Inheritance of the exciton geometric structure from Bloch electrons in two-dimensional layered semiconductors
Jianju Tang, Songlei Wang, Hongyi Yu
Inheritance of the exciton geometric structure from Bloch electrons in two-dimensional layered semiconductors
We theoretically studied the exciton geometric structure in layered semiconducting transition metal dichalcogenides. Based on a three-orbital tight-binding model for Bloch electrons which incorporates their geometric structures, an effective exciton Hamiltonian is constructed and solved perturbatively to reveal the relation between the exciton and its electron/hole constituent. We show that the electron−hole Coulomb interaction gives rise to a non-trivial inheritance of the exciton geometric structure from Bloch electrons, which manifests as a valley-dependent center-of-mass anomalous Hall velocity of the exciton when two external fields are applied on the electron and hole constituents, respectively. The obtained center-of-mass anomalous velocity is found to exhibit a non-trivial dependence on the fields, as well as the wave function and valley index of the exciton. These findings can serve as a general guide for the field-control of the valley-dependent exciton transport, enabling the design of novel quantum optoelectronic and valleytronic devices.
transition metal dichalcogenides / exciton / geometric structure / Berry curvature / van der Waals stacking
[1] |
A. Ciarrocchi, F. Tagarelli, A. Avsar, A. Kis. Excitonic devices with van der Waals heterostructures: Valleytronics meets twistronics. Nat. Rev. Mater., 2022, 7(6): 449
CrossRef
ADS
Google scholar
|
[2] |
K. F. Mak, D. Xiao, J. Shan. Light-valley interactions in 2D semiconductors. Nat. Photonics, 2018, 12(8): 451
CrossRef
ADS
Google scholar
|
[3] |
X. D. Xu, W. Yao, D. Xiao, T. F. Heinz. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys., 2014, 10(5): 343
CrossRef
ADS
Google scholar
|
[4] |
K. F. Mak, J. Shan. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics, 2016, 10(4): 216
CrossRef
ADS
Google scholar
|
[5] |
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11): 699
CrossRef
ADS
Google scholar
|
[6] |
A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, B. Aslan, D. R. Reichman, M. S. Hybertsen, T. F. Heinz. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett., 2014, 113(7): 076802
CrossRef
ADS
Google scholar
|
[7] |
D. Y. Qiu, F. H. da Jornada, S. G. Louie. Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Phys. Rev. Lett., 2013, 111(21): 216805
CrossRef
ADS
Google scholar
|
[8] |
X. L. Yang, S. H. Guo, F. T. Chan, K. W. Wong, W. Y. Ching. Analytic solution of a two-dimensional hydrogen atom (I): Nonrelativistic theory. Phys. Rev. A, 1991, 43(3): 1186
CrossRef
ADS
Google scholar
|
[9] |
T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, J. Feng. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun., 2012, 3(1): 887
CrossRef
ADS
Google scholar
|
[10] |
H. L. Zeng, J. Dai, W. Yao, D. Xiao, X. Cui. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol., 2012, 7(8): 490
CrossRef
ADS
Google scholar
|
[11] |
K. F. Mak, K. He, J. Shan, T. F. Heinz. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol., 2012, 7(8): 494
CrossRef
ADS
Google scholar
|
[12] |
A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu. Optical generation of excitonic valley coherence in monolayer WSe. Nat. Nanotechnol., 2013, 8(9): 634
CrossRef
ADS
Google scholar
|
[13] |
P. Rivera, H. Yu, K. L. Seyler, N. P. Wilson, W. Yao, X. Xu. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol., 2018, 13(11): 1004
CrossRef
ADS
Google scholar
|
[14] |
D. Xiao, M. C. Chang, Q. Niu. Berry phase effects on electronic properties. Rev. Mod. Phys., 2010, 82(3): 1959
CrossRef
ADS
Google scholar
|
