Generalized time-dependent generator coordinate method for induced fission dynamics

B. Li, D. Vretenar, T. Nikšić, J. Zhao, P. W. Zhao, J. Meng

Front. Phys. ›› 2024, Vol. 19 ›› Issue (4) : 44201.

PDF(5118 KB)
PDF(5118 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (4) : 44201. DOI: 10.1007/s11467-023-1381-4
RESEARCH ARTICLE

Generalized time-dependent generator coordinate method for induced fission dynamics

Author information +
History +

Abstract

The generalized time-dependent generator coordinate method (TD-GCM) is extended to include pairing correlations. The correlated GCM nuclear wave function is expressed in terms of time-dependent generator states and weight functions. The particle−hole channel of the effective interaction is determined by a Hamiltonian derived from an energy density functional, while pairing is treated dynamically in the standard BCS approximation with time-dependent pairing tensor and single-particle occupation probabilities. With the inclusion of pairing correlations, various time-dependent phenomena in open-shell nuclei can be described more realistically. The model is applied to the description of saddle-to-scission dynamics of induced fission. The generalized TD-GCM charge yields and total kinetic energy distribution for the fission of 240Pu, are compared to those obtained using the standard time-dependent density functional theory (TD-DFT) approach, and with available data.

Graphical abstract

Keywords

nuclear density functional theory / generator coordinate method / fission dynamics

Cite this article

Download citation ▾
B. Li, D. Vretenar, T. Nikšić, J. Zhao, P. W. Zhao, J. Meng. Generalized time-dependent generator coordinate method for induced fission dynamics. Front. Phys., 2024, 19(4): 44201 https://doi.org/10.1007/s11467-023-1381-4

References

[1]
H.J. KrappeK. Pomorski, Theory of Nuclear Fission, Berlin, Heidelberg: Springer, 2012
[2]
N. Schunck, L. M. Robledo. Microscopic theory of nuclear fission: A review. Rep. Prog. Phys., 2016, 79(11): 116301
CrossRef ADS Google scholar
[3]
W.YounesD. M. GognyJ.F. Berger, A Microscopic Theory of Fission Dynamics Based on the Generator Coordinate Method, Springer Cham, 2019
[4]
D. Regnier, N. Dubray, N. Schunck, M. Verrière. Fission fragment charge and mass distributions in 239Pu(n, f) in the adiabatic nuclear energy density functional theory. Phys. Rev. C, 2016, 93(5): 054611
CrossRef ADS Google scholar
[5]
M. Verriere, D. Regnier. The time-dependent generator coordinate method in nuclear physics. Front. Phys. (Lausanne), 2020, 8: 233
CrossRef ADS Google scholar
[6]
H. Tao, J. Zhao, Z. P. Li, T. Nikšić, D. Vretenar. Microscopic study of induced fission dynamics of 226Th with covariant energy density functionals. Phys. Rev. C, 2017, 96(2): 024319
CrossRef ADS Google scholar
[7]
J. Zhao, J. Xiang, Z. P. Li, T. Nikšić, D. Vretenar, S. G. Zhou. Time-dependent generator-coordinate-method study of mass-asymmetric fission of actinides. Phys. Rev. C, 2019, 99(5): 054613
CrossRef ADS Google scholar
[8]
C. Simenel, A. Umar. Heavy-ion collisions and fission dynamics with the time-dependent Hartree−Fock theory and its extensions. Prog. Part. Nucl. Phys., 2018, 103: 19
CrossRef ADS Google scholar
[9]
T. Nakatsukasa, K. Matsuyanagi, M. Matsuo, K. Yabana. Time-dependent density-functional description of nuclear dynamics. Rev. Mod. Phys., 2016, 88(4): 045004
CrossRef ADS Google scholar
[10]
P. Stevenson, M. Barton. Low-energy heavy-ion reactions and the Skyrme effective interaction. Prog. Part. Nucl. Phys., 2019, 104: 142
CrossRef ADS Google scholar
[11]
A. Bulgac, P. Magierski, K. J. Roche, I. Stetcu. Induced fission of 240Pu within a real-time microscopic framework. Phys. Rev. Lett., 2016, 116(12): 122504
CrossRef ADS Google scholar
[12]
P. Magierski, K. Sekizawa, G. Wlazlowski. Novel role of superfluidity in low-energy nuclear reactions. Phys. Rev. Lett., 2017, 119(4): 042501
CrossRef ADS Google scholar
[13]
G. Scamps, C. Simenel. Impact of pear-shaped fission fragments on mass-asymmetric fission in actinides. Nature, 2018, 564(7736): 382
CrossRef ADS Google scholar
[14]
A. Bulgac, S. Jin, K. J. Roche, N. Schunck, I. Stetcu. Fission dynamics of 240Pu from saddle to scission and beyond. Phys. Rev. C, 2019, 100(3): 034615
CrossRef ADS Google scholar
[15]
A. Bulgac, S. Jin, I. Stetcu. Nuclear fission dynamics: Past, present, needs, and future. Front. Phys. (Lausanne), 2020, 8: 63
CrossRef ADS Google scholar
[16]
Z. X. Ren, D. Vretenar, T. Nikšić, P. W. Zhao, J. Zhao, J. Meng. Dynamical synthesis of 4He in the scission phase of nuclear fission. Phys. Rev. Lett., 2022, 128(17): 172501
CrossRef ADS Google scholar
[17]
B. Li, D. Vretenar, T. Nikšić, P. W. Zhao, J. Meng. Generalized time-dependent generator coordinate method for small- and large-amplitude collective motion. Phys. Rev. C, 2023, 108(1): 014321
CrossRef ADS Google scholar
[18]
P. Marević, D. Regnier, D. Lacroix. Quantum fluctuations induce collective multiphonons in finite Fermi liquids. Phys. Rev. C, 2023, 108(1): 014620
CrossRef ADS Google scholar
[19]
P. G. Reinhard, R. Cusson, K. Goeke. Time evolution of coherent ground-state correlations and the TDHF approach. Nucl. Phys. A, 1983, 398(1): 141
CrossRef ADS Google scholar
[20]
D. Regnier, D. Lacroix. Microscopic description of pair transfer between two superfluid Fermi systems (ii): quantum mixing of time-dependent Hartree−Fock−Bogolyubov trajectories. Phys. Rev. C, 2019, 99(6): 064615
CrossRef ADS Google scholar
[21]
Z. X. Ren, J. Zhao, D. Vretenar, T. Nikšić, P. W. Zhao, J. Meng. Microscopic analysis of induced nuclear fission dynamics. Phys. Rev. C, 2022, 105(4): 044313
CrossRef ADS Google scholar
[22]
S. Ebata, T. Nakatsukasa, T. Inakura, K. Yoshida, Y. Hashimoto, K. Yabana. Canonical-basis time-dependent Hartree−Fock−Bogoliubov theory and linear-response calculations. Phys. Rev. C Nucl. Phys., 2010, 82(3): 034306
CrossRef ADS Google scholar
[23]
G. Scamps, D. Lacroix. Effect of pairing on one- and two-nucleon transfer below the coulomb barrier: A time-dependent microscopic description. Phys. Rev. C, 2013, 87(1): 014605
CrossRef ADS Google scholar
[24]
P. W. Zhao, Z. P. Li, J. M. Yao, J. Meng. New parametrization for the nuclear covariant energy density functional with a point-coupling interaction. Phys. Rev. C, 2010, 82(5): 054319
CrossRef ADS Google scholar
[25]
L. M. Robledo. Sign of the overlap of Hartree−Fock−Bogoliubov wave functions. Phys. Rev. C, 2009, 79(2): 021302
CrossRef ADS Google scholar
[26]
Q. L. Hu, Z. C. Gao, Y. Chen. Matrix elements of one-body and two-body operators between arbitrary HFB multi-quasiparticle states. Phys. Lett. B, 2014, 734: 162
CrossRef ADS Google scholar
[27]
P. Bonche, J. Dobaczewski, H. Flocard, P. H. Heenen, J. Meyer. Analysis of the generator coordinate method in a study of shape isomerism in 194Hg. Nucl. Phys. A, 1990, 510(3): 466
CrossRef ADS Google scholar
[28]
P. G. Reinhard, K. Goeke. The generator coordinate method and quantised collective motion in nuclear systems. Rep. Prog. Phys., 1987, 50(1): 1
CrossRef ADS Google scholar
[29]
M. Bender, K. Rutz, P. G. Reinhard, J. A. Maruhn. Pairing gaps from nuclear mean field models. Eur. Phys. J. A, 2000, 8(1): 59
CrossRef ADS Google scholar
[30]
Z. X. Ren, S. Q. Zhang, J. Meng. Solving Dirac equations on a 3D lattice with inverse hamiltonian and spectral methods. Phys. Rev. C, 2017, 95(2): 024313
CrossRef ADS Google scholar
[31]
Z. X. Ren, S. Q. Zhang, P. W. Zhao, N. Itagaki, J. A. Maruhn, J. Meng. Stability of the linear chain structure for 12C in covariant density functional theory on a 3D lattice. Sci. China Phys. Mech. Astron., 2019, 62(11): 112062
CrossRef ADS Google scholar
[32]
Z. X. Ren, P. W. Zhao, S. Q. Zhang, J. Meng. Toroidal states in 28Si with covariant density functional theory in 3D lattice space. Nucl. Phys. A, 2020, 996: 121696
CrossRef ADS Google scholar
[33]
D. Ramos, M. Caamaño, F. Farget, C. Rodríguez-Tajes, L. Audouin, J. Benlliure, E. Casarejos, E. Clement, D. Cortina, O. Delaune, X. Derkx, A. Dijon, D. Doré, B. Fernańdez-Domínguez, G. de France, A. Heinz, B. Jacquot, A. Navin, C. Paradela, M. Rejmund, T. Roger, M. D. Salsac, C. Schmitt. Isotopic fission-fragment distributions of 238U, 239Np, 240Pu, 244Cm, and 250Cf produced through inelastic scattering, transfer, and fusion reactions in inverse kinematics. Phys. Rev. C, 2018, 97(5): 054612
CrossRef ADS Google scholar
[34]
J. Zhao, T. Nikšić, D. Vretenar, S. G. Zhou. Microscopic self-consistent description of induced fission dynamics: Finite-temperature effects. Phys. Rev. C, 2019, 99(1): 014618
CrossRef ADS Google scholar
[35]
M. Caamaño, F. Farget, O. Delaune, K. H. Schmidt, C. Schmitt, L. Audouin, C. O. Bacri, J. Benlliure, E. Casarejos, X. Derkx, B. Fernańdez-Domínguez, L. Gaudefroy, C. Golabek, B. Jurado, A. Lemasson, D. Ramos, C. Rodríguez-Tajes, T. Roger, A. Shrivastava. Characterization of the scission point from fission-fragment velocities. Phys. Rev. C, 2015, 92(3): 034606
CrossRef ADS Google scholar
[36]
B. Li, D. Vretenar, Z. X. Ren, T. Nikšić, J. Zhao, P. W. Zhao, J. Meng. Fission dynamics, dissipation, and clustering at finite temperature. Phys. Rev. C, 2023, 107(1): 014303
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported in part by the High-end Foreign Experts Plan of China, the National Key R&D Program of China (Contract No. 2018YFA0404400), the National Natural Science Foundation of China (Grant Nos. 12070131001, 11875075, 11935003, 11975031, and 12141501), the High-performance Computing Platform of Peking University, the QuantiXLie Centre of Excellence, a project co-financed by the Croatian Government and European Union through the European Regional Development Fund − the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01.0004), and the Croatian Science Foundation under the project Uncertainty quantification within the nuclear energy density framework (IP-2018-01-5987).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5118 KB)

Accesses

Citations

Detail

Sections
Recommended

/