Variational quantum algorithms for scanning the complex spectrum of non-Hermitian systems
Xu-Dan Xie, Zheng-Yuan Xue, Dan-Bo Zhang
Variational quantum algorithms for scanning the complex spectrum of non-Hermitian systems
Solving non-Hermitian quantum many-body systems on a quantum computer by minimizing the variational energy is challenging as the energy can be complex. Here, we propose a variational quantum algorithm for solving the non-Hermitian Hamiltonian by minimizing a type of energy variance, where zero variance can naturally determine the eigenvalues and the associated left and right eigenstates. Moreover, the energy is set as a parameter in the cost function and can be tuned to scan the whole spectrum efficiently by using a two-step optimization scheme. Through numerical simulations, we demonstrate the algorithm for preparing the left and right eigenstates, verifying the biorthogonal relations, as well as evaluating the observables. We also investigate the impact of quantum noise on our algorithm and show that its performance can be largely improved using error mitigation techniques. Therefore, our work suggests an avenue for solving non-Hermitian quantum many-body systems with variational quantum algorithms on near-term noisy quantum computers.
quantum algorithm / non-Hermitian physics / quantum many-body systems
[1] |
Y. Ashida , Z. Gong , M. Ueda . Non-Hermitian physics. Adv. Phys., 2020, 69(3): 249
CrossRef
ADS
Google scholar
|
[2] |
A. Guo , G. J. Salamo , D. Duchesne , R. Morandotti , M. Volatier-Ravat , V. Aimez , G. A. Siviloglou , D. N. Christodoulides . Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett., 2009, 103(9): 093902
CrossRef
ADS
Google scholar
|
[3] |
C. M. Bender . Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys., 2007, 70(6): 947
CrossRef
ADS
Google scholar
|
[4] |
P. Dorey , C. Dunning , R. Tateo , Spectral equivalences . Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics. J. Phys. Math. Gen., 2001, 34(28): 5679
CrossRef
ADS
Google scholar
|
[5] |
Ş. K. Özdemir , S. Rotter , F. Nori , L. Yang . Parity‒time symmetry and exceptional points in photonics. Nat. Mater., 2019, 18: 783
CrossRef
ADS
Google scholar
|
[6] |
S. Yao , Z. Wang . Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett., 2018, 121(8): 086803
CrossRef
ADS
Google scholar
|
[7] |
Z. Wang , L. J. Lang , L. He . Emergent Mott insulators and non-Hermitian conservation laws in an interacting bosonic chain with noninteger filling and nonreciprocal hopping. Phys. Rev. B, 2022, 105(5): 054315
CrossRef
ADS
Google scholar
|
[8] |
H. Jiang , L. J. Lang , C. Yang , S. L. Zhu , S. Chen . Interplay of non-Hermitian skin effects and Anderson localization in nonreciprocal quasiperiodic lattices. Phys. Rev. B, 2019, 100(5): 054301
CrossRef
ADS
Google scholar
|
[9] |
L. J. Lang , X. Cai , S. Chen . Edge states and topological phases in one-dimensional optical superlattices. Phys. Rev. Lett., 2012, 108(22): 220401
CrossRef
ADS
Google scholar
|
[10] |
D. W. Zhang , L. Z. Tang , L. J. Lang , H. Yan , S. L. Zhu . Non-Hermitian topological Anderson insulators. Sci. China Phys. Mech. Astron., 2020, 63(6): 267062
CrossRef
ADS
Google scholar
|
[11] |
L. Z. Tang , G. Q. Zhang , L. F. Zhang , D. W. Zhang . Localization and topological transitions in non-Hermitian quasiperiodic lattices. Phys. Rev. A, 2021, 103(3): 033325
CrossRef
ADS
Google scholar
|
[12] |
L. Z. Tang , L. F. Zhang , G. Q. Zhang , D. W. Zhang . Topological Anderson insulators in two-dimensional non-Hermitian disordered systems. Phys. Rev. A, 2020, 101(6): 063612
CrossRef
ADS
Google scholar
|
[13] |
W. Heiss . Exceptional points of non-Hermitian operators. J. Phys. Math. Gen., 2004, 37(6): 2455
CrossRef
ADS
Google scholar
|
[14] |
F. Song , S. Yao , Z. Wang . Non-Hermitian skin effect and chiral damping in open quantum systems. Phys. Rev. Lett., 2019, 123(17): 170401
CrossRef
ADS
Google scholar
|
[15] |
J. Feinberg , A. Zee . Non-Hermitian localization and delocalization. Phys. Rev. E, 1999, 59(6): 6433
CrossRef
ADS
Google scholar
|
[16] |
A. del Campo , I. L. Egusquiza , M. B. Plenio , S. F. Huelga . Quantum speed limits in open system dynamics. Phys. Rev. Lett., 2013, 110(5): 050403
CrossRef
ADS
Google scholar
|
[17] |
F. Barahona . On the computational complexity of Ising spin glass models. J. Phys. Math. Gen., 1982, 15(10): 3241
CrossRef
ADS
Google scholar
|
[18] |
G. Chen , F. Song , J. L. Lado . Topological spin excitations in non-Hermitian spin chains with a generalized kernel polynomial algorithm. Phys. Rev. Lett., 2023, 130(10): 100401
CrossRef
ADS
Google scholar
|
[19] |
D. Jaschke , S. Montangero , L. D. Carr . One-dimensional many-body entangled open quantum systems with tensor network methods. Quantum Sci. Technol., 2018, 4(1): 013001
CrossRef
ADS
Google scholar
|
[20] |
M. T. Fishman , L. Vanderstraeten , V. Zauner-Stauber , J. Haegeman , F. Verstraete . Faster methods for contracting infinite two-dimensional tensor networks. Phys. Rev. B, 2018, 98(23): 235148
CrossRef
ADS
Google scholar
|
[21] |
R. Orús . A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Ann. Phys., 2014, 349: 117
CrossRef
ADS
Google scholar
|
[22] |
S.Wiesner, Simulations of many-body quantum systems by a quantum computer, arXiv: quant-ph/9603028 (1996)
|
[23] |
D. Poulin , P. Wocjan . Preparing ground states of quantum many-body systems on a quantum computer. Phys. Rev. Lett., 2009, 102(13): 130503
CrossRef
ADS
Google scholar
|
[24] |
D. S. Abrams , S. Lloyd . Simulation of many-body Fermi systems on a universal quantum computer. Phys. Rev. Lett., 1997, 79(13): 2586
CrossRef
ADS
Google scholar
|
[25] |
A. Smith , M. Kim , F. Pollmann , J. Knolle . Simulating quantum many-body dynamics on a current digital quantum computer. npj Quantum Inf., 2019, 5: 106
CrossRef
ADS
Google scholar
|
[26] |
A. Peruzzo , J. McClean , P. Shadbolt , M. H. Yung , X. Q. Zhou , P. J. Love , A. Aspuru-Guzik , J. L. O’brien . A variational eigenvalue solver on a photonic quantum processor. Nat. Commun., 2014, 5(1): 4213
CrossRef
ADS
Google scholar
|
[27] |
A. Kandala , A. Mezzacapo , K. Temme , M. Takita , M. Brink , J. M. Chow , J. M. Gambetta . Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 2017, 549(7671): 242
CrossRef
ADS
Google scholar
|
[28] |
J. Tilly , H. Chen , S. Cao , D. Picozzi , K. Setia , Y. Li , E. Grant , L. Wossnig , I. Rungger , G. H. Booth , J. Tennyson . The variational quantum eigensolver: A review of methods and best practices. Phys. Rep., 2022, 986: 1
CrossRef
ADS
Google scholar
|
[29] |
D. A. Fedorov , B. Peng , N. Govind , Y. Alexeev . VQE method: A short survey and recent developments. Mater. Theory, 2022, 6(1): 2
CrossRef
ADS
Google scholar
|
[30] |
P. J. O’Malley , R. Babbush , I. D. Kivlichan , J. Romero , J. R. McClean , R. Barends , J. Kelly , P. Roushan , A. Tranter , N. Ding , B. Campbell , Y. Chen , Z. Chen , B. Chiaro , A. Dunsworth , A. G. Fowler , E. Jeffrey , E. Lucero , A. Megrant , J. Y. Mutus , M. Neeley , C. Neill , C. Quintana , D. Sank , A. Vainsencher , J. Wenner , T. C. White , P. V. Coveney , P. J. Love , H. Neven , A. Aspuru-Guzik , J. M. Martinis . Scalable quantum simulation of molecular energies. Phys. Rev. X, 2016, 6(3): 031007
CrossRef
ADS
Google scholar
|
[31] |
J. L. Bosse , A. Montanaro . Probing ground-state properties of the kagome antiferromagnetic Heisenberg model using the variational quantum eigensolver. Phys. Rev. B, 2022, 105(9): 094409
CrossRef
ADS
Google scholar
|
[32] |
J. Kattemölle , J. van Wezel . Variational quantum eigensolver for the Heisenberg antiferromagnet on the kagome lattice. Phys. Rev. B, 2022, 106(21): 214429
CrossRef
ADS
Google scholar
|
[33] |
K. M. Nakanishi , K. Mitarai , K. Fujii . Subspace-search variational quantum eigensolver for excited states. Phys. Rev. Res., 2019, 1(3): 033062
CrossRef
ADS
Google scholar
|
[34] |
O. Higgott , D. Wang , S. Brierley . Variational quantum computation of excited states. Quantum, 2019, 3: 156
CrossRef
ADS
Google scholar
|
[35] |
S. Liu , S. X. Zhang , C. Y. Hsieh , S. Zhang , H. Yao . Probing many-body localization by excited-state variational quantum eigensolver. Phys. Rev. B, 2023, 107(2): 024204
CrossRef
ADS
Google scholar
|
[36] |
Q. X. Xie , S. Liu , Y. Zhao . Orthogonal state reduction variational eigensolver for the excited-state calculations on quantum computers. J. Chem. Theory Comput., 2022, 18(6): 3737
CrossRef
ADS
Google scholar
|
[37] |
D. B. Zhang , B. L. Chen , Z. H. Yuan , T. Yin . Variational quantum eigensolvers by variance minimization. Chin. Phys. B, 2022, 31(12): 120301
CrossRef
ADS
Google scholar
|
[38] |
B. L. Chen , D. B. Zhang . Variational quantum eigensolver with mutual variance-Hamiltonian optimization. Chin. Phys. Lett., 2023, 40(1): 010303
CrossRef
ADS
Google scholar
|
[39] |
Z.GuoZ.T. XuM.LiL.YouS.Yang, Variational matrix product state approach for non-Hermitian system based on a companion Hermitian Hamiltonian, arXiv: 2210.14858 (2022)
|
[40] |
N.Moiseyev, Non-Hermitian Quantum Mechanics, Cambridge: Cambridge University Press, 2011
|
[41] |
S.Banach, Theory of Linear Operations, Elsevier, 1987
|
[42] |
M. Cerezo , A. Arrasmith , R. Babbush , S. C. Benjamin , S. Endo , K. Fujii , J. R. McClean , K. Mitarai , X. Yuan , L. Cincio , P. J. Coles . Variational quantum algorithms. Nat. Rev. Phys., 2021, 3(9): 625
CrossRef
ADS
Google scholar
|
[43] |
R. Cleve , A. Ekert , C. Macchiavello , M. Mosca . Quantum algorithms revisited. Proc. Royal Soc. A, 1998, 454(1969): 339
CrossRef
ADS
Google scholar
|
[44] |
K. Bharti , T. Haug . Quantum-assisted simulator. Phys. Rev. A, 2021, 104(4): 042418
CrossRef
ADS
Google scholar
|
[45] |
S. Efthymiou , S. Ramos-Calderer , C. Bravo-Prieto , A. Pérez-Salinas , D. García-Martín , A. Garcia-Saez , J. I. Latorre , S. Carrazza . Qibo: A framework for quantum simulation with hardware acceleration. Quantum Sci. Technol., 2022, 7(1): 015018
CrossRef
ADS
Google scholar
|
[46] |
J. R. Johansson , P. D. Nation , F. Nori . QuTiP: An open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 2012, 183(8): 1760
CrossRef
ADS
Google scholar
|
[47] |
G. Gehlen . Critical and off-critical conformal analysis of the Ising quantum chain in an imaginary field. J. Phys. Math. Gen., 1991, 24(22): 5371
CrossRef
ADS
Google scholar
|
[48] |
P.B. SousaR.V. Ramos, Universal quantum circuit for n-qubit quantum gate: A programmable quantum gate, arXiv: quant-ph/0602174 (2006)
|
[49] |
X. D. Xie , X. Guo , H. Xing , Z. Y. Xue , D. B. Zhang , S. L. Zhu . Variational thermal quantum simulation of the lattice Schwinger model. Phys. Rev. D, 2022, 106(5): 054509
CrossRef
ADS
Google scholar
|
[50] |
T. Haug , K. Bharti , M. Kim . Capacity and quantum geometry of parametrized quantum circuits. PRX Quantum, 2021, 2(4): 040309
CrossRef
ADS
Google scholar
|
[51] |
J. Preskill . Quantum computing in the NISQ era and beyond. Quantum, 2018, 2: 79
CrossRef
ADS
Google scholar
|
[52] |
L. F. Richardson , J. A. Gaunt . VIII. The deferred approach to the limit. Philos. Trans. Royal Soc. Ser. A, 1927, 226(636‒646): 299
CrossRef
ADS
Google scholar
|
[53] |
K. Temme , S. Bravyi , J. M. Gambetta . Error mitigation for short-depth quantum circuits. Phys. Rev. Lett., 2017, 119(18): 180509
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |