Generalized time-dependent generator coordinate method for induced fission dynamics

B. Li, D. Vretenar, T. Nikšić, J. Zhao, P. W. Zhao, J. Meng

PDF(5118 KB)
PDF(5118 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (4) : 44201. DOI: 10.1007/s11467-023-1381-4
RESEARCH ARTICLE

Generalized time-dependent generator coordinate method for induced fission dynamics

Author information +
History +

Abstract

The generalized time-dependent generator coordinate method (TD-GCM) is extended to include pairing correlations. The correlated GCM nuclear wave function is expressed in terms of time-dependent generator states and weight functions. The particle−hole channel of the effective interaction is determined by a Hamiltonian derived from an energy density functional, while pairing is treated dynamically in the standard BCS approximation with time-dependent pairing tensor and single-particle occupation probabilities. With the inclusion of pairing correlations, various time-dependent phenomena in open-shell nuclei can be described more realistically. The model is applied to the description of saddle-to-scission dynamics of induced fission. The generalized TD-GCM charge yields and total kinetic energy distribution for the fission of 240Pu, are compared to those obtained using the standard time-dependent density functional theory (TD-DFT) approach, and with available data.

Graphical abstract

Keywords

nuclear density functional theory / generator coordinate method / fission dynamics

Cite this article

Download citation ▾
B. Li, D. Vretenar, T. Nikšić, J. Zhao, P. W. Zhao, J. Meng. Generalized time-dependent generator coordinate method for induced fission dynamics. Front. Phys., 2024, 19(4): 44201 https://doi.org/10.1007/s11467-023-1381-4

References

[1]
H.J. KrappeK. Pomorski, Theory of Nuclear Fission, Berlin, Heidelberg: Springer, 2012
[2]
N. Schunck, L. M. Robledo. Microscopic theory of nuclear fission: A review. Rep. Prog. Phys., 2016, 79(11): 116301
CrossRef ADS Google scholar
[3]
W.YounesD. M. GognyJ.F. Berger, A Microscopic Theory of Fission Dynamics Based on the Generator Coordinate Method, Springer Cham, 2019
[4]
D. Regnier, N. Dubray, N. Schunck, M. Verrière. Fission fragment charge and mass distributions in 239Pu(n, f) in the adiabatic nuclear energy density functional theory. Phys. Rev. C, 2016, 93(5): 054611
CrossRef ADS Google scholar
[5]
M. Verriere, D. Regnier. The time-dependent generator coordinate method in nuclear physics. Front. Phys. (Lausanne), 2020, 8: 233
CrossRef ADS Google scholar
[6]
H. Tao, J. Zhao, Z. P. Li, T. Nikšić, D. Vretenar. Microscopic study of induced fission dynamics of 226Th with covariant energy density functionals. Phys. Rev. C, 2017, 96(2): 024319
CrossRef ADS Google scholar
[7]
J. Zhao, J. Xiang, Z. P. Li, T. Nikšić, D. Vretenar, S. G. Zhou. Time-dependent generator-coordinate-method study of mass-asymmetric fission of actinides. Phys. Rev. C, 2019, 99(5): 054613
CrossRef ADS Google scholar
[8]
C. Simenel, A. Umar. Heavy-ion collisions and fission dynamics with the time-dependent Hartree−Fock theory and its extensions. Prog. Part. Nucl. Phys., 2018, 103: 19
CrossRef ADS Google scholar
[9]
T. Nakatsukasa, K. Matsuyanagi, M. Matsuo, K. Yabana. Time-dependent density-functional description of nuclear dynamics. Rev. Mod. Phys., 2016, 88(4): 045004
CrossRef ADS Google scholar
[10]
P. Stevenson, M. Barton. Low-energy heavy-ion reactions and the Skyrme effective interaction. Prog. Part. Nucl. Phys., 2019, 104: 142
CrossRef ADS Google scholar
[11]
A. Bulgac, P. Magierski, K. J. Roche, I. Stetcu. Induced fission of 240Pu within a real-time microscopic framework. Phys. Rev. Lett., 2016, 116(12): 122504
CrossRef ADS Google scholar
[12]
P. Magierski, K. Sekizawa, G. Wlazlowski. Novel role of superfluidity in low-energy nuclear reactions. Phys. Rev. Lett., 2017, 119(4): 042501
CrossRef ADS Google scholar
[13]
G. Scamps, C. Simenel. Impact of pear-shaped fission fragments on mass-asymmetric fission in actinides. Nature, 2018, 564(7736): 382
CrossRef ADS Google scholar
[14]
A. Bulgac, S. Jin, K. J. Roche, N. Schunck, I. Stetcu. Fission dynamics of 240Pu from saddle to scission and beyond. Phys. Rev. C, 2019, 100(3): 034615
CrossRef ADS Google scholar
[15]
A. Bulgac, S. Jin, I. Stetcu. Nuclear fission dynamics: Past, present, needs, and future. Front. Phys. (Lausanne), 2020, 8: 63
CrossRef ADS Google scholar
[16]
Z. X. Ren, D. Vretenar, T. Nikšić, P. W. Zhao, J. Zhao, J. Meng. Dynamical synthesis of 4He in the scission phase of nuclear fission. Phys. Rev. Lett., 2022, 128(17): 172501
CrossRef ADS Google scholar
[17]
B. Li, D. Vretenar, T. Nikšić, P. W. Zhao, J. Meng. Generalized time-dependent generator coordinate method for small- and large-amplitude collective motion. Phys. Rev. C, 2023, 108(1): 014321
CrossRef ADS Google scholar
[18]
P. Marević, D. Regnier, D. Lacroix. Quantum fluctuations induce collective multiphonons in finite Fermi liquids. Phys. Rev. C, 2023, 108(1): 014620
CrossRef ADS Google scholar
[19]
P. G. Reinhard, R. Cusson, K. Goeke. Time evolution of coherent ground-state correlations and the TDHF approach. Nucl. Phys. A, 1983, 398(1): 141
CrossRef ADS Google scholar
[20]
D. Regnier, D. Lacroix. Microscopic description of pair transfer between two superfluid Fermi systems (ii): quantum mixing of time-dependent Hartree−Fock−Bogolyubov trajectories. Phys. Rev. C, 2019, 99(6): 064615
CrossRef ADS Google scholar
[21]
Z. X. Ren, J. Zhao, D. Vretenar, T. Nikšić, P. W. Zhao, J. Meng. Microscopic analysis of induced nuclear fission dynamics. Phys. Rev. C, 2022, 105(4): 044313
CrossRef ADS Google scholar
[22]
S. Ebata, T. Nakatsukasa, T. Inakura, K. Yoshida, Y. Hashimoto, K. Yabana. Canonical-basis time-dependent Hartree−Fock−Bogoliubov theory and linear-response calculations. Phys. Rev. C Nucl. Phys., 2010, 82(3): 034306
CrossRef ADS Google scholar
