A spin−rotation mechanism of Einstein–de Haas effect based on a ferromagnetic disk
Xin Nie, Jun Li, Trinanjan Datta, Dao-Xin Yao
A spin−rotation mechanism of Einstein–de Haas effect based on a ferromagnetic disk
Spin−rotation coupling (SRC) is a fundamental interaction that connects electronic spins with the rotational motion of a medium. We elucidate the Einstein−de Haas (EdH) effect and its inverse with SRC as the microscopic mechanism using the dynamic spin−lattice equations derived by elasticity theory and Lagrangian formalism. By applying the coupling equations to an iron disk in a magnetic field, we exhibit the transfer of angular momentum and energy between spins and lattice, with or without damping. The timescale of the angular momentum transfer from spins to the entire lattice is estimated by our theory to be on the order of 0.01 ns, for the disk with a radius of 100 nm. Moreover, we discover a linear relationship between the magnetic field strength and the rotation frequency, which is also enhanced by a higher ratio of Young’s modulus to Poisson’s coefficient. In the presence of damping, we notice that the spin−lattice relaxation time is nearly inversely proportional to the magnetic field. Our explorations will contribute to a better understanding of the EdH effect and provide valuable insights for magneto-mechanical manufacturing.
Einstein−de Haas effect / spin−rotation coupling
[1] |
J. E. Losby, V. T. K. Sauer, M. R. Freeman. Recent advances in mechanical torque studies of small-scale magnetism. J. Phys. D Appl. Phys., 2018, 51(48): 483001
CrossRef
ADS
Google scholar
|
[2] |
S. R. Tauchert, M. Volkov, D. Ehberger, D. Kazenwadel, M. Evers, H. Lange, A. Donges, A. Book, W. Kreuzpaintner, U. Nowak, P. Baum. Polarized phonons carry angular momentum in ultrafast demagnetization. Nature, 2022, 602(7895): 73
CrossRef
ADS
Google scholar
|
[3] |
O.W. Richardson, A mechanical effect accompanying magnetization, Phys. Rev. Ser. I 26(3), 248 (1908)
|
[4] |
A. Einstein. Experimenteller nachweis der ampereschen molekularströme. Naturwissenschaften, 1915, 3(19): 237
CrossRef
ADS
Google scholar
|
[5] |
S. J. Barnett. Magnetization by rotation. Phys. Rev., 1915, 6(4): 239
CrossRef
ADS
Google scholar
|
[6] |
A.EinsteinW. De Haas, Experimental proof of the existence of Ampère’s molecular currents, in: Proc. KNAW, Vol. 181 (1915), p. 696
|
[7] |
G. G. Scott. Review of gyromagnetic ratio experiments. Rev. Mod. Phys., 1962, 34(1): 102
CrossRef
ADS
Google scholar
|
[8] |
W. Górecki, K. Rzażewski. Making two dysprosium atoms rotate — Einstein‒de Haas effect revisited. Europhys. Lett., 2016, 116(2): 26004
CrossRef
ADS
Google scholar
|
[9] |
T. Wells, A. P. Horsfield, W. M. C. Foulkes, S. L. Dudarev. The microscopic Einstein‒de Haas effect. J. Chem. Phys., 2019, 150(22): 224109
CrossRef
ADS
Google scholar
|
[10] |
S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger. Spintronics: A spin-based electronics vision for the future. Science, 2001, 294(5546): 1488
CrossRef
ADS
Google scholar
|
[11] |
Z. Xiong, D. Wu, Z. Valy Vardeny, J. Shi. Giant magnetoresistance in organic spin-valves. Nature, 2004, 427(6977): 821
CrossRef
ADS
Google scholar
|
[12] |
S. Sanvito, A. R. Rocha. Molecular-spintronics: The art of driving spin through molecules. J. Comput. Theor. Nanosci., 2006, 3(5): 624
CrossRef
ADS
Google scholar
|
[13] |
L. Bogani, W. Wernsdorfer. Molecular spintronics using single-molecule magnets. Nat. Mater., 2008, 7(3): 179
CrossRef
ADS
Google scholar
|
[14] |
E. Chudnovsky, D. Garanin, R. Schilling. Universal mechanism of spin relaxation in solids. Phys. Rev. B, 2005, 72(9): 094426
CrossRef
ADS
Google scholar
|
[15] |
E. M. Chudnovsky, D. A. Garanin. Rotational states of a nanomagnet. Phys. Rev. B, 2010, 81(21): 214423
CrossRef
ADS
Google scholar
|
[16] |
E. M. Chudnovsky. Conservation of angular momentum in the problem of tunneling of the magnetic moment. Phys. Rev. Lett., 1994, 72(21): 3433
CrossRef
ADS
Google scholar
|
[17] |
L. Zhang, Q. Niu. Angular momentum of phonons and the Einstein–de Haas effect. Phys. Rev. Lett., 2014, 112(8): 085503
CrossRef
ADS
Google scholar
|
[18] |
S. Streib. Difference between angular momentum and pseudoangular momentum. Phys. Rev. B, 2021, 103(10): L100409
CrossRef
ADS
Google scholar
|
[19] |
J. J. Nakane, H. Kohno. Angular momentum of phonons and its application to single-spin relaxation. Phys. Rev. B, 2018, 97(17): 174403
CrossRef
ADS
Google scholar
|
[20] |
D. A. Garanin, E. M. Chudnovsky. Angular momentum in spin‒phonon processes. Phys. Rev. B, 2015, 92(2): 024421
CrossRef
ADS
Google scholar
|
[21] |
M. Ganzhorn, S. Klyatskaya, M. Ruben, W. Wernsdorfer. Quantum Einstein–de Haas effect. Nat. Commun., 2016, 7(1): 11443
CrossRef
ADS
Google scholar
|
[22] |
M. Aßmann, U. Nowak. Spin−lattice relaxation beyond gilbert damping. J. Magn. Magn. Mater., 2019, 469: 217
CrossRef
ADS
Google scholar
|
[23] |
D. Perera, M. Eisenbach, D. M. Nicholson, G. M. Stocks, D. P. Landau. Reinventing atomistic magnetic simulations with spin‒orbit coupling. Phys. Rev. B, 2016, 93(6): 060402
CrossRef
ADS
Google scholar
|
[24] |
P. W. Ma, C. H. Woo, S. L. Dudarev. Large-scale simulation of the spin‒lattice dynamics in ferromagnetic iron. Phys. Rev. B, 2008, 78(2): 024434
CrossRef
ADS
Google scholar
|
[25] |
W. Dednam, C. Sabater, A. Botha, E. Lombardi, J. Fernández-Rossier, M. Caturla. Spin‒lattice dynamics simulation of the Einstein‒de Haas effect. Comput. Mater. Sci., 2022, 209: 111359
CrossRef
ADS
Google scholar
|
[26] |
T. M. Wallis, J. Moreland, P. Kabos. Einstein–de Haas effect in a NiFe film deposited on a microcantilever. Appl. Phys. Lett., 2006, 89(12): 122502
CrossRef
ADS
Google scholar
|
[27] |
R. Jaafar, E. M. Chudnovsky, D. A. Garanin. Dynamics of the Einstein‒de Haas effect: Application to a magnetic cantilever. Phys. Rev. B, 2009, 79(10): 104410
CrossRef
ADS
Google scholar
|
[28] |
E. M. Chudnovsky, D. A. Garanin. Damping of a nanocantilever by paramagnetic spins. Phys. Rev. B, 2014, 89(17): 174420
CrossRef
ADS
Google scholar
|
[29] |
E. Beaurepaire, J. C. Merle, A. Daunois, J. Y. Bigot. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett., 1996, 76(22): 4250
CrossRef
ADS
Google scholar
|
[30] |
E. Carpene, E. Mancini, C. Dallera, M. Brenna, E. Puppin, S. De Silvestri. Dynamics of electron‒magnon interaction and ultrafast demagnetization in thin iron films. Phys. Rev. B, 2008, 78(17): 174422
CrossRef
ADS
Google scholar
|
[31] |
M.Fähnle, Ultrafast demagnetization after femtosecond laser pulses: A complex interaction of light with quantum matter, in: Spintronics XI, Vol. 10732 (SPIE, 2018), p. 107322G
|
[32] |
C. Dornes, Y. Acremann, M. Savoini, M. Kubli, M. J. Neugebauer, E. Abreu, L. Huber, G. Lantz, C. A. Vaz, H. Lemke, E. M. Bothschafter, M. Porer, V. Esposito, L. Rettig, M. Buzzi, A. Alberca, Y. W. Windsor, P. Beaud, U. Staub, D. Zhu, S. Song, J. M. Glownia, S. L. Johnson. The ultrafast Einstein‒de Haas effect. Nature, 2019, 565(7738): 209
CrossRef
ADS
Google scholar
|
[33] |
L.D. Landau, The Classical Theory of Fields, Vol. 2, Elsevier, 2013
|
[34] |
R. S. Fishman, J. S. Gardner, S. Okamoto. Orbital angular momentum of magnons in collinear magnets. Phys. Rev. Lett., 2022, 129: 167202
CrossRef
ADS
Google scholar
|
[35] |
J.N. Reddy, Theory and Analysis of Elastic Plates and Shells, CRC press, 2006
|
[36] |
L.D. LandauE. M. LifšicE.M. LifshitzA.M. KosevichL.P. Pitaevskii, Theory of Elasticity: Volume 7, Vol. 7, Elsevier, 1986
|
[37] |
A.I. Lurie, Theory of Elasticity, Springer Science & Business Media, 2010
|
[38] |
G.M. Wysin, Magnetic Excitations and Geometric Confinement, IOP Publishing, 2015, pp 2053‒2563
|
[39] |
R. Courant, K. Friedrichs, H. Lewy. On the partial difference equations of mathematical physics. IBM J. Res. Develop., 1967, 11(2): 215
CrossRef
ADS
Google scholar
|
[40] |
K.AbeN. HigashimoriM.KuboH.FujiwaraY.Iso, A remark on the Courant‒Friedrichs‒Lewy condition in finite difference approach to pde’s, Adv. Appl. Math. Mech. 6(5), 693 (2014)
|
[41] |
Runge‒Kutta and extrapolation methods, in: Solving Ordinary Differential Equations I: Nonstiff Problems, Berlin, Heidelberg: Springer, 1993, pp 129–353
|
[42] |
B. Koopmans, J. J. M. Ruigrok, F. D. Longa, W. J. M. de Jonge. Unifying ultrafast magnetization dynamics. Phys. Rev. Lett., 2005, 95(26): 267207
CrossRef
ADS
Google scholar
|
[43] |
H. Chudo, M. Ono, K. Harii, M. Matsuo, J. Ieda, R. Haruki, S. Okayasu, S. Maekawa, H. Yasuoka, E. Saitoh. Observation of Barnett fields in solids by nuclear magnetic resonance. Appl. Phys. Express, 2014, 7(6): 063004
CrossRef
ADS
Google scholar
|
[44] |
H. Chudo, K. Harii, M. Matsuo, J. Ieda, M. Ono, S. Maekawa, E. Saitoh. Rotational Doppler effect and Barnett field in spinning NMR. J. Phys. Soc. Jpn., 2015, 84(4): 043601
CrossRef
ADS
Google scholar
|
[45] |
M. Ono, H. Chudo, K. Harii, S. Okayasu, M. Matsuo, J. Ieda, R. Takahashi, S. Maekawa, E. Saitoh. Barnett effect in paramagnetic states. Phys. Rev. B, 2015, 92(17): 174424
CrossRef
ADS
Google scholar
|
[46] |
M. Arabgol, T. Sleator. Observation of the nuclear Barnett effect. Phys. Rev. Lett., 2019, 122(17): 177202
CrossRef
ADS
Google scholar
|
[47] |
J. Xu, B. A. Li, W. Q. Shen, Y. Xia. Dynamical effects of spin-dependent interactions in low- and intermediate-energy heavy-ion reactions. Front. Phys., 2015, 10(6): 102501
CrossRef
ADS
Google scholar
|
[48] |
Y. Xia, J. Xu. Nucleon spin polarization in intermediate-energy heavy-ion collisions. Phys. Lett. B, 2020, 800: 135130
CrossRef
ADS
Google scholar
|
[49] |
R. J. Liu, J. Xu. Revisiting angular momentum conservation in transport simulations of intermediate-energy heavy-ion collisions. Universe, 2023, 9(1): 36
CrossRef
ADS
Google scholar
|
[50] |
R. Takahashi, M. Matsuo, M. Ono, K. Harii, H. Chudo, S. Okayasu, J. Ieda, S. Takahashi, S. Maekawa, E. Saitoh. Spin hydrodynamic generation. Nat. Phys., 2016, 12(1): 52
CrossRef
ADS
Google scholar
|
[51] |
M. Matsuo, Y. Ohnuma, S. Maekawa. Theory of spin hydrodynamic generation. Phys. Rev. B, 2017, 96(2): 020401
CrossRef
ADS
Google scholar
|
[52] |
J. Li, J. Feng, P. Wang, E. Kan, H. Xiang. Nature of spin‒lattice coupling in two-dimensional CrI3 and CrGeTe3. Sci. China Phys. Mech. Astron., 2021, 64(8): 286811
CrossRef
ADS
Google scholar
|
[53] |
J. Hellsvik, D. Thonig, K. Modin, D. Iuşan, A. Bergman, O. Eriksson, L. Bergqvist, A. Delin. General method for atomistic spin‒lattice dynamics with first-principles accuracy. Phys. Rev. B, 2019, 99(10): 104302
CrossRef
ADS
Google scholar
|
[54] |
B. Sadhukhan, A. Bergman, Y. O. Kvashnin, J. Hellsvik, A. Delin. Spin‒lattice couplings in two-dimensional CrI3 from first-principles computations. Phys. Rev. B, 2022, 105(10): 104418
CrossRef
ADS
Google scholar
|
[55] |
X. Z. Lu, X. Wu, H. J. Xiang. General microscopic model of magnetoelastic coupling from first principles. Phys. Rev. B, 2015, 91(10): 100405
CrossRef
ADS
Google scholar
|
[56] |
J. Li, T. Datta, D. X. Yao. Einstein‒de Haas effect of topological magnons. Phys. Rev. Res., 2021, 3(2): 023248
CrossRef
ADS
Google scholar
|
[57] |
M. Matsuo, J. Ieda, E. Saitoh, S. Maekawa. Effects of mechanical rotation on spin currents. Phys. Rev. Lett., 2011, 106(7): 076601
CrossRef
ADS
Google scholar
|
[58] |
M. Matsuo, J. Ieda, K. Harii, E. Saitoh, S. Maekawa. Mechanical generation of spin current by spin‒rotation coupling. Phys. Rev. B, 2013, 87(18): 180402
CrossRef
ADS
Google scholar
|
[59] |
J.IedaM. MatsuoS.Maekawa, Theory of mechanical spin current generation via spin–rotation coupling, Solid State Commun. 198, 52 (2014) (sI: Spin Mechanics)
|
[60] |
M. Matsuo, J. Ieda, S. Maekawa. Mechanical generation of spin current. Front. Phys. (Lausanne), 2015, 3: 54
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |