Eigenstate properties of the disordered Bose−Hubbard chain

Jie Chen, Chun Chen, Xiaoqun Wang

PDF(7521 KB)
PDF(7521 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (4) : 43207. DOI: 10.1007/s11467-023-1384-1
RESEARCH ARTICLE

Eigenstate properties of the disordered Bose−Hubbard chain

Author information +
History +

Abstract

Many-body localization (MBL) of a disordered interacting boson system in one dimension is studied numerically at the filling faction one-half. The von Neumann entanglement entropy SvN is commonly used to detect the MBL phase transition but remains challenging to be directly measured. Based on the U(1) symmetry from the particle number conservation, SvN can be decomposed into the particle number entropy SN and the configuration entropy SC. In light of the tendency that the eigenstate’s SC nears zero in the localized phase, we introduce a quantity describing the deviation of SN from the ideal thermalization distribution; finite-size scaling analysis illustrates that it shares the same phase transition point with SvN but displays the better critical exponents. This observation hints that the phase transition to MBL might largely be determined by SN and its fluctuations. Notably, the recent experiments [A. Lukin, et al., Science 364, 256 (2019); J. Léonard, et al., Nat. Phys. 19, 481 (2023)] demonstrated that this deviation can potentially be measured through the SN measurement. Furthermore, our investigations reveal that the thermalized states primarily occupy the low-energy section of the spectrum, as indicated by measures of localization length, gap ratio, and energy density distribution. This low-energy spectrum of the Bose model closely resembles the entire spectrum of the Fermi (or spin XX Z) model, accommodating a transition from the thermalized to the localized states. While, owing to the bosonic statistics, the high-energy spectrum of the model allows the formation of distinct clusters of bosons in the random potential background. We analyze the resulting eigenstate properties and briefly summarize the associated dynamics. To distinguish between the phase regions at the low and high energies, a probing quantity based on the structure of SvN is also devised. Our work highlights the importance of symmetry combined with entanglement in the study of MBL. In this regard, for the disordered Heisenberg XXZ chain, the recent pure eigenvalue analyses in [J. Šuntajs, et al., Phys. Rev. E 102, 062144 (2020)] would appear inadequate, while methods used in [A. Morningstar, et al., Phys. Rev. B 105, 174205 (2022)] that spoil the U(1) symmetry could be misleading.

Graphical abstract

Keywords

entanglement entropy decomposition / U(1) symmetry / thermalization-to-localization transition

Cite this article

Download citation ▾
Jie Chen, Chun Chen, Xiaoqun Wang. Eigenstate properties of the disordered Bose−Hubbard chain. Front. Phys., 2024, 19(4): 43207 https://doi.org/10.1007/s11467-023-1384-1

References

[1]
P. W. Anderson. Absence of diffusion in certain random lattices. Phys. Rev., 1958, 109(5): 1492
CrossRef ADS Google scholar
[2]
E. Abrahams, P. W. Anderson, D. C. Licciardello, T. V. Ramakrishnan. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett., 1979, 42(10): 673
CrossRef ADS Google scholar
[3]
D. Vollhardt, P. Wölfle. Diagrammatic, self-consistent treatment of the Anderson localization problem in d ≤ 2 dimensions. Phys. Rev. B, 1980, 22(10): 4666
CrossRef ADS Google scholar
[4]
S. John. Electromagnetic absorption in a disordered medium near a photon mobility edge. Phys. Rev. Lett., 1984, 53(22): 2169
CrossRef ADS Google scholar
[5]
K. Arya, Z. B. Su, J. L. Birman. Localization of the surface plasmon polariton caused by random roughness and its role in surface-enhanced optical phenomena. Phys. Rev. Lett., 1985, 54(14): 1559
CrossRef ADS Google scholar
[6]
Q. J. Chu, Z. Q. Zhang. Localization of phonons in mixed crystals. Phys. Rev. B, 1988, 38(7): 4906
CrossRef ADS Google scholar
[7]
R. Nandkishore, D. A. Huse. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys., 2015, 6(1): 15
CrossRef ADS Google scholar
[8]
D. M. Basko, I. L. Aleiner, B. L. Altshuler. Metal–insulator transition in a weakly interacting many electron system with localized single-particle states. Ann. Phys., 2006, 321(5): 1126
CrossRef ADS Google scholar
[9]
V. Oganesyan, D. A. Huse. Localization of interacting fermions at high temperature. Phys. Rev. B, 2007, 75(15): 155111
CrossRef ADS Google scholar
[10]
M. Žnidarič, T. Prosen, P. Prelovšek. Many-body localization in the Heisenberg XXZ magnet in a random field. Phys. Rev. B, 2008, 77(6): 064426
CrossRef ADS Google scholar
[11]
J. M. Deutsch. Quantum statistical mechanics in a closed system. Phys. Rev. A, 1991, 43(4): 2046
CrossRef ADS Google scholar
[12]
M. Srednicki. Chaos and quantum thermalization. Phys. Rev. E, 1994, 50(2): 888
CrossRef ADS Google scholar
[13]
M. Serbyn, Z. Papić, D. A. Abanin. Local conservation laws and the structure of the many-body localized states. Phys. Rev. Lett., 2013, 111(12): 127201
CrossRef ADS Google scholar
[14]
A. Chandran, I. H. Kim, G. Vidal, D. A. Abanin. Constructing local integrals of motion in the many-body localized phase. Phys. Rev. B, 2015, 91(8): 085425
CrossRef ADS Google scholar
[15]
S. D. Geraedts, R. N. Bhatt, R. Nandkishore. Emergent local integrals of motion without a complete set of localized eigenstates. Phys. Rev. B, 2017, 95(6): 064204
CrossRef ADS Google scholar
[16]
L. D’Alessio, Y. Kafri, A. Polkovnikov, M. Rigol. From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys., 2016, 65(3): 239
CrossRef ADS Google scholar
[17]
A. Lazarides, A. Das, R. Moessner. Fate of many-body localization under periodic driving. Phys. Rev. Lett., 2015, 115(3): 030402
CrossRef ADS Google scholar
[18]
P. Ponte, Z. Papić, F. Huveneers, D. A. Abanin. Many-body localization in periodically driven systems. Phys. Rev. Lett., 2015, 114(14): 140401
CrossRef ADS Google scholar
[19]
D. V. Else, B. Bauer, C. Nayak. Floquet time crystals. Phys. Rev. Lett., 2016, 117(9): 090402
CrossRef ADS Google scholar
[20]
N. Y. Yao, A. C. Potter, I. D. Potirniche, A. Vishwanath. Discrete time crystals: Rigidity, criticality, and realizations. Phys. Rev. Lett., 2017, 118(3): 030401
CrossRef ADS Google scholar
[21]
J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I. D. Potirniche, A. C. Potter, A. Vishwanath, N. Y. Yao, C. Monroe. Observation of a discrete time crystal. Nature, 2017, 543(7644): 217
CrossRef ADS Google scholar
[22]
S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya, F. Jelezko, S. Onoda, H. Sumiya, V. Khemani, C. von Keyserlingk, N. Y. Yao, E. Demler, M. D. Lukin. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature, 2017, 543(7644): 221
CrossRef ADS Google scholar
[23]
J. A. Kjäll, J. H. Bardarson, F. Pollmann. Many-body localization in a disordered quantum Ising chain. Phys. Rev. Lett., 2014, 113(10): 107204
CrossRef ADS Google scholar
[24]
M. Brenes, M. Dalmonte, M. Heyl, A. Scardicchio. Many-body localization dynamics from gauge invariance. Phys. Rev. Lett., 2018, 120(3): 030601
CrossRef ADS Google scholar
[25]
E. Levi, M. Heyl, I. Lesanovsky, J. P. Garrahan. Robustness of many-body localization in the presence of dissipation. Phys. Rev. Lett., 2016, 116(23): 237203
CrossRef ADS Google scholar
[26]
M. H. Fischer, M. Maksymenko, E. Altman. Dynamics of a many-body-localized system coupled to a bath. Phys. Rev. Lett., 2016, 116(16): 160401
CrossRef ADS Google scholar
[27]
H. P. Lüschen, P. Bordia, S. S. Hodgman, M. Schreiber, S. Sarkar, A. J. Daley, M. H. Fischer, E. Altman, I. Bloch, U. Schneider. Signatures of many-body localization in a controlled open quantum system. Phys. Rev. X, 2017, 7(1): 011034
CrossRef ADS Google scholar
[28]
J. Ren, Q. Li, W. Li, Z. Cai, X. Wang. Noise-driven universal dynamics towards an infinite temperature state. Phys. Rev. Lett., 2020, 124(13): 130602
CrossRef ADS Google scholar
[29]
M. Žnidarič, A. Scardicchio, V. K. Varma. Diffusive and subdiffusive spin transport in the ergodic phase of a many-body localizable system. Phys. Rev. Lett., 2016, 117(4): 040601
CrossRef ADS Google scholar
[30]
S. P. Kelly, R. Nandkishore, J. Marino. Exploring many-body localization in quantum systems coupled to an environment via Wegner‒Wilson flows. Nucl. Phys. B, 2020, 951: 114886
CrossRef ADS Google scholar
[31]
C. Chamon, A. Hamma, E. R. Mucciolo. Emergent irreversibility and entanglement spectrum statistics. Phys. Rev. Lett., 2014, 112(24): 240501
CrossRef ADS Google scholar
[32]
C. R. Laumann, A. Pal, A. Scardicchio. Many-body mobility edge in a mean-field quantum spin glass. Phys. Rev. Lett., 2014, 113(20): 200405
CrossRef ADS Google scholar
[33]
D. J. Luitz, N. Laflorencie, F. Alet. Many-body localization edge in the random-field Heisenberg chain. Phys. Rev. B, 2015, 91: 081103(R)
CrossRef ADS Google scholar
[34]
I. Mondragon-Shem, A. Pal, T. L. Hughes, C. R. Laumann. Many-body mobility edge due to symmetry-constrained dynamics and strong interactions. Phys. Rev. B, 2015, 92(6): 064203
CrossRef ADS Google scholar
[35]
R. Mondaini, Z. Cai. Many-body self-localization in a translation-invariant Hamiltonian. Phys. Rev. B, 2017, 96(3): 035153
CrossRef ADS Google scholar
[36]
M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk, E. Altman, U. Schneider, I. Bloch. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science, 2015, 349(6250): 842
CrossRef ADS Google scholar
[37]
J. H. Bardarson, F. Pollmann, J. E. Moore. Unbounded growth of entanglement in models of many-body localization. Phys. Rev. Lett., 2012, 109(1): 017202
CrossRef ADS Google scholar
[38]
M. Serbyn, Z. Papić, D. A. Abanin. Universal slow growth of entanglement in interacting strongly disordered systems. Phys. Rev. Lett., 2013, 110(26): 260601
CrossRef ADS Google scholar
[39]
A. Lukin, M. Rispoli, R. Schittko, M. E. Tai, A. M. Kaufman, S. Choi, V. Khemani, J. Léonard, M. Greiner. Probing entanglement in a many-body-localized system. Science, 2019, 364(6437): 256
CrossRef ADS Google scholar
[40]
J. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, C. Gross. Exploring the many-body localization transition in two dimensions. Science, 2016, 352(6293): 1547
CrossRef ADS Google scholar
[41]
Q. Guo, C. Cheng, Z. H. Sun, Z. Song, H. Li, Z. Wang, W. Ren, H. Dong, D. Zheng, Y. R. Zhang, R. Mondaini, H. Fan, H. Wang. Observation of energy-resolved many-body localization. Nat. Phys., 2021, 17(2): 234
CrossRef ADS Google scholar
[42]
M. Rispoli, A. Lukin, R. Schittko, S. Kim, M. E. Tai, J. Léonard, M. Greiner. Quantum critical behaviour at the many-body localization transition. Nature, 2019, 573(7774): 385
CrossRef ADS Google scholar
[43]
J. Léonard, S. Kim, M. Rispoli, A. Lukin, R. Schittko, J. Kwan, E. Demler, D. Sels, M. Greiner. Probing the onset of quantum avalanches in a many-body localized system. Nat. Phys., 2023, 19(4): 481
CrossRef ADS Google scholar
[44]
J. M. Zhang, R. X. Dong. Exact diagonalization: The Bose–Hubbard model as an example. Eur. J. Phys., 2010, 31(3): 591
CrossRef ADS Google scholar
[45]
S. Paeckel, T. Köhler, A. Swoboda, S. R. Manmana, U. Schollwöck, C. Hubig. Time-evolution methods for matrix-product states. Ann. Phys., 2019, 411: 167998
CrossRef ADS Google scholar
[46]
G. Vidal. Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett., 2004, 93(4): 040502
CrossRef ADS Google scholar
[47]
M. P. Kennett. Out-of-equilibrium dynamics of the Bose–Hubbard model. ISRN Cond. Matter Phys., 2013, 393616: 39
[48]
P. Sengupta, S. Haas. Quantum glass phases in the disordered Bose–Hubbard model. Phys. Rev. Lett., 2007, 99(5): 050403
CrossRef ADS Google scholar
[49]
V. Gurarie, L. Pollet, N. V. Prokof’ev, B. V. Svistunov, M. Troyer. Phase diagram of the disordered Bose–Hubbard model. Phys. Rev. B, 2009, 80(21): 214519
CrossRef ADS Google scholar
[50]
L. Pollet, N. V. Prokof’ev, B. V. Svistunov, M. Troyer. Absence of a direct superfluid to Mott insulator transition in disordered Bose systems. Phys. Rev. Lett., 2009, 103(14): 140402
CrossRef ADS Google scholar
[51]
M. Gerster, M. Rizzi, F. Tschirsich, P. Silvi, R. Fazio, S. Montangero. Superfluid density and quasi-long-range order in the one-dimensional disordered Bose–Hubbard model. New J. Phys., 2016, 18(1): 015015
CrossRef ADS Google scholar
[52]
S. Hu, Y. Wen, Y. Yu, B. Normand, X. Wang. Quantized squeezing and even‒odd asymmetry of trapped bosons. Phys. Rev. A, 2009, 80(6): 063624
CrossRef ADS Google scholar
[53]
J. Šuntajs, J. Bonča, T. Prosen, L. Vidmar. Quantum chaos challenges many-body localization. Phys. Rev. E, 2020, 102(6): 062144
CrossRef ADS Google scholar
[54]
A. Morningstar, L. Colmenarez, V. Khemani, D. J. Luitz, D. A. Huse. Avalanches and many-body resonances in many-body localized systems. Phys. Rev. B, 2022, 105(17): 174205
CrossRef ADS Google scholar
[55]
B. Widom. Surface tension and molecular correlations near the critical point. J. Chem. Phys., 1965, 43(11): 3892
CrossRef ADS Google scholar
[56]
T. Vojta. Phases and phase transitions in disordered quantum systems. AIP Conf. Proc., 2013, 1550: 188
CrossRef ADS Google scholar
[57]
T. Orell, A. A. Michailidis, M. Serbyn, M. Silveri. Probing the many-body localization phase transition with superconducting circuits. Phys. Rev. B, 2019, 100(13): 134504
CrossRef ADS Google scholar
[58]
S. X. Zhang, H. Yao. Universal properties of many body localization transitions in quasiperiodic systems. Phys. Rev. Lett., 2018, 121(20): 206601
CrossRef ADS Google scholar
[59]
V. Khemani, D. N. Sheng, D. A. Huse. Two universality classes for the many-body localization transition. Phys. Rev. Lett., 2017, 119(7): 075702
CrossRef ADS Google scholar
[60]
J. Šuntajs, J. Bonča, T. Prosen, L. Vidmar. Ergodicity breaking transition in finite disordered spin chains. Phys. Rev. B, 2020, 102(6): 064207
CrossRef ADS Google scholar
[61]
P. Sierant, D. Delande, J. Zakrzewski. Many-body localization for randomly interacting bosons. Acta Phys. Pol. A, 2017, 132(6): 1707
CrossRef ADS Google scholar
[62]
P. Sierant, D. Delande, J. Zakrzewski. Many-body localization due to random interactions. Phys. Rev. A, 2017, 95: 021601(R)
CrossRef ADS Google scholar
[63]
T. Orell, A. A. Michailidis, M. Serbyn, M. Silveri. Probing the many-body localization phase transition with superconducting circuits. Phys. Rev. B, 2019, 100(13): 134504
CrossRef ADS Google scholar
[64]
Y. Y. Atas, E. Bogomolny, O. Giraud, G. Roux. Distribution of the ratio of consecutive level spacings in random matrix ensembles. Phys. Rev. Lett., 2013, 110(8): 084101
CrossRef ADS Google scholar
[65]
J.ChenC. ChenX.Wang, Energy- and symmetry-resolved entanglement dynamics in disordered Bose−Hubbard chain, arXiv: 2303.14825 (2023)
[66]
D. J. Luitz, Y. B. Lev. Absence of slow particle transport in the many-body localized phase. Phys. Rev. B, 2020, 102: 100202(R)
CrossRef ADS Google scholar
[67]
M. Kiefer-Emmanouilidis, R. Unanyan, M. Fleischhauer, J. Sirker. Evidence for unbounded growth of the number entropy in many-body localized phases. Phys. Rev. Lett., 2020, 124(24): 243601
CrossRef ADS Google scholar
[68]
D. J. Luitz, N. Laflorencie, F. Alet. Extended slow dynamical regime close to the many-body localization transition. Phys. Rev. B, 2016, 93: 060201(R)
CrossRef ADS Google scholar
[69]
T. Kohlert, S. Scherg, X. Li, H. P. Lüschen, S. Das Sarma, I. Bloch, M. Aidelsburger. Observation of many-body localization in a one-dimensional system with a single-particle mobility edge. Phys. Rev. Lett., 2019, 122(17): 170403
CrossRef ADS Google scholar
[70]
K. Agarwal, E. Altman, E. Demler, S. Gopalakrishnan, D. A. Huse, M. Knap. Rareregion effects and dynamics near the many-body localization transition. Ann. Phys., 2017, 529(7): 1600326
CrossRef ADS Google scholar
[71]
V. Khemani, D. N. Sheng, D. A. Huse. Two universality classes for the many-body localization transition. Phys. Rev. Lett., 2017, 119(7): 075702
CrossRef ADS Google scholar
[72]
V. Khemani, S. P. Lim, D. N. Sheng, D. A. Huse. Critical properties of the many-body localization transition. Phys. Rev. X, 2017, 7(2): 021013
CrossRef ADS Google scholar
[73]
S. Schierenberg, F. Bruckmann, T. Wettig. Wigner surmise for mixed symmetry classes in random matrix theory. Phys. Rev. E, 2012, 85(6): 061130
CrossRef ADS Google scholar
[74]
S. D. Geraedts, R. Nandkishore, N. Regnault. Many-body localization and thermalization: Insights from the entanglement spectrum. Phys. Rev. B, 2016, 93(17): 174202
CrossRef ADS Google scholar

Acknowledgements

We thank Zi Cai, Changfeng Chen, Shijie Hu, Haiqing Lin, Mingpu Qin, Jie Ren, and Wei Su for fruitful discussions. This work is supported by the Ministry of Science and Technology of China (Grant No. 2016YFA0300500) and the National Natural Science Foundation of China (No. 11974244). C. C. acknowledges the support from the SJTU start-up fund and the sponsorship from Yangyang Development fund.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(7521 KB)

Accesses

Citations

Detail

Sections
Recommended

/