. L. Zhang , S. M. Chen , L. Song , D. Ma , Y. Wang , H. N. Alshareef , J. H. He . Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater., 2019, 31(48): 1903841
CrossRef
ADS
Google scholar
|
[20] |
Q.LuY.YuQ.MaK.ChenH.Zhang, 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions, Adv. Mater. 28(10), 1917 (2016)
|
[21] |
M. Naguib , O. Mashtalir , C. Carle , V. Presser , J. Lu , L. Hultman , Y. Gogotsi , M. W. Barsoum . Two-dimensional transition metal carbides. ACS Nano, 2012, 6(2): 1322
CrossRef
ADS
Google scholar
|
[22] |
M. Khazaei , M. Arai , T. Sasaki , C. Y. Chung , N. S. Venkataramanan , M. Estili , Y. Sakka , Y. Kawazoe . Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater., 2013, 23(17): 2185
CrossRef
ADS
Google scholar
|
[23] |
B.AnasoriM.R. LukatskayaY.Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater. 2(2), 16098 (2017)
|
[24] |
X. T. Jiang , A. V. Kuklin , A. Baev , Y. Q. Ge , H. Ågren , H. Zhang , P. N. Prasad . Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep., 2020, 848: 1
CrossRef
ADS
Google scholar
|
[25] |
Z. W. Seh , K. D. Fredrickson , B. Anasori , J. Kibsgaard , A. L. Strickler , M. R. Lukatskaya , Y. Gogotsi , T. F. Jaramillo , A. Vojvodic . Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett., 2016, 1(3): 589
CrossRef
ADS
Google scholar
|
[26] |
G.GaoA.P. O’MullaneA.Du, 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction, ACS Catal. 7(1), 494 (2017)
|
[27] |
M. Pandey , K. S. Thygesen . Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: A computational screening study. J. Phys. Chem. C, 2017, 121(25): 13593
CrossRef
ADS
Google scholar
|
[28] |
S. Bai , M. Yang , J. Jiang , X. He , J. Zou , Z. Xiong , G. Liao , S. Liu . Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. npj 2D Mater. Appl., 2021, 5: 78
CrossRef
ADS
Google scholar
|
[29] |
Q.KongX.AnL.HuangX.WangW.FengS.QiuQ.WangC.Sun, A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure a hydrogen evolution performance, Front. Phys. 16(5), 53506 (2021)
|
[30] |
Y. Tang , C. H. Yang , X. T. Xu , Y. Q. Kang , Y. Henzie , W. X. Que , Y. Yamauchi . MXene nanoarchitectonics: Defect-engineered 2D MXenes towards enhanced electrochemical water splitting. Adv. Energy Mater., 2022, 12(12): 2103867
CrossRef
ADS
Google scholar
|
[31] |
T. Y. Shuai , Q. N. Zhan , H. M. Xu , Z. J. Zhang , G. R. Li . Recent developments of MXene-based catalysts for hydrogen production by water splitting. Green Chem., 2023, 25(5): 1749
CrossRef
ADS
Google scholar
|
[32] |
N. C. Cheng , S. Stambula , D. Wang , M. N. Banis , J. Liu , A. Riese , B. W. Xiao , R. Y. Li , T. K. Sham , L. M. Liu , G. A. Botton , X. L. Sun . Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun., 2016, 7(1): 13638
CrossRef
ADS
Google scholar
|
[33] |
A. Alarawi , V. Ramalingam , J. H. He . Recent advances in emerging single atom confined two-dimensional materials for water splitting applications. Mater. Today Energy, 2019, 11: 1
CrossRef
ADS
Google scholar
|
[34] |
D. N. Sredojević , M. R. Belić , Ž. Šljivančanin . Hydrogen evolution reaction over single-atom catalysts based on metal adatoms at defected graphene and h-BN. J. Phys. Chem. C, 2020, 124(31): 16860
CrossRef
ADS
Google scholar
|
[35] |
J. Zhang , Y. Zhao , X. Guo , C. Chen , C. L. Dong , R. S. Liu , C. P. Han , Y. Li , Y. Gogotsi , G. Wang . Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal., 2018, 1(12): 985
CrossRef
ADS
Google scholar
|
[36] |
D. A. Kuznetsov , Z. Chen , P. V. Kumar , A. Tsoukalou , A. Kierzkowska , P. M. Abdala , O. V. Safonova , A. Fedorov , C. R. Müller . Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction. J. Am. Chem. Soc., 2019, 141(44): 17809
CrossRef
ADS
Google scholar
|
[37] |
H. Liu , Z. Hu , Q. Liu , P. Sun , Y. Wang , S. Chou , Z. Hu , Z. Zhang . Single-atom Ru anchored in nitrogen-doped MXene (Ti3C2Tx) as an efficient catalyst for the hydrogen evolution reaction at all pH values. J. Mater. Chem. A, 2020, 8(46): 24710
CrossRef
ADS
Google scholar
|
[38] |
T. A. Le , Q. V. Bui , N. Q. Tran , Y. Cho , Y. Hong , Y. Kawazoe , H. Lee . Synergistic effects of nitrogen doping on MXene for enhancement of hydrogen evolution reaction. ACS Sustain. Chem. & Eng., 2019, 7(19): 16879
CrossRef
ADS
Google scholar
|
[39] |
G. X. Qu , Y. Zhou , T. L. Wu , G. L. Zhao , F. F. Li , Y. J. Kang , C. Xu . Phosphorized MXene-phase molybdenum carbide as an earth-abundant hydrogen evolution electrocatalyst. ACS Appl. Energy Mater., 2018, 1(12): 7206
CrossRef
ADS
Google scholar
|
[40] |
J. J. Mortensen , L. B. Hansen , K. W. Jacobsen . Real-space grid implementation of the projector augmented wave method. Phys. Rev. B, 2005, 71(3): 035109
CrossRef
ADS
Google scholar
|
[41] |
J. Enkovaara , C. Rostgaard , J. J. Mortensen , J. Chen , M. Dulak , L. Ferrighi , J. Gavnholt , C. Glinsvad , V. Haikola , H. A. Hansen , H. H. Kristoffersen , M. Kuisma , A. H. Larsen , L. Lehtovaara , M. Ljungberg , O. Lopez-Acevedo , P. G. Moses , J. Ojanen , T. Olsen , V. Petzold , N. A. Romero , J. Stausholm-Moller , M. Strange , G. A. Tritsaris , M. Vanin , M. Walter , B. Hammer , H. Hakkinen , G. K. H. Madsen , R. M. Nieminen , J. K. Norskov , M. Puska , T. T. Rantala , J. Schiotz , K. S. Thygesen , K. W. Jacobsen . Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method. J. Phys.: Condens. Matter, 2010, 22(25): 253202
CrossRef
ADS
Google scholar
|
[42] |
P. E. Blöchl . Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
CrossRef
ADS
Google scholar
|
[43] |
J. J. Mortensen , L. B. Hansen , K. W. Jacobsen . Real-space grid implementation of the projector augmented wave method. Phys. Rev. B, 2005, 71(3): 035109
CrossRef
ADS
Google scholar
|
[44] |
|
[45] |
H. J. Monkhorst , J. D. Pack . Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188
CrossRef
ADS
Google scholar
|
[46] |
J. P. Perdew , K. Burke , M. Ernzerhof . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef
ADS
Google scholar
|
[47] |
E. R. Davidson . The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys., 1975, 17(1): 87
CrossRef
ADS
Google scholar
|
[48] |
D. C. Liu , J. Nocedal . On the limited memory BFGS method for large scale optimization. Math. Program., 1989, 45(1−3): 503
CrossRef
ADS
Google scholar
|
[49] |
S. R. Bahn , K. W. Jacobsen . An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng., 2002, 4(3): 56
CrossRef
ADS
Google scholar
|
[50] |
R.F. W. Bader, Atoms in Molecules: A Quantum Theory, New York: Oxford University Press, 1990
|
[51] |
A. Hjorth Larsen , J. Jørgen Mortensen , J. Blomqvist , I. E. Castelli , R. Christensen , M. Dułak , J. Friis , M. N. Groves , B. Hammer , C. Hargus , E. D. Hermes , P. C. Jennings , P. Bjerre Jensen , J. Kermode , J. R. Kitchin , E. Leonhard Kolsbjerg , J. Kubal , K. Kaasbjerg , S. Lysgaard , J. Bergmann Maronsson , T. Maxson , T. Olsen , L. Pastewka , A. Peterson , C. Rostgaard , J. Schiøtz , O. Schütt , M. Strange , K. S. Thygesen , T. Vegge , L. Vilhelmsen , M. Walter , Z. Zeng , K. W. Jacobsen . The atomic simulation environment — a Python library for working with atoms. J. Phys.: Condens. Matter, 2017, 29(27): 273002
CrossRef
ADS
Google scholar
|
[52] |
Y. W. Cheng , J. H. Dai , J. M. Zhang , Y. Song . Two-dimensional, ordered, double transition metal carbides (MXenes): A new family of promising catalysts for the hydrogen evolution reaction. J. Phys. Chem. C, 2018, 122(49): 28113
CrossRef
ADS
Google scholar
|
[53] |
B. Hammer , J. K. Nørskov . Theoretical surface science and catalysis ‒ Calculations and concepts. Adv. Catal., 2000, 45: 71
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |