
Eigenstate properties of the disordered Bose−Hubbard chain
Jie Chen, Chun Chen, Xiaoqun Wang
Front. Phys. ›› 2024, Vol. 19 ›› Issue (4) : 43207.
Eigenstate properties of the disordered Bose−Hubbard chain
Many-body localization (MBL) of a disordered interacting boson system in one dimension is studied numerically at the filling faction one-half. The von Neumann entanglement entropy
entanglement entropy decomposition / U(1) symmetry / thermalization-to-localization transition
Fig.3 (a) Variation of the total entropy |
Fig.4 (a) Numerical results on the two-body density-density correlation function |
Fig.5 Landscape of the phase diagram from the adjacent gap ratio |
Fig.6 Particle number distributions of the 11 eigenstates, 5 above and 5 below the eigenstate closest in energy to the given initial state. (a) corresponds to the target energy |
[1] |
P. W. Anderson. Absence of diffusion in certain random lattices. Phys. Rev., 1958, 109(5): 1492
CrossRef
ADS
Google scholar
|
[2] |
E. Abrahams, P. W. Anderson, D. C. Licciardello, T. V. Ramakrishnan. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett., 1979, 42(10): 673
CrossRef
ADS
Google scholar
|
[3] |
D. Vollhardt, P. Wölfle. Diagrammatic, self-consistent treatment of the Anderson localization problem in d ≤ 2 dimensions. Phys. Rev. B, 1980, 22(10): 4666
CrossRef
ADS
Google scholar
|
[4] |
S. John. Electromagnetic absorption in a disordered medium near a photon mobility edge. Phys. Rev. Lett., 1984, 53(22): 2169
CrossRef
ADS
Google scholar
|
[5] |
K. Arya, Z. B. Su, J. L. Birman. Localization of the surface plasmon polariton caused by random roughness and its role in surface-enhanced optical phenomena. Phys. Rev. Lett., 1985, 54(14): 1559
CrossRef
ADS
Google scholar
|
[6] |
Q. J. Chu, Z. Q. Zhang. Localization of phonons in mixed crystals. Phys. Rev. B, 1988, 38(7): 4906
CrossRef
ADS
Google scholar
|
[7] |
R. Nandkishore, D. A. Huse. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys., 2015, 6(1): 15
CrossRef
ADS
Google scholar
|
[8] |
D. M. Basko, I. L. Aleiner, B. L. Altshuler. Metal–insulator transition in a weakly interacting many electron system with localized single-particle states. Ann. Phys., 2006, 321(5): 1126
CrossRef
ADS
Google scholar
|
[9] |
V. Oganesyan, D. A. Huse. Localization of interacting fermions at high temperature. Phys. Rev. B, 2007, 75(15): 155111
CrossRef
ADS
Google scholar
|
[10] |
M. Žnidarič, T. Prosen, P. Prelovšek. Many-body localization in the Heisenberg XXZ magnet in a random field. Phys. Rev. B, 2008, 77(6): 064426
CrossRef
ADS
Google scholar
|
[11] |
J. M. Deutsch. Quantum statistical mechanics in a closed system. Phys. Rev. A, 1991, 43(4): 2046
CrossRef
ADS
Google scholar
|
[12] |
M. Srednicki. Chaos and quantum thermalization. Phys. Rev. E, 1994, 50(2): 888
CrossRef
ADS
Google scholar
|
[13] |
M. Serbyn, Z. Papić, D. A. Abanin. Local conservation laws and the structure of the many-body localized states. Phys. Rev. Lett., 2013, 111(12): 127201
CrossRef
ADS
Google scholar
|
[14] |
A. Chandran, I. H. Kim, G. Vidal, D. A. Abanin. Constructing local integrals of motion in the many-body localized phase. Phys. Rev. B, 2015, 91(8): 085425
CrossRef
ADS
Google scholar
|
[15] |
S. D. Geraedts, R. N. Bhatt, R. Nandkishore. Emergent local integrals of motion without a complete set of localized eigenstates. Phys. Rev. B, 2017, 95(6): 064204
CrossRef
ADS
Google scholar
|
[16] |
L. D’Alessio, Y. Kafri, A. Polkovnikov, M. Rigol. From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys., 2016, 65(3): 239
CrossRef
ADS
Google scholar
|
[17] |
A. Lazarides, A. Das, R. Moessner. Fate of many-body localization under periodic driving. Phys. Rev. Lett., 2015, 115(3): 030402