[15] |
D. Xiao, G. B. Liu, W. Feng, X. Xu, W. Yao. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett., 2012, 108(19): 196802
CrossRef
ADS
Google scholar
|
[16] |
G. Aivazian, Z. Gong, A. M. Jones, R. L. Chu, J. Yan, D. G. Mandrus, C. Zhang, D. Cobden, W. Yao, X. Xu. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys., 2015, 11(2): 148
CrossRef
ADS
Google scholar
|
[17] |
A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, A. Imamoğlu. Valley Zeeman effect in elementary optical excitations of monolayer WSe. Nat. Phys., 2015, 11(2): 141
CrossRef
ADS
Google scholar
|
[18] |
D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, D. C. Ralph. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett., 2015, 114(3): 037401
CrossRef
ADS
Google scholar
|
[19] |
A. Kormányos, V. Zólyomi, V. I. Fal’ko, G. Burkard. Tunable Berry curvature and valley and spin Hall effect in bilayer MoS2. Phys. Rev. B, 2018, 98(3): 035408
CrossRef
ADS
Google scholar
|
[20] |
K. F. Mak, K. L. McGill, J. Park, P. L. McEuen. The valley Hall effect in MoS2 transistors. Science, 2014, 344(6191): 1489
CrossRef
ADS
Google scholar
|
[21] |
T. Yu, M. W. Wu. Valley depolarization dynamics and valley Hall effect of excitons in monolayer and bilayer MoS2. Phys. Rev. B, 2016, 93(4): 045414
CrossRef
ADS
Google scholar
|
[22] |
W. Yao, D. Xiao, Q. Niu. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B, 2008, 77(23): 235406
CrossRef
ADS
Google scholar
|
[23] |
Q. Z. Zhu, M. W. Y. Tu, Q. Tong, W. Yao. Gate tuning from exciton superfluid to quantum anomalous Hall in van der Waals heterobilayer. Sci. Adv., 2019, 5(1): eaau6120
CrossRef
ADS
Google scholar
|
[24] |
C.Y. JiangA. RasmitaH.MaQ.TanZ.Zhang Z.HuangS. LaiN.WangS.LiuX.Liu T.YuQ.Xiong W.Gao, A room-temperature gate-tunable bipolar valley Hall effect in molybdenum disulfide/tungsten diselenide heterostructures, Nat. Electron. 5(1), 23 (2021)
|
[25] |
M. Onga, Y. Zhang, T. Ideue, Y. Iwasa. Exciton Hall effect in monolayer MoS2. Nat. Mater., 2017, 16(12): 1193
CrossRef
ADS
Google scholar
|
[26] |
Z. Huang, Y. Liu, K. Dini, Q. Tan, Z. Liu, H. Fang, J. Liu, T. Liew, W. Gao. Robust room temperature valley Hall effect of interlayer excitons. Nano Lett., 2020, 20(2): 1345
CrossRef
ADS
Google scholar
|
[27] |
W. Yao, Q. Niu. Berry phase effect on the exciton transport and on the exciton Bose‒Einstein condensate. Phys. Rev. Lett., 2008, 101(10): 106401
CrossRef
ADS
Google scholar
|
[28] |
H. Y. Yu, W. Yao. Electrically tunable topological transport of moire polaritons. Sci. Bull. (Beijing), 2020, 65(18): 1555
CrossRef
ADS
Google scholar
|
[29] |
N. Ubrig, S. Jo, M. Philippi, D. Costanzo, H. Berger, A. B. Kuzmenko, A. F. Morpurgo. Microscopic origin of the valley Hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping. Nano Lett., 2017, 17(9): 5719
CrossRef
ADS
Google scholar
|
[30] |
M. Trushin, M. O. Goerbig, W. Belzig. Model prediction of self-rotating excitons in two-dimensional transition-metal dichalcogenides. Phys. Rev. Lett., 2018, 120(18): 187401
CrossRef
ADS
Google scholar
|
[31] |
A. Hichri, S. Jaziri, M. O. Goerbig. Charged excitons in two-dimensional transition metal dichalcogenides: Semiclassical calculation of Berry curvature effects. Phys. Rev. B, 2019, 100(11): 115426
CrossRef
ADS
Google scholar
|
[32] |
A. Srivastava, A. Imamoğlu. Signatures of Bloch-band geometry on excitons: Nonhydrogenic spectra in transition-metal dichalcogenides. Phys. Rev. Lett., 2015, 115(16): 166802
CrossRef
ADS
Google scholar
|
[33] |
J. H. Zhou, W. Y. Shan, W. Yao, D. Xiao. Berry phase modification to the energy spectrum of excitons. Phys. Rev. Lett., 2015, 115(16): 166803
CrossRef
ADS
Google scholar
|
[34] |
P. Gong, H. Yu, Y. Wang, W. Yao. Optical selection rules for excitonic Rydberg series in the massive Dirac cones of hexagonal two-dimensional materials. Phys. Rev. B, 2017, 95(12): 125420
CrossRef
ADS
Google scholar
|
[35] |
T. Cao, M. Wu, S. G. Louie. Unifying optical selection rules for excitons in two dimensions: Band topology and winding numbers. Phys. Rev. Lett., 2018, 120(8): 087402
CrossRef
ADS
Google scholar
|
[36] |
X. O. Zhang, W. Y. Shan, D. Xiao. Optical selection rule of excitons in gapped chiral fermion systems. Phys. Rev. Lett., 2018, 120(7): 077401
CrossRef
ADS
Google scholar
|
[37] |
G. B. Liu, W. Y. Shan, Y. Yao, W. Yao, D. Xiao. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B, 2013, 88(8): 085433
CrossRef
ADS
Google scholar
|
[38] |
F. C. Wu, F. Y. Qu, A. H. MacDonald. Exciton band structure of monolayer MoS2. Phys. Rev. B, 2015, 91(7): 075310
CrossRef
ADS
Google scholar
|
[39] |
Z. L. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, X. Zhang. Probing excitonic dark states in single-layer tungsten disulphide. Nature, 2014, 513(7517): 214
CrossRef
ADS
Google scholar
|
[40] |
D. Y. Qiu, T. Cao, S. G. Louie. Nonanalyticity, valley quantum phases, and lightlike exciton dispersion in monolayer transition metal dichalcogenides: Theory and first-principles calculations. Phys. Rev. Lett., 2015, 115(17): 176801
CrossRef
ADS
Google scholar
|
[41] |
C. K. Yong, M. I. B. Utama, C. S. Ong, T. Cao, E. C. Regan, J. Horng, Y. Shen, H. Cai, K. Watanabe, T. Taniguchi, S. Tongay, H. Deng, A. Zettl, S. G. Louie, F. Wang. Valley-dependent exciton fine structure and Autler‒Townes doublets from Berry phases in monolayer MoSe2. Nat. Mater., 2019, 18(10): 1065
CrossRef
ADS
Google scholar
|
[42] |
S. Chaudhary, C. Knapp, G. Refael. Anomalous exciton transport in response to a uniform in-plane electric field. Phys. Rev. B, 2021, 103(16): 165119
CrossRef
ADS
Google scholar
|
[43] |
J. L. Cao, H. A. Fertig, L. Brey. Quantum geometric exciton drift velocity. Phys. Rev. B, 2021, 103(11): 115422
CrossRef
ADS
Google scholar
|
[44] |
M. Q. Sui, G. Chen, L. Ma, W. Y. Shan, D. Tian, K. Watanabe, T. Taniguchi, X. Jin, W. Yao, D. Xiao, Y. Zhang. Gate-tunable topological valley transport in bilayer graphene. Nat. Phys., 2015, 11(12): 1027
CrossRef
ADS
Google scholar
|
[45] |
Y. Shimazaki, M. Yamamoto, I. V. Borzenets, K. Watanabe, T. Taniguchi, S. Tarucha. Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene. Nat. Phys., 2015, 11(12): 1032
CrossRef
ADS
Google scholar
|
[46] |
L. Ju, L. Wang, T. Cao, T. Taniguchi, K. Watanabe, S. G. Louie, F. Rana, J. Park, J. Hone, F. Wang, P. L. McEuen. Tunable excitons in bilayer graphene. Science, 2017, 358(6365): 907
CrossRef
ADS
Google scholar
|
[47] |
H. Y. Yu, W. Yao. Luminescence anomaly of dipolar valley excitons in homobilayer semiconductor moire superlattices. Phys. Rev. X, 2021, 11(2): 021042
CrossRef
ADS
Google scholar
|
[48] |
H. Y. Yu, G. B. Liu, P. Gong, X. Xu, W. Yao. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nat. Commun., 2014, 5(1): 3876
CrossRef
ADS
Google scholar
|
[49] |
M. H. He, P. Rivera, D. Van Tuan, N. P. Wilson, M. Yang, T. Taniguchi, K. Watanabe, J. Yan, D. G. Mandrus, H. Yu, H. Dery, W. Yao, X. Xu. Valley phonons and exciton complexes in a monolayer semiconductor. Nat. Commun., 2020, 11(1): 618
CrossRef
ADS
Google scholar
|
[50] |
P. Cudazzo, I. V. Tokatly, A. Rubio. Dielectric screening in two-dimensional insulators: Implications for excitonic and impurity states in graphane. Phys. Rev. B, 2011, 84(8): 085406
CrossRef
ADS
Google scholar
|
[51] |
M. Danovich, D. A. Ruiz-Tijerina, R. J. Hunt, M. Szyniszewski, N. D. Drummond, V. I. Fal’ko. Localized interlayer complexes in heterobilayer transition metal dichalcogenides. Phys. Rev. B, 2018, 97(19): 195452
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |