Research on the knee region of cosmic ray by using a novel type of electron−neutron detector array

Bing-Bing Li, Xin-Hua Ma, Shu-Wang Cui, Hao-Kun Chen, Tian-Lu Chen, Danzengluobu, Wei Gao, Hai-Bing Hu, Denis Kuleshov, Kirill Kurinov, Hu Liu, Mao-Yuan Liu, Ye Liu, Da-Yu Peng, Yao-Hui Qi, Oleg Shchegolev, Yuri Stenkin, Li-Qiao Yin, Heng-Yu Zhang, Liang-Wei Zhang

PDF(6302 KB)
PDF(6302 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (4) : 44200. DOI: 10.1007/s11467-023-1383-2
RESEARCH ARTICLE

Research on the knee region of cosmic ray by using a novel type of electron−neutron detector array

Author information +
History +

Abstract

By accurately measuring composition and energy spectrum of cosmic ray, the origin problem of so called “knee” region (energy > one PeV) can be solved. However, up to the present, the results of the spectrum in the knee region obtained by several previous experiments have shown obvious differences, so they cannot give effective evidence for judging the theoretical models on the origin of the knee. Recently, the Large High Altitude Air Shower Observatory (LHAASO) has reported several major breakthroughs and important results in astro-particle physics field. Relying on its advantages of wide-sky survey, high altitude location and large area detector arrays, the research content of LHAASO experiment mainly includes ultra high-energy gamma-ray astronomy, measurement of cosmic ray spectra in the knee region, searching for dark matter and new phenomena of particle physics at higher energy. The electron and thermal neutron detector (EN-Detector) is a new scintillator detector which applies thermal neutron detection technology to measure cosmic ray extensive air shower (EAS). This technology is an extension of LHAASO. The EN-Detector Array (ENDA) can highly efficiently measure thermal neutrons generated by secondary hadrons so called “skeleton” of EAS. In this paper, we perform the optimization of ENDA configuration, and obtain expectations on the ENDA results, including thermal neutron distribution, trigger efficiency and capability of cosmic ray composition separation. The obtained real data results are consistent with those by the Monte Carlo simulation.

Graphical abstract

Keywords

cosmic ray / EAS / knee region / LHAASO / ENDA

Cite this article

Download citation ▾
Bing-Bing Li, Xin-Hua Ma, Shu-Wang Cui, Hao-Kun Chen, Tian-Lu Chen, Danzengluobu, Wei Gao, Hai-Bing Hu, Denis Kuleshov, Kirill Kurinov, Hu Liu, Mao-Yuan Liu, Ye Liu, Da-Yu Peng, Yao-Hui Qi, Oleg Shchegolev, Yuri Stenkin, Li-Qiao Yin, Heng-Yu Zhang, Liang-Wei Zhang. Research on the knee region of cosmic ray by using a novel type of electron−neutron detector array. Front. Phys., 2024, 19(4): 44200 https://doi.org/10.1007/s11467-023-1383-2

References

[1]
M. Aguilar, L. Ali Cavasonza, G. Ambrosi, L. Arruda, N. Attig. . The Alpha Magnetic Spectrometer (AMS) on the international space station: Part II — Results from the first seven years. Phys. Rep., 2021, 894: 1
CrossRef ADS Google scholar
[2]
G. Aielli, C. Bacci, B. Bartoli, P. Bernardini, X. J. Bi. . Highlights from the ARGO-YBJ experiment. Nucl. Instrum. Methods Phys. Res. A, 2012, 661(Suppl. 1): S50
CrossRef ADS Google scholar
[3]
X. H. Ma. . Chapter 1 LHAASO instruments and detector technology. Chin. Phys. C, 2022, 46: 030001
CrossRef ADS Google scholar
[4]
Z. Cao, . (LHAASO Collaboration). . Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 gamma-ray galactic sources. Nature, 2021, 594: 33
CrossRef ADS Google scholar
[5]
Z. Cao, F. Aharonian, Q. An. Axikegu, L. X. Bai, et al., PETA-electron volt gamma-ray emission from the Crab nebula. Science, 2021, 373(6553): 425
CrossRef ADS Google scholar
[6]
Z.Cao, EAS arrays at high altitudes start the era of UHE-ray astronomy, Universe 7 (9), 339 (2021)
[7]
P.VeresE. BurnsE.Bissaldi, ., GRB 221009A: Fermi GBM detection of an extraordinarily bright GRB, GRB Coordinates Network, No. 32636 (2022)
[8]
S.DichiaraJ. D. GroppJ.A. Kennea, ., Swift J1913.1+1946 a new bright hard X-ray and optical transient, GRB Coordinates Network, No. 32632 (2022)
[9]
Z. Cao, F. Aharonian, Q. An. Axikegu, L. X. Bai, et al., A tera-electron volt afterglow from a narrow jet in an extremely bright gamma-ray burst 221009A. Science, 2023, 380(6652): 1390
CrossRef ADS Google scholar
[10]
J. R. Hörandel. Models of the knee in the energy spectrum of cosmic rays. Astropart. Phys., 2004, 21(3): 241
CrossRef ADS Google scholar
[11]
T. K. Gaisser, T. Stanev, S. Tilav. Cosmic ray energy spectrum from measurements of air showers. Front. Phys., 2013, 8(6): 748
CrossRef ADS Google scholar
[12]
S. I. Nikolsky. The cause of the EAS spectrum break. Proc. 25th ICRC (Durban), 1997, 6: 105
[13]
A.A. Petrukhin, Problem of the knee and very high energy muons, Proc. 27th ICRC (Hamburg), 1768 (2001)
[14]
D.KazanasA. Nikolaidis, Cosmic ray “knee”: A herald of new physics? Proc. 27th ICRC (Hamburg), 1760 (2001)
[15]
Y. V. Stenkin. Does the “knee” in primary cosmic ray spectrum exist. Mod. Phys. Lett. A, 2003, 18(18): 1225
CrossRef ADS Google scholar
[16]
T.AntoniW. D. ApelA.F. BadeaK.BekkA.Bercuci, ., KASCADE measurements of energy spectra for elemental groups of cosmic rays: Re sults and open problems, Astropart. Phys. 24(1‒2), 1 (2005)
[17]
M. Amenomori, S. Ayabe, D. Chen, S. W. Cui. . Are protons still dominant at the knee of the cosmic-ray energy spectrum. Phys. Lett. B, 2006, 632(1): 58
CrossRef ADS Google scholar
[18]
B. Bartoli, P. Bernardini, X. J. Bi, Z. Cao, S. Catalanotti. . Knee of the cosmic hydrogen and helium spectrum below 1 PeV measured by ARGO-YBJ and a Cherenkov telescope of LHAASO. Phys. Rev. D, 2015, 92(9): 092005
CrossRef ADS Google scholar
[19]
Y. V. Stenkin, J. F. Valdes-Galicia. On the neutron bursts origin. Mod. Phys. Lett. A, 2002, 17(26): 1745
CrossRef ADS Google scholar
[20]
Y. V. Stenkin. On the PRISMA project. Nucl. Phys. B Proc. Suppl., 2009, 196: 293
CrossRef ADS Google scholar
[21]
Y V Stenkin, V V Alekseenko, D M Gromushkin. . Thermal neutron flux produced by EAS at various altitudes. Chin. Phys. C, 2013, 37(1): 015001
[22]
Y. V. Stenkin, D. D. Djappuev, J. F. Valdés-Galicia. Neutrons in extensive air showers. Phys. At. Nucl., 2007, 70(6): 1088
CrossRef ADS Google scholar
[23]
Y.V. Stenkin, Thermal neutrons in Eas: A new dimension in Eas study, Nucl. Phys. B Proc. Suppl. 175–176, 326 (2008)
[24]
B. Bartoli, P. Bernardini, X. J. Bi, Z. Cao, S. Catalanotti. . Detection of thermal neutrons with the PRISMA-YBJ array in extensive air showers selected by the ARGO-YBJ experiment. Astropart. Phys., 2016, 81: 49
CrossRef ADS Google scholar
[25]
Y. V. Stenkin, V. Alekseenko, Z. Y. Cai, Z. Cao, C. Cattaneo, S. Cui, E. Giroletti, D. Gromushkin, C. Guo, X. Guo, H. He, Y. Liu, X. Ma, O. Shchegolev, P. Vallania, C. Vigorito, J. Zhao. Seasonal and lunar month periods observed in natural neutron flux at high altitude. Pure Appl. Geophys., 2017, 174(7): 2763
CrossRef ADS Google scholar
[26]
Y.V. StenkinV.AlekseenkoZ.Y. Cai Z.CaoC. CattaneoS.CuiP.FirstovE.GirolettiX.GuoH.HeY.Liu X.MaO.ShchegolevP.VallaniaC.VigoritoY.Yanin J.Zhao, Response of the environmental thermal neutron flux to earthquakes, J. Environ. Radioact. 208–209, 105981 (2019)
[27]
B.B. LiV. V. AlekseenkoS.CuiT.L. ChenS.H. Feng Q.GaoY. LiuQ.C. HuangY.Y. HeM.Y. Liu X.H. MaE. I. PozdnyakovO.B. ShchegolevF.Z. ShenY.V. StenkinV.I. StepanovY.V. YaninJ.D. Yao R.Zhou, EAS thermal neutron detection with the PRISMA-LHAASO-16 experiment, J. Instrum. 12(12), P12028 (2017)
[28]
M. Y. Liu, V. Alekseenko, S. W. Cui, T. L. Chen, Dangzengluobu Gao, Q. Kuleshov, D. Levochkin, K. Liu, Y. B. Li, B. H. Ma, X. Shchegolev, O. Shi, C. Stenkin, Y. Stepanov, V. of the thermal neutron detector array in Yangbajing. Tibet for cosmic ray EAS detection. Astrophys. Space Sci., 2020, 365(7): 123
CrossRef ADS Google scholar
[29]
B. B. Li, S. W. Cui, C. Shi, F. Yang, L. W. Zhang, Y. Liu, X. H. Ma, W. Gao, L. Q. Yin, Y. V. Stenkin, D. A. Kuleshov, K. R. Levochkin, O. B. Shchegolev, T. L. Chen, Danzengluobu Y. Liu, M. X. Xiao. Electron neutron detector array (ENDA). Phys. At. Nucl., 2021, 84(6): 941
CrossRef ADS Google scholar
[30]
F. Yang, X. H. Ma, H. K. Chen, T. L. Chen, S. W. Cui, Danzengluobu Gao, W. Kuleshov, D. Kurinov, K. B. Li, B. Y. Liu, M. Liu, Y. Shchegolev, O. Stenkin, Y. X. Xiao, D. Q. Yin, L. W. Zhang. Correlation between thermal neutrons and soil moisture measured by ENDA. J. Instrum., 2023, 18(5): P05020
CrossRef ADS Google scholar
[31]
D. X. Xiao, T. L. Chen, S. W. Cui, Danzengluobu Gao, W. Kuleshov, D. Kurinov, K. Lagutkina, A. Levochkin, K. B. Li, B. Y. Liu, M. Liu, Y. H. Ma, X. Shchegolev, O. Stenkin, Y. Yang, F. Q. Yin, L. W. Zhang. Influence of soil environment on performance of EAS electron–neutron detector array. Astrophys. Space Sci., 2022, 367(8): 75
CrossRef ADS Google scholar
[32]
D.Heck, Hadronic interaction models and the air shower simulation program CORSIKA, Proc. ICRC Hamburg Vol. 233, 19 (2001)
[33]
J Allison, K Amako, J Apostolakis. . Geant4 developments and applications. IEEE Trans. Nucl. Sci., 2006, 53(1): 270
CrossRef ADS Google scholar
[34]
H. Y. Zhang, H. H. He, C. F. Feng. Approaches to composition independent energy reconstruction of cosmic rays based on the LHAASO-KM2A detector. Phys. Rev. D, 2022, 106(12): 123028
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, Nos. 12320101005, 12373105, U2031103, 12205244, and 11963004) and Hebei Natural Science Foundation (No. A2019207004).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(6302 KB)

Accesses

Citations

Detail

Sections
Recommended

/