CrossRef
ADS
Google scholar
|
[18] |
P. Ponte, Z. Papić, F. Huveneers, D. A. Abanin. Many-body localization in periodically driven systems. Phys. Rev. Lett., 2015, 114(14): 140401
CrossRef
ADS
Google scholar
|
[19] |
D. V. Else, B. Bauer, C. Nayak. Floquet time crystals. Phys. Rev. Lett., 2016, 117(9): 090402
CrossRef
ADS
Google scholar
|
[20] |
N. Y. Yao, A. C. Potter, I. D. Potirniche, A. Vishwanath. Discrete time crystals: Rigidity, criticality, and realizations. Phys. Rev. Lett., 2017, 118(3): 030401
CrossRef
ADS
Google scholar
|
[21] |
J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I. D. Potirniche, A. C. Potter, A. Vishwanath, N. Y. Yao, C. Monroe. Observation of a discrete time crystal. Nature, 2017, 543(7644): 217
CrossRef
ADS
Google scholar
|
[22] |
S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya, F. Jelezko, S. Onoda, H. Sumiya, V. Khemani, C. von Keyserlingk, N. Y. Yao, E. Demler, M. D. Lukin. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature, 2017, 543(7644): 221
CrossRef
ADS
Google scholar
|
[23] |
J. A. Kjäll, J. H. Bardarson, F. Pollmann. Many-body localization in a disordered quantum Ising chain. Phys. Rev. Lett., 2014, 113(10): 107204
CrossRef
ADS
Google scholar
|
[24] |
M. Brenes, M. Dalmonte, M. Heyl, A. Scardicchio. Many-body localization dynamics from gauge invariance. Phys. Rev. Lett., 2018, 120(3): 030601
CrossRef
ADS
Google scholar
|
[25] |
E. Levi, M. Heyl, I. Lesanovsky, J. P. Garrahan. Robustness of many-body localization in the presence of dissipation. Phys. Rev. Lett., 2016, 116(23): 237203
CrossRef
ADS
Google scholar
|
[26] |
M. H. Fischer, M. Maksymenko, E. Altman. Dynamics of a many-body-localized system coupled to a bath. Phys. Rev. Lett., 2016, 116(16): 160401
CrossRef
ADS
Google scholar
|
[27] |
H. P. Lüschen, P. Bordia, S. S. Hodgman, M. Schreiber, S. Sarkar, A. J. Daley, M. H. Fischer, E. Altman, I. Bloch, U. Schneider. Signatures of many-body localization in a controlled open quantum system. Phys. Rev. X, 2017, 7(1): 011034
CrossRef
ADS
Google scholar
|
[28] |
J. Ren, Q. Li, W. Li, Z. Cai, X. Wang. Noise-driven universal dynamics towards an infinite temperature state. Phys. Rev. Lett., 2020, 124(13): 130602
CrossRef
ADS
Google scholar
|
[29] |
M. Žnidarič, A. Scardicchio, V. K. Varma. Diffusive and subdiffusive spin transport in the ergodic phase of a many-body localizable system. Phys. Rev. Lett., 2016, 117(4): 040601
CrossRef
ADS
Google scholar
|
[30] |
S. P. Kelly, R. Nandkishore, J. Marino. Exploring many-body localization in quantum systems coupled to an environment via Wegner‒Wilson flows. Nucl. Phys. B, 2020, 951: 114886
CrossRef
ADS
Google scholar
|
[31] |
C. Chamon, A. Hamma, E. R. Mucciolo. Emergent irreversibility and entanglement spectrum statistics. Phys. Rev. Lett., 2014, 112(24): 240501
CrossRef
ADS
Google scholar
|
[32] |
C. R. Laumann, A. Pal, A. Scardicchio. Many-body mobility edge in a mean-field quantum spin glass. Phys. Rev. Lett., 2014, 113(20): 200405
CrossRef
ADS
Google scholar
|
[33] |
D. J. Luitz, N. Laflorencie, F. Alet. Many-body localization edge in the random-field Heisenberg chain. Phys. Rev. B, 2015, 91: 081103(R)
CrossRef
ADS
Google scholar
|
[34] |
I. Mondragon-Shem, A. Pal, T. L. Hughes, C. R. Laumann. Many-body mobility edge due to symmetry-constrained dynamics and strong interactions. Phys. Rev. B, 2015, 92(6): 064203
CrossRef
ADS
Google scholar
|
[35] |
R. Mondaini, Z. Cai. Many-body self-localization in a translation-invariant Hamiltonian. Phys. Rev. B, 2017, 96(3): 035153
CrossRef
ADS
Google scholar
|
[36] |
M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk, E. Altman, U. Schneider, I. Bloch. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science, 2015, 349(6250): 842
CrossRef
ADS
Google scholar
|
[37] |
J. H. Bardarson, F. Pollmann, J. E. Moore. Unbounded growth of entanglement in models of many-body localization. Phys. Rev. Lett., 2012, 109(1): 017202
CrossRef
ADS
Google scholar
|
[38] |
M. Serbyn, Z. Papić, D. A. Abanin. Universal slow growth of entanglement in interacting strongly disordered systems. Phys. Rev. Lett., 2013, 110(26): 260601
CrossRef
ADS
Google scholar
|
[39] |
A. Lukin, M. Rispoli, R. Schittko, M. E. Tai, A. M. Kaufman, S. Choi, V. Khemani, J. Léonard, M. Greiner. Probing entanglement in a many-body-localized system. Science, 2019, 364(6437): 256
CrossRef
ADS
Google scholar
|
[40] |
J. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, C. Gross. Exploring the many-body localization transition in two dimensions. Science, 2016, 352(6293): 1547
CrossRef
ADS
Google scholar
|
[41] |
Q. Guo, C. Cheng, Z. H. Sun, Z. Song, H. Li, Z. Wang, W. Ren, H. Dong, D. Zheng, Y. R. Zhang, R. Mondaini, H. Fan, H. Wang. Observation of energy-resolved many-body localization. Nat. Phys., 2021, 17(2): 234
CrossRef
ADS
Google scholar
|
[42] |
M. Rispoli, A. Lukin, R. Schittko, S. Kim, M. E. Tai, J. Léonard, M. Greiner. Quantum critical behaviour at the many-body localization transition. Nature, 2019, 573(7774): 385
CrossRef
ADS
Google scholar
|
[43] |
J. Léonard, S. Kim, M. Rispoli, A. Lukin, R. Schittko, J. Kwan, E. Demler, D. Sels, M. Greiner. Probing the onset of quantum avalanches in a many-body localized system. Nat. Phys., 2023, 19(4): 481
CrossRef
ADS
Google scholar
|
[44] |
J. M. Zhang, R. X. Dong. Exact diagonalization: The Bose–Hubbard model as an example. Eur. J. Phys., 2010, 31(3): 591
CrossRef
ADS
Google scholar
|
[45] |
S. Paeckel, T. Köhler, A. Swoboda, S. R. Manmana, U. Schollwöck, C. Hubig. Time-evolution methods for matrix-product states. Ann. Phys., 2019, 411: 167998
CrossRef
ADS
Google scholar
|
[46] |
G. Vidal. Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett., 2004, 93(4): 040502
CrossRef
ADS
Google scholar
|
[47] |
M. P. Kennett. Out-of-equilibrium dynamics of the Bose–Hubbard model. ISRN Cond. Matter Phys., 2013, 393616: 39
|
[48] |
P. Sengupta, S. Haas. Quantum glass phases in the disordered Bose–Hubbard model. Phys. Rev. Lett., 2007, 99(5): 050403
CrossRef
ADS
Google scholar
|
[49] |
V. Gurarie, L. Pollet, N. V. Prokof’ev, B. V. Svistunov, M. Troyer. Phase diagram of the disordered Bose–Hubbard model. Phys. Rev. B, 2009, 80(21): 214519
CrossRef
ADS
Google scholar
|
[50] |
L. Pollet, N. V. Prokof’ev, B. V. Svistunov, M. Troyer. Absence of a direct superfluid to Mott insulator transition in disordered Bose systems. Phys. Rev. Lett., 2009, 103(14): 140402
CrossRef
ADS
Google scholar
|
[51] |
M. Gerster, M. Rizzi, F. Tschirsich, P. Silvi, R. Fazio, S. Montangero. Superfluid density and quasi-long-range order in the one-dimensional disordered Bose–Hubbard model. New J. Phys., 2016, 18(1): 015015
CrossRef
ADS
Google scholar
|
[52] |
S. Hu, Y. Wen, Y. Yu, B. Normand, X. Wang. Quantized squeezing and even‒odd asymmetry of trapped bosons. Phys. Rev. A, 2009, 80(6): 063624
CrossRef
ADS
Google scholar
|
[53] |
J. Šuntajs, J. Bonča, T. Prosen, L. Vidmar. Quantum chaos challenges many-body localization. Phys. Rev. E, 2020, 102(6): 062144
CrossRef
ADS
Google scholar
|
[54] |
A. Morningstar, L. Colmenarez, V. Khemani, D. J. Luitz, D. A. Huse. Avalanches and many-body resonances in many-body localized systems. Phys. Rev. B, 2022, 105(17): 174205
CrossRef
ADS
Google scholar
|
[55] |
B. Widom. Surface tension and molecular correlations near the critical point. J. Chem. Phys., 1965, 43(11): 3892
CrossRef
ADS
Google scholar
|
[56] |
T. Vojta. Phases and phase transitions in disordered quantum systems. AIP Conf. Proc., 2013, 1550: 188
CrossRef
ADS
Google scholar
|
[57] |
T. Orell, A. A. Michailidis, M. Serbyn, M. Silveri. Probing the many-body localization phase transition with superconducting circuits. Phys. Rev. B, 2019, 100(13): 134504
CrossRef
ADS
Google scholar
|
[58] |
S. X. Zhang, H. Yao. Universal properties of many body localization transitions in quasiperiodic systems. Phys. Rev. Lett., 2018, 121(20): 206601
CrossRef
ADS
Google scholar
|
[59] |
V. Khemani, D. N. Sheng, D. A. Huse. Two universality classes for the many-body localization transition. Phys. Rev. Lett., 2017, 119(7): 075702
CrossRef
ADS
Google scholar
|
[60] |
J. Šuntajs, J. Bonča, T. Prosen, L. Vidmar. Ergodicity breaking transition in finite disordered spin chains. Phys. Rev. B, 2020, 102(6): 064207
CrossRef
ADS
Google scholar
|
[61] |
P. Sierant, D. Delande, J. Zakrzewski. Many-body localization for randomly interacting bosons. Acta Phys. Pol. A, 2017, 132(6): 1707
CrossRef
ADS
Google scholar
|
[62] |
P. Sierant, D. Delande, J. Zakrzewski. Many-body localization due to random interactions. Phys. Rev. A, 2017, 95: 021601(R)
CrossRef
ADS
Google scholar
|
[63] |
T. Orell, A. A. Michailidis, M. Serbyn, M. Silveri. Probing the many-body localization phase transition with superconducting circuits. Phys. Rev. B, 2019, 100(13): 134504
CrossRef
ADS
Google scholar
|
[64] |
Y. Y. Atas, E. Bogomolny, O. Giraud, G. Roux. Distribution of the ratio of consecutive level spacings in random matrix ensembles. Phys. Rev. Lett., 2013, 110(8): 084101
CrossRef
ADS
Google scholar
|
[65] |
J.ChenC. ChenX.Wang, Energy- and symmetry-resolved entanglement dynamics in disordered Bose−Hubbard chain, arXiv: 2303.14825 (2023)
|
[66] |
D. J. Luitz, Y. B. Lev. Absence of slow particle transport in the many-body localized phase. Phys. Rev. B, 2020, 102: 100202(R)
CrossRef
ADS
Google scholar
|
[67] |
M. Kiefer-Emmanouilidis, R. Unanyan, M. Fleischhauer, J. Sirker. Evidence for unbounded growth of the number entropy in many-body localized phases. Phys. Rev. Lett., 2020, 124(24): 243601
CrossRef
ADS
Google scholar
|
[68] |
D. J. Luitz, N. Laflorencie, F. Alet. Extended slow dynamical regime close to the many-body localization transition. Phys. Rev. B, 2016, 93: 060201(R)
CrossRef
ADS
Google scholar
|
[69] |
T. Kohlert, S. Scherg, X. Li, H. P. Lüschen, S. Das Sarma, I. Bloch, M. Aidelsburger. Observation of many-body localization in a one-dimensional system with a single-particle mobility edge. Phys. Rev. Lett., 2019, 122(17): 170403
CrossRef
ADS
Google scholar
|
[70] |
K. Agarwal, E. Altman, E. Demler, S. Gopalakrishnan, D. A. Huse, M. Knap. Rareregion effects and dynamics near the many-body localization transition. Ann. Phys., 2017, 529(7): 1600326
CrossRef
ADS
Google scholar
|
[71] |
V. Khemani, D. N. Sheng, D. A. Huse. Two universality classes for the many-body localization transition. Phys. Rev. Lett., 2017, 119(7): 075702
CrossRef
ADS
Google scholar
|
[72] |
V. Khemani, S. P. Lim, D. N. Sheng, D. A. Huse. Critical properties of the many-body localization transition. Phys. Rev. X, 2017, 7(2): 021013
CrossRef
ADS
Google scholar
|
[73] |
S. Schierenberg, F. Bruckmann, T. Wettig. Wigner surmise for mixed symmetry classes in random matrix theory. Phys. Rev. E, 2012, 85(6): 061130
CrossRef
ADS
Google scholar
|
[74] |
S. D. Geraedts, R. Nandkishore, N. Regnault. Many-body localization and thermalization: Insights from the entanglement spectrum. Phys. Rev. B, 2016, 93(17): 174202
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |