Inheritance of the exciton geometric structure from Bloch electrons in two-dimensional layered semiconductors

Jianju Tang, Songlei Wang, Hongyi Yu

PDF(4661 KB)
PDF(4661 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (4) : 43210. DOI: 10.1007/s11467-023-1386-z
RESEARCH ARTICLE

Inheritance of the exciton geometric structure from Bloch electrons in two-dimensional layered semiconductors

Author information +
History +

Abstract

We theoretically studied the exciton geometric structure in layered semiconducting transition metal dichalcogenides. Based on a three-orbital tight-binding model for Bloch electrons which incorporates their geometric structures, an effective exciton Hamiltonian is constructed and solved perturbatively to reveal the relation between the exciton and its electron/hole constituent. We show that the electron−hole Coulomb interaction gives rise to a non-trivial inheritance of the exciton geometric structure from Bloch electrons, which manifests as a valley-dependent center-of-mass anomalous Hall velocity of the exciton when two external fields are applied on the electron and hole constituents, respectively. The obtained center-of-mass anomalous velocity is found to exhibit a non-trivial dependence on the fields, as well as the wave function and valley index of the exciton. These findings can serve as a general guide for the field-control of the valley-dependent exciton transport, enabling the design of novel quantum optoelectronic and valleytronic devices.

Graphical abstract

Keywords

transition metal dichalcogenides / exciton / geometric structure / Berry curvature / van der Waals stacking

Cite this article

Download citation ▾
Jianju Tang, Songlei Wang, Hongyi Yu. Inheritance of the exciton geometric structure from Bloch electrons in two-dimensional layered semiconductors. Front. Phys., 2024, 19(4): 43210 https://doi.org/10.1007/s11467-023-1386-z

References

[1]
A. Ciarrocchi, F. Tagarelli, A. Avsar, A. Kis. Excitonic devices with van der Waals heterostructures: Valleytronics meets twistronics. Nat. Rev. Mater., 2022, 7(6): 449
CrossRef ADS Google scholar
[2]
K. F. Mak, D. Xiao, J. Shan. Light-valley interactions in 2D semiconductors. Nat. Photonics, 2018, 12(8): 451
CrossRef ADS Google scholar
[3]
X. D. Xu, W. Yao, D. Xiao, T. F. Heinz. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys., 2014, 10(5): 343
CrossRef ADS Google scholar
[4]
K. F. Mak, J. Shan. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics, 2016, 10(4): 216
CrossRef ADS Google scholar
[5]
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11): 699
CrossRef ADS Google scholar
[6]
A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, B. Aslan, D. R. Reichman, M. S. Hybertsen, T. F. Heinz. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett., 2014, 113(7): 076802
CrossRef ADS Google scholar
[7]
D. Y. Qiu, F. H. da Jornada, S. G. Louie. Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Phys. Rev. Lett., 2013, 111(21): 216805
CrossRef ADS Google scholar
[8]
X. L. Yang, S. H. Guo, F. T. Chan, K. W. Wong, W. Y. Ching. Analytic solution of a two-dimensional hydrogen atom (I): Nonrelativistic theory. Phys. Rev. A, 1991, 43(3): 1186
CrossRef ADS Google scholar
[9]
T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, J. Feng. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun., 2012, 3(1): 887
CrossRef ADS Google scholar
[10]
H. L. Zeng, J. Dai, W. Yao, D. Xiao, X. Cui. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol., 2012, 7(8): 490
CrossRef ADS Google scholar
[11]
K. F. Mak, K. He, J. Shan, T. F. Heinz. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol., 2012, 7(8): 494
CrossRef ADS Google scholar
[12]
A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu. Optical generation of excitonic valley coherence in monolayer WSe. Nat. Nanotechnol., 2013, 8(9): 634
CrossRef ADS Google scholar
[13]
P. Rivera, H. Yu, K. L. Seyler, N. P. Wilson, W. Yao, X. Xu. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol., 2018, 13(11): 1004
CrossRef ADS Google scholar
[14]
D. Xiao, M. C. Chang, Q. Niu. Berry phase effects on electronic properties. Rev. Mod. Phys., 2010, 82(3): 1959
CrossRef ADS Google scholar
[15]
D. Xiao, G. B. Liu, W. Feng, X. Xu, W. Yao. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett., 2012, 108(19): 196802
CrossRef ADS Google scholar
[16]
G. Aivazian, Z. Gong, A. M. Jones, R. L. Chu, J. Yan, D. G. Mandrus, C. Zhang, D. Cobden, W. Yao, X. Xu. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys., 2015, 11(2): 148
CrossRef ADS Google scholar
[17]
A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, A. Imamoğlu. Valley Zeeman effect in elementary optical excitations of monolayer WSe. Nat. Phys., 2015, 11(2): 141
CrossRef ADS Google scholar
[18]
D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, D. C. Ralph. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett., 2015, 114(3): 037401
CrossRef ADS Google scholar
[19]
A. Kormányos, V. Zólyomi, V. I. Fal’ko, G. Burkard. Tunable Berry curvature and valley and spin Hall effect in bilayer MoS2. Phys. Rev. B, 2018, 98(3): 035408
CrossRef ADS Google scholar
[20]
K. F. Mak, K. L. McGill, J. Park, P. L. McEuen. The valley Hall effect in MoS2 transistors. Science, 2014, 344(6191): 1489
CrossRef ADS Google scholar
[21]
T. Yu, M. W. Wu. Valley depolarization dynamics and valley Hall effect of excitons in monolayer and bilayer MoS2. Phys. Rev. B, 2016, 93(4): 045414
CrossRef ADS Google scholar
[22]
W. Yao, D. Xiao, Q. Niu. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B, 2008, 77(23): 235406
CrossRef ADS Google scholar
[23]
Q. Z. Zhu, M. W. Y. Tu, Q. Tong, W. Yao. Gate tuning from exciton superfluid to quantum anomalous Hall in van der Waals heterobilayer. Sci. Adv., 2019, 5(1): eaau6120
CrossRef ADS Google scholar
[24]
C.Y. JiangA. RasmitaH.MaQ.TanZ.Zhang Z.HuangS. LaiN.WangS.LiuX.Liu T.YuQ.Xiong W.Gao, A room-temperature gate-tunable bipolar valley Hall effect in molybdenum disulfide/tungsten diselenide heterostructures, Nat. Electron. 5(1), 23 (2021)
[25]
M. Onga, Y. Zhang, T. Ideue, Y. Iwasa. Exciton Hall effect in monolayer MoS2. Nat. Mater., 2017, 16(12): 1193
CrossRef ADS Google scholar
[26]
Z. Huang, Y. Liu, K. Dini, Q. Tan, Z. Liu, H. Fang, J. Liu, T. Liew, W. Gao. Robust room temperature valley Hall effect of interlayer excitons. Nano Lett., 2020, 20(2): 1345
CrossRef ADS Google scholar
[27]
W. Yao, Q. Niu. Berry phase effect on the exciton transport and on the exciton Bose‒Einstein condensate. Phys. Rev. Lett., 2008, 101(10): 106401
CrossRef ADS Google scholar
[28]
H. Y. Yu, W. Yao. Electrically tunable topological transport of moire polaritons. Sci. Bull. (Beijing), 2020, 65(18): 1555
CrossRef ADS Google scholar
[29]
N. Ubrig, S. Jo, M. Philippi, D. Costanzo, H. Berger, A. B. Kuzmenko, A. F. Morpurgo. Microscopic origin of the valley Hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping. Nano Lett., 2017, 17(9): 5719
CrossRef ADS Google scholar
[30]
M. Trushin, M. O. Goerbig, W. Belzig. Model prediction of self-rotating excitons in two-dimensional transition-metal dichalcogenides. Phys. Rev. Lett., 2018, 120(18): 187401
CrossRef ADS Google scholar
[31]
A. Hichri, S. Jaziri, M. O. Goerbig. Charged excitons in two-dimensional transition metal dichalcogenides: Semiclassical calculation of Berry curvature effects. Phys. Rev. B, 2019, 100(11): 115426
CrossRef ADS Google scholar
[32]
A. Srivastava, A. Imamoğlu. Signatures of Bloch-band geometry on excitons: Nonhydrogenic spectra in transition-metal dichalcogenides. Phys. Rev. Lett., 2015, 115(16): 166802
CrossRef ADS Google scholar
[33]
J. H. Zhou, W. Y. Shan, W. Yao, D. Xiao. Berry phase modification to the energy spectrum of excitons. Phys. Rev. Lett., 2015, 115(16): 166803
CrossRef ADS Google scholar
[34]
P. Gong, H. Yu, Y. Wang, W. Yao. Optical selection rules for excitonic Rydberg series in the massive Dirac cones of hexagonal two-dimensional materials. Phys. Rev. B, 2017, 95(12): 125420
CrossRef ADS Google scholar
[35]
T. Cao, M. Wu, S. G. Louie. Unifying optical selection rules for excitons in two dimensions: Band topology and winding numbers. Phys. Rev. Lett., 2018, 120(8): 087402
CrossRef ADS Google scholar
[36]
X. O. Zhang, W. Y. Shan, D. Xiao. Optical selection rule of excitons in gapped chiral fermion systems. Phys. Rev. Lett., 2018, 120(7): 077401
CrossRef ADS Google scholar
[37]
G. B. Liu, W. Y. Shan, Y. Yao, W. Yao, D. Xiao. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B, 2013, 88(8): 085433
CrossRef ADS Google scholar
[38]
F. C. Wu, F. Y. Qu, A. H. MacDonald. Exciton band structure of monolayer MoS2. Phys. Rev. B, 2015, 91(7): 075310
CrossRef ADS Google scholar
[39]
Z. L. Ye, T. Cao, K. O’Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, X. Zhang. Probing excitonic dark states in single-layer tungsten disulphide. Nature, 2014, 513(7517): 214
CrossRef ADS Google scholar
[40]
D. Y. Qiu, T. Cao, S. G. Louie. Nonanalyticity, valley quantum phases, and lightlike exciton dispersion in monolayer transition metal dichalcogenides: Theory and first-principles calculations. Phys. Rev. Lett., 2015, 115(17): 176801
CrossRef ADS Google scholar
[41]
C. K. Yong, M. I. B. Utama, C. S. Ong, T. Cao, E. C. Regan, J. Horng, Y. Shen, H. Cai, K. Watanabe, T. Taniguchi, S. Tongay, H. Deng, A. Zettl, S. G. Louie, F. Wang. Valley-dependent exciton fine structure and Autler‒Townes doublets from Berry phases in monolayer MoSe2. Nat. Mater., 2019, 18(10): 1065
CrossRef ADS Google scholar
[42]
S. Chaudhary, C. Knapp, G. Refael. Anomalous exciton transport in response to a uniform in-plane electric field. Phys. Rev. B, 2021, 103(16): 165119
CrossRef ADS Google scholar
[43]
J. L. Cao, H. A. Fertig, L. Brey. Quantum geometric exciton drift velocity. Phys. Rev. B, 2021, 103(11): 115422
CrossRef ADS Google scholar
[44]
M. Q. Sui, G. Chen, L. Ma, W. Y. Shan, D. Tian, K. Watanabe, T. Taniguchi, X. Jin, W. Yao, D. Xiao, Y. Zhang. Gate-tunable topological valley transport in bilayer graphene. Nat. Phys., 2015, 11(12): 1027
CrossRef ADS Google scholar
[45]
Y. Shimazaki, M. Yamamoto, I. V. Borzenets, K. Watanabe, T. Taniguchi, S. Tarucha. Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene. Nat. Phys., 2015, 11(12): 1032
CrossRef ADS Google scholar
[46]
L. Ju, L. Wang, T. Cao, T. Taniguchi, K. Watanabe, S. G. Louie, F. Rana, J. Park, J. Hone, F. Wang, P. L. McEuen. Tunable excitons in bilayer graphene. Science, 2017, 358(6365): 907
CrossRef ADS Google scholar
[47]
H. Y. Yu, W. Yao. Luminescence anomaly of dipolar valley excitons in homobilayer semiconductor moire superlattices. Phys. Rev. X, 2021, 11(2): 021042
CrossRef ADS Google scholar
[48]
H. Y. Yu, G. B. Liu, P. Gong, X. Xu, W. Yao. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nat. Commun., 2014, 5(1): 3876
CrossRef ADS Google scholar
[49]
M. H. He, P. Rivera, D. Van Tuan, N. P. Wilson, M. Yang, T. Taniguchi, K. Watanabe, J. Yan, D. G. Mandrus, H. Yu, H. Dery, W. Yao, X. Xu. Valley phonons and exciton complexes in a monolayer semiconductor. Nat. Commun., 2020, 11(1): 618
CrossRef ADS Google scholar
[50]
P. Cudazzo, I. V. Tokatly, A. Rubio. Dielectric screening in two-dimensional insulators: Implications for excitonic and impurity states in graphane. Phys. Rev. B, 2011, 84(8): 085406
CrossRef ADS Google scholar
[51]
M. Danovich, D. A. Ruiz-Tijerina, R. J. Hunt, M. Szyniszewski, N. D. Drummond, V. I. Fal’ko. Localized interlayer complexes in heterobilayer transition metal dichalcogenides. Phys. Rev. B, 2018, 97(19): 195452
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

H. Y. acknowledges the support by the National Natural Science Foundation of China (Grant No. 12274477) and the Department of Science and Technology of Guangdong Province (No. 2019QN01X061).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(4661 KB)

Accesses

Citations

Detail

Sections
Recommended

/