[23]
G. Scamps, D. Lacroix. Effect of pairing on one- and two-nucleon transfer below the coulomb barrier: A time-dependent microscopic description. Phys. Rev. C, 2013, 87(1): 014605
CrossRef ADS Google scholar
[24]
P. W. Zhao, Z. P. Li, J. M. Yao, J. Meng. New parametrization for the nuclear covariant energy density functional with a point-coupling interaction. Phys. Rev. C, 2010, 82(5): 054319
CrossRef ADS Google scholar
[25]
L. M. Robledo. Sign of the overlap of Hartree−Fock−Bogoliubov wave functions. Phys. Rev. C, 2009, 79(2): 021302
CrossRef ADS Google scholar
[26]
Q. L. Hu, Z. C. Gao, Y. Chen. Matrix elements of one-body and two-body operators between arbitrary HFB multi-quasiparticle states. Phys. Lett. B, 2014, 734: 162
CrossRef ADS Google scholar
[27]
P. Bonche, J. Dobaczewski, H. Flocard, P. H. Heenen, J. Meyer. Analysis of the generator coordinate method in a study of shape isomerism in 194Hg. Nucl. Phys. A, 1990, 510(3): 466
CrossRef ADS Google scholar
[28]
P. G. Reinhard, K. Goeke. The generator coordinate method and quantised collective motion in nuclear systems. Rep. Prog. Phys., 1987, 50(1): 1
CrossRef ADS Google scholar
[29]
M. Bender, K. Rutz, P. G. Reinhard, J. A. Maruhn. Pairing gaps from nuclear mean field models. Eur. Phys. J. A, 2000, 8(1): 59
CrossRef ADS Google scholar
[30]
Z. X. Ren, S. Q. Zhang, J. Meng. Solving Dirac equations on a 3D lattice with inverse hamiltonian and spectral methods. Phys. Rev. C, 2017, 95(2): 024313
CrossRef ADS Google scholar
[31]
Z. X. Ren, S. Q. Zhang, P. W. Zhao, N. Itagaki, J. A. Maruhn, J. Meng. Stability of the linear chain structure for 12C in covariant density functional theory on a 3D lattice. Sci. China Phys. Mech. Astron., 2019, 62(11): 112062
CrossRef ADS Google scholar
[32]
Z. X. Ren, P. W. Zhao, S. Q. Zhang, J. Meng. Toroidal states in 28Si with covariant density functional theory in 3D lattice space. Nucl. Phys. A, 2020, 996: 121696
CrossRef ADS Google scholar
[33]
D. Ramos, M. Caamaño, F. Farget, C. Rodríguez-Tajes, L. Audouin, J. Benlliure, E. Casarejos, E. Clement, D. Cortina, O. Delaune, X. Derkx, A. Dijon, D. Doré, B. Fernańdez-Domínguez, G. de France, A. Heinz, B. Jacquot, A. Navin, C. Paradela, M. Rejmund, T. Roger, M. D. Salsac, C. Schmitt. Isotopic fission-fragment distributions of 238U, 239Np, 240Pu, 244Cm, and 250Cf produced through inelastic scattering, transfer, and fusion reactions in inverse kinematics. Phys. Rev. C, 2018, 97(5): 054612
CrossRef ADS Google scholar
[34]
J. Zhao, T. Nikšić, D. Vretenar, S. G. Zhou. Microscopic self-consistent description of induced fission dynamics: Finite-temperature effects. Phys. Rev. C, 2019, 99(1): 014618
CrossRef ADS Google scholar
[35]
M. Caamaño, F. Farget, O. Delaune, K. H. Schmidt, C. Schmitt, L. Audouin, C. O. Bacri, J. Benlliure, E. Casarejos, X. Derkx, B. Fernańdez-Domínguez, L. Gaudefroy, C. Golabek, B. Jurado, A. Lemasson, D. Ramos, C. Rodríguez-Tajes, T. Roger, A. Shrivastava. Characterization of the scission point from fission-fragment velocities. Phys. Rev. C, 2015, 92(3): 034606
CrossRef ADS Google scholar
[36]
B. Li, D. Vretenar, Z. X. Ren, T. Nikšić, J. Zhao, P. W. Zhao, J. Meng. Fission dynamics, dissipation, and clustering at finite temperature. Phys. Rev. C, 2023, 107(1): 014303
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported in part by the High-end Foreign Experts Plan of China, the National Key R&D Program of China (Contract No. 2018YFA0404400), the National Natural Science Foundation of China (Grant Nos. 12070131001, 11875075, 11935003, 11975031, and 12141501), the High-performance Computing Platform of Peking University, the QuantiXLie Centre of Excellence, a project co-financed by the Croatian Government and European Union through the European Regional Development Fund − the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01.0004), and the Croatian Science Foundation under the project Uncertainty quantification within the nuclear energy density framework (IP-2018-01-5987).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5118 KB)

Accesses

Citations

Detail

Sections
Recommended

/