Variational quantum algorithms for scanning the complex spectrum of non-Hermitian systems

Xu-Dan Xie, Zheng-Yuan Xue, Dan-Bo Zhang

PDF(5280 KB)
PDF(5280 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (4) : 41202. DOI: 10.1007/s11467-023-1382-3
RESEARCH ARTICLE

Variational quantum algorithms for scanning the complex spectrum of non-Hermitian systems

Author information +
History +

Abstract

Solving non-Hermitian quantum many-body systems on a quantum computer by minimizing the variational energy is challenging as the energy can be complex. Here, we propose a variational quantum algorithm for solving the non-Hermitian Hamiltonian by minimizing a type of energy variance, where zero variance can naturally determine the eigenvalues and the associated left and right eigenstates. Moreover, the energy is set as a parameter in the cost function and can be tuned to scan the whole spectrum efficiently by using a two-step optimization scheme. Through numerical simulations, we demonstrate the algorithm for preparing the left and right eigenstates, verifying the biorthogonal relations, as well as evaluating the observables. We also investigate the impact of quantum noise on our algorithm and show that its performance can be largely improved using error mitigation techniques. Therefore, our work suggests an avenue for solving non-Hermitian quantum many-body systems with variational quantum algorithms on near-term noisy quantum computers.

Graphical abstract

Keywords

quantum algorithm / non-Hermitian physics / quantum many-body systems

Cite this article

Download citation ▾
Xu-Dan Xie, Zheng-Yuan Xue, Dan-Bo Zhang. Variational quantum algorithms for scanning the complex spectrum of non-Hermitian systems. Front. Phys., 2024, 19(4): 41202 https://doi.org/10.1007/s11467-023-1382-3

References

[1]
Y. Ashida , Z. Gong , M. Ueda . Non-Hermitian physics. Adv. Phys., 2020, 69(3): 249
CrossRef ADS Google scholar
[2]
A. Guo , G. J. Salamo , D. Duchesne , R. Morandotti , M. Volatier-Ravat , V. Aimez , G. A. Siviloglou , D. N. Christodoulides . Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett., 2009, 103(9): 093902
CrossRef ADS Google scholar
[3]
C. M. Bender . Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys., 2007, 70(6): 947
CrossRef ADS Google scholar
[4]
P. Dorey , C. Dunning , R. Tateo , Spectral equivalences . Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics. J. Phys. Math. Gen., 2001, 34(28): 5679
CrossRef ADS Google scholar
[5]
Ş. K. Özdemir , S. Rotter , F. Nori , L. Yang . Parity‒time symmetry and exceptional points in photonics. Nat. Mater., 2019, 18: 783
CrossRef ADS Google scholar
[6]
S. Yao , Z. Wang . Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett., 2018, 121(8): 086803
CrossRef ADS Google scholar
[7]
Z. Wang , L. J. Lang , L. He . Emergent Mott insulators and non-Hermitian conservation laws in an interacting bosonic chain with noninteger filling and nonreciprocal hopping. Phys. Rev. B, 2022, 105(5): 054315
CrossRef ADS Google scholar
[8]
H. Jiang , L. J. Lang , C. Yang , S. L. Zhu , S. Chen . Interplay of non-Hermitian skin effects and Anderson localization in nonreciprocal quasiperiodic lattices. Phys. Rev. B, 2019, 100(5): 054301
CrossRef ADS Google scholar
[9]
L. J. Lang , X. Cai , S. Chen . Edge states and topological phases in one-dimensional optical superlattices. Phys. Rev. Lett., 2012, 108(22): 220401
CrossRef ADS Google scholar
[10]
D. W. Zhang , L. Z. Tang , L. J. Lang , H. Yan , S. L. Zhu . Non-Hermitian topological Anderson insulators. Sci. China Phys. Mech. Astron., 2020, 63(6): 267062
CrossRef ADS Google scholar
[11]
L. Z. Tang , G. Q. Zhang , L. F. Zhang , D. W. Zhang . Localization and topological transitions in non-Hermitian quasiperiodic lattices. Phys. Rev. A, 2021, 103(3): 033325
CrossRef ADS Google scholar
[12]
L. Z. Tang , L. F. Zhang , G. Q. Zhang , D. W. Zhang . Topological Anderson insulators in two-dimensional non-Hermitian disordered systems. Phys. Rev. A, 2020, 101(6): 063612
CrossRef ADS Google scholar
[13]
W. Heiss . Exceptional points of non-Hermitian operators. J. Phys. Math. Gen., 2004, 37(6): 2455
CrossRef ADS Google scholar
[14]
F. Song , S. Yao , Z. Wang . Non-Hermitian skin effect and chiral damping in open quantum systems. Phys. Rev. Lett., 2019, 123(17): 170401
CrossRef ADS Google scholar
[15]
J. Feinberg , A. Zee . Non-Hermitian localization and delocalization. Phys. Rev. E, 1999, 59(6): 6433
CrossRef ADS Google scholar
[16]
A. del Campo , I. L. Egusquiza , M. B. Plenio , S. F. Huelga . Quantum speed limits in open system dynamics. Phys. Rev. Lett., 2013, 110(5): 050403
CrossRef ADS Google scholar
[17]
F. Barahona . On the computational complexity of Ising spin glass models. J. Phys. Math. Gen., 1982, 15(10): 3241
CrossRef ADS Google scholar
[18]
G. Chen , F. Song , J. L. Lado . Topological spin excitations in non-Hermitian spin chains with a generalized kernel polynomial algorithm. Phys. Rev. Lett., 2023, 130(10): 100401
CrossRef ADS Google scholar
[19]
D. Jaschke , S. Montangero , L. D. Carr . One-dimensional many-body entangled open quantum systems with tensor network methods. Quantum Sci. Technol., 2018, 4(1): 013001
CrossRef ADS Google scholar
[20]
M. T. Fishman , L. Vanderstraeten , V. Zauner-Stauber , J. Haegeman , F. Verstraete . Faster methods for contracting infinite two-dimensional tensor networks. Phys. Rev. B, 2018, 98(23): 235148
CrossRef ADS Google scholar
[21]
R. Orús . A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Ann. Phys., 2014, 349: 117
CrossRef ADS Google scholar
[22]
S.Wiesner, Simulations of many-body quantum systems by a quantum computer, arXiv: quant-ph/9603028 (1996)
[23]
D. Poulin , P. Wocjan . Preparing ground states of quantum many-body systems on a quantum computer. Phys. Rev. Lett., 2009, 102(13): 130503
CrossRef ADS Google scholar
[24]
D. S. Abrams , S. Lloyd . Simulation of many-body Fermi systems on a universal quantum computer. Phys. Rev. Lett., 1997, 79(13): 2586
CrossRef ADS Google scholar
[25]
A. Smith , M. Kim , F. Pollmann , J. Knolle . Simulating quantum many-body dynamics on a current digital quantum computer. npj Quantum Inf., 2019, 5: 106
CrossRef ADS Google scholar
[26]
A. Peruzzo , J. McClean , P. Shadbolt , M. H. Yung , X. Q. Zhou , P. J. Love , A. Aspuru-Guzik , J. L. O’brien . A variational eigenvalue solver on a photonic quantum processor. Nat. Commun., 2014, 5(1): 4213
CrossRef ADS Google scholar
[27]
A. Kandala , A. Mezzacapo , K. Temme , M. Takita , M. Brink , J. M. Chow , J. M. Gambetta . Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 2017, 549(7671): 242
CrossRef ADS Google scholar
[28]
J. Tilly , H. Chen , S. Cao , D. Picozzi , K. Setia , Y. Li , E. Grant , L. Wossnig , I. Rungger , G. H. Booth , J. Tennyson . The variational quantum eigensolver: A review of methods and best practices. Phys. Rep., 2022, 986: 1
CrossRef ADS Google scholar
[29]
D. A. Fedorov , B. Peng , N. Govind , Y. Alexeev . VQE method: A short survey and recent developments. Mater. Theory, 2022, 6(1): 2
CrossRef ADS Google scholar
[30]
P. J. O’Malley , R. Babbush , I. D. Kivlichan , J. Romero , J. R. McClean , R. Barends , J. Kelly , P. Roushan , A. Tranter , N. Ding , B. Campbell , Y. Chen , Z. Chen , B. Chiaro , A. Dunsworth , A. G. Fowler , E. Jeffrey , E. Lucero , A. Megrant , J. Y. Mutus , M. Neeley , C. Neill , C. Quintana , D. Sank , A. Vainsencher , J. Wenner , T. C. White , P. V. Coveney , P. J. Love , H. Neven , A. Aspuru-Guzik , J. M. Martinis . Scalable quantum simulation of molecular energies. Phys. Rev. X, 2016, 6(3): 031007
CrossRef ADS Google scholar
[31]
J. L. Bosse , A. Montanaro . Probing ground-state properties of the kagome antiferromagnetic Heisenberg model using the variational quantum eigensolver. Phys. Rev. B, 2022, 105(9): 094409
CrossRef ADS Google scholar
[32]
J. Kattemölle , J. van Wezel . Variational quantum eigensolver for the Heisenberg antiferromagnet on the kagome lattice. Phys. Rev. B, 2022, 106(21): 214429
CrossRef ADS Google scholar
[33]
K. M. Nakanishi , K. Mitarai , K. Fujii . Subspace-search variational quantum eigensolver for excited states. Phys. Rev. Res., 2019, 1(3): 033062
CrossRef ADS Google scholar
[34]
O. Higgott , D. Wang , S. Brierley . Variational quantum computation of excited states. Quantum, 2019, 3: 156
CrossRef ADS Google scholar
[35]
S. Liu , S. X. Zhang , C. Y. Hsieh , S. Zhang , H. Yao . Probing many-body localization by excited-state variational quantum eigensolver. Phys. Rev. B, 2023, 107(2): 024204
CrossRef ADS Google scholar
[36]
Q. X. Xie , S. Liu , Y. Zhao . Orthogonal state reduction variational eigensolver for the excited-state calculations on quantum computers. J. Chem. Theory Comput., 2022, 18(6): 3737
CrossRef ADS Google scholar
[37]
D. B. Zhang , B. L. Chen , Z. H. Yuan , T. Yin . Variational quantum eigensolvers by variance minimization. Chin. Phys. B, 2022, 31(12): 120301
CrossRef ADS Google scholar
[38]
B. L. Chen , D. B. Zhang . Variational quantum eigensolver with mutual variance-Hamiltonian optimization. Chin. Phys. Lett., 2023, 40(1): 010303
CrossRef ADS Google scholar
[39]
Z.GuoZ.T. XuM.LiL.YouS.Yang, Variational matrix product state approach for non-Hermitian system based on a companion Hermitian Hamiltonian, arXiv: 2210.14858 (2022)
[40]
N.Moiseyev, Non-Hermitian Quantum Mechanics, Cambridge: Cambridge University Press, 2011
[41]
S.Banach, Theory of Linear Operations, Elsevier, 1987
[42]
M. Cerezo , A. Arrasmith , R. Babbush , S. C. Benjamin , S. Endo , K. Fujii , J. R. McClean , K. Mitarai , X. Yuan , L. Cincio , P. J. Coles . Variational quantum algorithms. Nat. Rev. Phys., 2021, 3(9): 625
CrossRef ADS Google scholar
[43]
R. Cleve , A. Ekert , C. Macchiavello , M. Mosca . Quantum algorithms revisited. Proc. Royal Soc. A, 1998, 454(1969): 339
CrossRef ADS Google scholar
[44]
K. Bharti , T. Haug . Quantum-assisted simulator. Phys. Rev. A, 2021, 104(4): 042418
CrossRef ADS Google scholar
[45]
S. Efthymiou , S. Ramos-Calderer , C. Bravo-Prieto , A. Pérez-Salinas , D. García-Martín , A. Garcia-Saez , J. I. Latorre , S. Carrazza . Qibo: A framework for quantum simulation with hardware acceleration. Quantum Sci. Technol., 2022, 7(1): 015018
CrossRef ADS Google scholar
[46]
J. R. Johansson , P. D. Nation , F. Nori . QuTiP: An open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 2012, 183(8): 1760
CrossRef ADS Google scholar
[47]
G. Gehlen . Critical and off-critical conformal analysis of the Ising quantum chain in an imaginary field. J. Phys. Math. Gen., 1991, 24(22): 5371
CrossRef ADS Google scholar
[48]
P.B. SousaR.V. Ramos, Universal quantum circuit for n-qubit quantum gate: A programmable quantum gate, arXiv: quant-ph/0602174 (2006)
[49]
X. D. Xie , X. Guo , H. Xing , Z. Y. Xue , D. B. Zhang , S. L. Zhu . Variational thermal quantum simulation of the lattice Schwinger model. Phys. Rev. D, 2022, 106(5): 054509
CrossRef ADS Google scholar
[50]
T. Haug , K. Bharti , M. Kim . Capacity and quantum geometry of parametrized quantum circuits. PRX Quantum, 2021, 2(4): 040309
CrossRef ADS Google scholar
[51]
J. Preskill . Quantum computing in the NISQ era and beyond. Quantum, 2018, 2: 79
CrossRef ADS Google scholar
[52]
L. F. Richardson , J. A. Gaunt . VIII. The deferred approach to the limit. Philos. Trans. Royal Soc. Ser. A, 1927, 226(636‒646): 299
CrossRef ADS Google scholar
[53]
K. Temme , S. Bravyi , J. M. Gambetta . Error mitigation for short-depth quantum circuits. Phys. Rev. Lett., 2017, 119(18): 180509
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12375013 and 12275090), the Guangdong Basic and Applied Basic Research Fund (Grant No. 2023A1515011460), and the Guangdong Provincial Key Laboratory (Grant No. 2020B1212060066).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5280 KB)

Accesses

Citations

Detail

Sections
Recommended

/